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Data-driven decision-making involves estimating the value associated with each possible decision and select-

ing the optimal estimated choice. This type of decision making is at the heart of a huge number of modern

marketing applications, including ad creative choice, algorithm optimization, personalized targeting, A/B

testing, pricing, and assortment optimization. In practice, it is crucial not only to estimate the optimal

policy but also to accurately measure the incremental value or lift of that policy. In this paper, we first

demonstrate theoretically that selecting the optimal policy based on estimated effects from data leads, on

average, to overly optimistic evaluations of the policy value, a phenomenon known as the winner’s curse. This

is true no matter what best methodology is used to estimate the policy’s effectiveness. We then empirically

illustrate that the winner’s curse arises in a wide range of key marketing applications, including A/B testing,

personalized targeting, and counterfactual estimation using structural models, and that its magnitude can

be substantial even within realistic parameter ranges commonly seen in the literature. Given the generality

of this problem across diverse settings, we propose a correction method based on a non-continuous bootstrap

approach designed to effectively mitigate the winner’s curse in nearly all scenarios. Finally, we benchmark

our proposed method against several existing context-specific solutions, demonstrating that our bootstrap-

based correction consistently performs well and frequently outperforms alternative methods across important

marketing contexts.
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1. Introduction

In the era of digital marketing, most marketing problems involve data-driven decision-making.

Data-driven decision-making, as the name suggests, requires decision-makers first to estimate the

value of each potential action based on data, and subsequently optimize the decision using these

estimates. This procedure encompasses a wide range of marketing applications. For example, dig-

ital platforms regularly run thousands of A/B tests to refine their daily decisions. In each A/B

test, platforms initially estimate the effectiveness of each treatment option and then choose the

optimal treatment based on these outcomes. Similarly, traditional firms rely heavily on data-driven
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methods for personalized advertising and promotional targeting. These firms first assess the impact

of different advertisements or coupons across consumer subgroups, and then select the optimal

advertisement or coupon for each segment of customers. Furthermore, many marketing researchers

and practitioners utilize structural estimation and counterfactual simulations to evaluate policy

alternatives. In structural estimation, model parameters are first estimated, and then, in various

counterfactual scenarios—such as pricing or assortment decisions—optimal policies are determined

based on these estimated models.

We refer to this process of first estimating the expected value of each option from data and

subsequently selecting the optimal action as the ”inference-then-optimize” framework. In practice,

it is crucial not only to identify optimal decisions but also to obtain accurate estimates of the value

associated with these decisions. In the case of A/B testing, accurately measuring the effects of cho-

sen treatments is essential because firms need precise forecasts for internal tracking purposes, and

potentially for public reporting, such as financial disclosures regarding anticipated outcomes. Sim-

ilarly, in personalized advertising and promotions, significant fixed costs are often associated with

collaboration with advertising platforms, prompting firms to demand reliable Return on Investment

(ROI) estimates of their personalized targeting programs before committing resources. Addition-

ally, from a human resource management perspective, understanding the actual impacts of these

decisions is essential for accurately evaluating managers and employees responsible for these initia-

tives, thus ensuring fairness and transparency in performance appraisals and promotions. Similarly,

in some cases there will be other operational costs, such as handling of ordering and inventory,

that will depend on accurate forecasts.

Despite the importance of accurately reporting the optimal decision’s value through the inference-

then-optimize procedure, this issue has received limited attention within the marketing literature,

particularly concerning whether traditional methods in the literature and practice reliably estimate

this value. This research therefore seeks to address the following questions: Does reporting the

expected value of the optimal policy in the inference-then-optimize framework accurately capture

the true value? If inaccuracies exist, how substantial might the biases be, and under which mar-

keting scenarios are these biases likely to be significant? Finally, can we develop general solutions

applicable across a broad spectrum of marketing contexts to correct this estimation bias?

To address these questions, we first theoretically demonstrate that under the general

inference-then-optimize framework, the reported value of the optimal decision is inherently over-

optimistic—even when the estimated value of each option is unbiased and consistent. The winner’s

curse arises from two key aspects of the inference-then-optimize framework. First, estimation errors

inevitably occur in the inference stage, as perfect estimation of each option’s value is typically

unattainable, especially when data is limited. Second, the optimization stage requires selecting
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among various options based on their estimated values from the inference stage. When these two

conditions are met, the conditional expected value of the chosen optimal option will differ from its

unconditional expected value, thereby creating the winner’s curse.

After establishing the general existence of the winner’s curse, we focus on a specific and com-

monly encountered scenario involving two options, each with normally distributed values. In this

scenario, we derive a theoretical expression for the winner’s curse and demonstrate that its mag-

nitude is proportional to the difference in expected returns between the two options and inversely

proportional to their joint empirical variance. Specifically, the winner’s curse becomes more pro-

nounced when the two options yield similar expected values, making them difficult to distinguish,

or when the options have high variance or limited observational data.

Having demonstrated the existence and comparative statics of the winner’s curse theoretically,

we next employ simulations to illustrate its presence across a broad range of scenarios. We begin

with an A/B testing context and explore various extensions. For instance, experimental outcomes

can be either continuous (e.g., customer spending or time spent on an online platform) or discrete

(e.g., purchase versus non-purchase outcomes). We then examine personalized targeting problems,

where different treatments are assigned to groups of heterogeneous consumers. A similar logic

applies when choosing the ”best” option for each segment based on data, which typically leads to an

overestimation of aggregated targeting values across segments. Subsequently, we consider scenarios

without predefined discrete segments, where the impact of each policy on outcomes depends con-

tinuously on observable customer features. This situation is common in marketing contexts, where

firms utilize predictive covariates for personalized targeting. Here again, we confirm the presence

of the winner’s curse. Importantly, we show that the winner’s curse is not only present but also

substantial within parameter ranges frequently encountered in previous marketing research.

Given the widespread presence of the winner’s curse across various marketing applications, we

next propose a solution to address this problem. Although prior literature in biostatistics and

economics has offered solutions to the winner’s curse, these remedies are typically tailored to

specific contexts, requiring substantial adaptation when applied to new settings. To overcome

this limitation, we introduce a model-free, bootstrap-based policy value estimator, encompassing

standard bootstrapping, as well as subsampling and perturbation methods, that systematically

adjusts for upward bias. Analogous to addressing the winner’s curse in auction theory, where bids

are shaded to avoid overbidding, our approach involves adjusting (”shading”) the policy value

estimates to counteract over-optimism. The degree of correction required is based on the magnitude

of the winner’s curse, which we estimate using bootstrap methods. By resampling with replacement

from the original dataset to create bootstrap samples, we reconstruct the policies within each
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bootstrap iteration and subsequently evaluate these policies on the original dataset. This procedure

approximates the value of the focal policy under real-world conditions using the full sample.

We then benchmark our approach against several widely used methods in biostatistics and eco-

nomics, including sample splitting, Bayesian shrinkage estimation (e.g., Johnstone and Silverman

(2004), Efron (2011)), and selective inference (e.g., Rasines and Young (2020), Kuchibhotla et al.

(2022), Andrews et al. (2024)). The first method, sample splitting, divides the data into two sub-

sets: one subset is used to learn policies from data, and the other is reserved for policy evaluation.

The second benchmark, Bayesian shrinkage estimation, evaluates the learned policies through pos-

terior estimation. The third method, selective inference, models the distribution of the winning

policy conditional on its selection (e.g., as a truncated normal distribution), typically relying on

strong modeling assumptions about the underlying data-generating process.

After benchmarking our method against these widely discussed approaches from other litera-

ture, we demonstrate that our approach consistently performs well across various applications and

parameter settings, frequently outperforming other methods, though not universally. Each of the

benchmark methods exhibits significant drawbacks. First, sample splitting guarantees unbiased

estimates of the reported policy value but sacrifices efficiency, as only part of the dataset is used

for policy estimation while the remainder is used solely for evaluation. Second, Bayesian estimation

can be applied broadly but relies heavily on correctly specified prior assumptions. Misspecification

of the prior significantly diminishes performance. Lastly, selective inference performs effectively if

the data generating process (DGP) assumed by the estimator matches the actual DGP; however,

mismatches in these assumptions lead to poor performance.

Finally, although our approach generally performs well, the standard bootstrap method does

not always fully correct for the winner’s curse due to discontinuities in the optimization process.

Furthermore, alternative approaches such as the m-out-of-n (e.g., Bickel et al. (1997), Chakraborty

et al. (2013)) or numerical bootstrap (Hong and Li 2020) can theoretically handle these discon-

tinuities but typically depend on hyperparameters that are sensitive and lack robust theoretical

guidance for tuning. Considering the limitations inherent in all these methods, including ours, we

conclude by discussing practical considerations that can help researchers and practitioners choose

the most appropriate method for their specific contexts.

The paper is organized as the following. We start with the analytical analysis of winner’s curse in

Section 2. We develop an analytical formulation of winner’s curse and provide a sufficient condition

for it to hold. In Section 3, we discuss different potential remedies and propose our bootstrap-based

policy value estimator in Section 3. Finally, we demonstrate winner’s curse and the performance

of various correction methods via extensive simulation under A/B testing and targeting contexts

in Section 4 and Section 5.



Author: Winner’s Curse 5

2. The Winner’s Curse Phenomena

In this section, we start by discussing winner’s curse in a data-driven single-segment targeting

problem. We show that winner’s curse is a common phenomena that could exist in a wide range

of inference-then-optimize problems. We then propose a bootstrap-based correction estimator for

removing the winner’s curse. We will also discuss other proposed methods in the litearture for

alleviating winner’s curse.

2.1. Winner’s Curse of Single-Segment Targeting

Consider a targeting problem where we want to assign one of two treatments to a single segment

of homogeneous consumers. Let Yi denote the consumer’s response of interest, such as purchase

decision, spending, time-spent on platform, etc. In this section we consider continuous response,

i.e., Yi ∈ R for analytical clarity. However, the results generalize to discrete response and we will

discuss them via simulation in later sections. Let Ti ∈ {a1, a2} denote the treatment variable we

need to decide. The causal effects of the two treatments are denoted as τ1 and τ2 respectively.

Because we consider a single segment problem, the causal effects are the same for all individuals.

Finally, the data generation process for consumer’s response is modeled as (1):

Yi = τ11{Ti = a1}+ τ21{Ti = a2}+ ϵi. (1)

where 1{·} is an indicator function and ϵi is idiosyncratic risk following mean-zero normal distri-

bution with variance σ2.

Because the true treatment effects are unknown, solving the targeting problem follows an

inference-then-optimize procedure. In the inference stage, we assume that the decision maker have

access to some unbiased estimators for the treatment effects. Let τ̂1 and τ̂2 denote the unbiased

estimators we constructed from a dataset D = {(Ti, Yi)}Ni=1 with N observations. For example,

when the dataset is collected from a randomized control trial, the common difference-in-mean or

regression adjustment estimators are unbiased. Notably, even though the estimators are unbiased,

they will have mean zero estimation error as long as the sample size N is finite. When we use

the estimators as input to the optimization stage, such estimation error will cause over-optimistic

policy value estimate.

In the optimization stage, we want to choose among the two treatments to maximize expected

consumer’s response (e.g., spending). The optimization problem is formulated as (2). f(Ti, τ̂1:2) is

the objective value given treatment assignment and parameter estimates. Let T∗(τ̂1:2) denote the

optimal treatment decision constructed based on the estimated effects. We call it the data-driven

decision. Note that the T∗(τ̂1:2) = a1 if τ̂1 ≥ τ̂2 and chooses a2 otherwise.

max
Ti∈{a1,a2}

f(Ti, τ̂1:2) = τ̂11{Ti = a1}+ τ̂21{Ti = a2}. (2)
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The goal is to estimate the actual policy value of the data-driven decision. Using the notations

above, the actual value of the data-driven decision can be written as f(T∗(τ̂1:2), τ1:2), meaning that

we are evaluating the data-driven decision using the actual causal effects τ1:2. Because we do not

have access to the actual causal effects, researchers and practitioners use the estimated effects to

evaluate the data-driven decision, i.e., f(T∗(τ̂1:2), τ̂1:2), which is also the optimal objective value

from directly solving (2). The difference between the two values are summarized in Table 1.

Table 1 Comparison of Different Objective Values

Targeting Value Decision under Evaluation Evaluation Environment

f(T∗(τ̂1:2), τ̂1:2) Data-Driven Decision Estimated

f(T∗(τ̂1:2), τ1:2) Data-Driven Decision Actual

We find that when we evaluate the data-driven decision using estimated treatment effects, we

are overestimating the actual targeting value in expectation. The main cause is we are selecting

treatment assignment based on estimated causal effects. Instead of picking the treatment with an

actually larger effect, we might pick the one with inflated estimate due to estimation error. As a

result, we will overestimate the targeting value. This is called the winner’s curse phenomenon, which

was first found in auction theory, where the winner of a common-value auction over-bids. Next, we

formalize this idea. Suppose that the estimators follow τ̂j ∼N (τj, σ
2/Nj), where Nj is the number

of individuals assigned with treatment aj in the dataset. We can construct them by taking sample

average of the responses from individuals assigned with treatment aj. Although the estimators are

unbiased and
√
N -consistent, basically the best property we can hope for, Proposition 1 shows that

we still have winner’s curse in a single-segment targeting problem.

Proposition 1 (Winner’s Curse in Single-Segment Targeting). Assume that we have

unbiased and independent estimators τ̂j ∼N (τj, σ
2/Nj) for j ∈ {1,2} and that the DGP variance

σ2 is nonzero. Then, evaluating the data-driven decision using estimated effects f(T∗(τ̂1:2), τ̂1:2)

overestimates the actual value of the decision f(T∗(τ̂1:2), τ1:2) in expectation:

WC := E [f(T∗(τ̂1:2), τ̂1:2)− f(T∗(τ̂1:2), τ1:2)] = σsφ(
∆τ

σs

)> 0, (3)

where σs =
√
σ2/N1 +σ2/N2 and ∆τ = τ2 − τ1.

Proof of Proposition 1 Let ξj = τ̂j − τj denote the estimation error of the causal effect of treat-

ment aj. Then the winner’s curse can be written as a function of estimation errors and the data-

driven treatment decision:

WC =E[ξ11{T∗(τ̂1:2) = a1}] +E[ξ21{T∗(τ̂1:2) = a2}]

= E[ξ11{τ̂1 ≥ τ̂2}] +E[ξ21{τ̂1 < τ̂2}].
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Because only one treatment out of the two treatments can be chosen, the two treatment indicators

must sum to one, i.e., 1{τ̂1 ≥ τ̂2} + 1{τ̂1 < τ̂2} = 1. Furthermore, ξj have zero mean because of

unbiasedness, so the winner’s curse is:

WC =E[(ξ1 − ξ2)1{ξ1 − ξ2 ≥ τ2 − τ1}].

Let ξ := ξ1 − ξ2, which follows N (0, σ2
s) with sampling variance σ2

s = σ2/N1 + σ2/N2. Then, the

winner’s curse satisfies:

WC = σs

∫ ∞

τ2−τ1
σs

zφ(z)dz = σsφ(
∆τ

σs

)> 0.

Q.E.D.

Proposition 1 shows that even with unbiasedness and
√
N -consistent estimators, which are the

best properties of a statistical estimator one can get in practice, we still overestimate the actual

targeting value on average. In addition, the magnitude of winner’s curse depends on the sampling

variance σ2
s and the difference between the two treatments.

Proposition 2. The magnitude of winner’s curse in a single-segment targeting problem is the

largest when the two treatment effects are the same. It decreases as the difference |∆τ | increases.
The magnitude is also an increasing function of the sampling variance σ2

s while fixing other vari-

ables.

Proof of Theorem 2 First we show winner’s curse increases with the sampling variance.

dWC

dσs

=φ

(
∆τ

σs

)
+

(
∆τ

σs

)2

φ

(
∆τ

σs

)
≥ 0.

Next, we show winner’s curse decreases with the treatment effect difference |∆τ |.
dWC

d∆τ
=−∆τ

σs

φ

(
∆τ

σs

)
.

When ∆τ ≤ 0, dWC
d∆τ

≥ 0; When ∆τ > 0, dWC
d∆τ

< 0. That is, the magnitude of winner’s curse is the

largest when the two treatment effects are the same, i.e., ∆τ = 0. As the difference between the

two treatments |∆τ | increases, winner’s curse decreases.

Q.E.D.

Theorem 2 summarizes two major factors affecting the magnitude of winner’s curse. First, when

the causal effects of the two treatment arms get closer, it is increasingly hard to identify which

one is larger and we are more likely to choose the wrong treatment. That is, the selection is harder

when the two treatments are similar. Second, when the sampling variance is large, it is also difficult

to identify which treatment is the better one. In addition, the magnitude of estimation error is also

larger, leading to bigger winner’s curse. Furthermore, the sampling variance σ2
s is affected not only

by the noise level σ2 in the DGP, but also by the balanced-ness of the dataset. Specifically, σ2
s is

the smallest when N1 =N2 =N/2, i.e., when the dataset is balanced. The more imbalanced the

dataset, the higher the sampling variance σ2
s and the winner’s curse.
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2.2. Winner’s Curse of General Inference-then-Optimize

In this section, we consider winner’s curse in a more general framework of data-driven decision mak-

ing, namely inference-then-optimize. Let T denote the space of candidate decisions (treatments)

and Θ the space of demand parameters. In the single-segment targeting example, the treatment

space is T = {a1, a2} and the parameter space is Θ = R2. The objective function f is a mapping

from T ×Θ to the real line R and the optimal decision operator T∗ is a measurable function from

the parameter space Θ to the decision space T .

Under the inference-then-optimize framework, we first establish an estimator from data and

conduct optimization based on the estimator. Let θ0 ∈ Θ denote the true parameter of interest

and θ̂ ∈Θ the estimator constructed from data. For example, θ0 = (τ1, τ2) and θ̂ = (τ̂1, τ̂2) in the

single-segment targeting problem. The data-driven decision comes from solving some optimization

of the following form:

T∗(θ̂)∈ argmax
T∈T

{
f(T, θ̂) | h(T, θ̂)≥ 0, g(T, θ̂) = 0

}
,

where h, g are some constraints the decision needs to satisfy. For example, in A/B testing, we only

choose the experiments with significant results; in search engine marketing, we have a budget limit

on bidding; in personalized pricing, we have an upper bound on the price we can set.

Winner’s curse describes the average discrepancy f(T∗(θ̂), θ̂) − f(T∗(θ̂), θ0) of evaluating the

data-driven decision using estimated against actual parameters. Note that T∗(θ̂) is a measurable

function from the underlying probability space (Ω,F , P ) to the decision space T . Let B denote the

σ-algebra on T and µ denote the pushforward measure on (T ,B) induced by T∗(θ̂). Thus, we can

write the winner’s curse as the following.

Theorem 1. Assume that the objective function f : T ×Θ 7→R is twice differentiable w.r.t. the

second argument, then the winner’s curse is

WC =E
[
f(T∗(θ̂), θ̂)− f(T∗(θ̂), θ0)

]
(4)

=

∫
t∈T

∇θf(t, θ0)
TE

[
θ̂− θ0

∣∣∣ T∗(θ̂) = t
]
µ(dt)

+
1

2

∫
t∈T

E
[
(θ̂− θ0)

T∇2
θf(t, θ0)(θ̂− θ0)

∣∣∣ T∗(θ̂) = t
]
µ(dt)

+O(E[∥θ̂− θ∥3]).

If the estimator θ̂ has negligible third or higher-order moments and

∇θf(t, θ0)
TE

[
θ̂− θ0

∣∣∣ T∗(θ̂) = t
]
≥−1

2
E
[
(θ̂− θ0)

T∇2
θf(t, θ0)(θ̂− θ0)

∣∣∣ T∗(θ̂) = t
]
, (5)

for µ-almost every t∈ T . Then, we have nonnegative winner’s curse WC ≥ 0.
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Proof of Theorem 1 Let wc(θ̂) := f(T∗(θ̂), θ̂)− f(T∗(θ̂), θ0), which is the discrepancy from one

realization. Applying the tower property to the winner’s curse we have:

WC =

∫
t∈T

E
[
wc(θ̂)|T∗(θ̂) = t

]
µ(dt).

Expanding the estimated policy value f(t, θ̂) on the second argument around the true parameter

value θ0, the conditional expectation becomes:

E[wc(θ̂)|T∗(θ̂) = t] =∇θf(t, θ0)
TE[θ̂− θ0|T∗(θ̂) = t]

+
1

2
E
[
(θ̂− θ0)

T∇2
θf(t, θ0)(θ̂− θ0)

]
+O(E[∥θ̂− θ0∥3|T∗(θ̂) = t]).

Plugging the conditional expectation back to the integral of WC, we have (4). In addition, a suf-

ficient condition for WC to be nonnegative is the conditional expectation E[wc(θ̂)|T∗(θ̂) = t] being

nonnegative a.e. t. Under negligible higher-order moments assumption, the sufficient condition is:

∇θf(t, θ0)
TE

[
θ̂− θ0

∣∣∣ T∗(θ̂) = t
]
≥−1

2
E
[
(θ̂− θ0)

T∇2
θf(t, θ0)(θ̂− θ0)

∣∣∣ T∗(θ̂) = t
]
,

holds for µ-almost every t∈ T .

Q.E.D.

Theorem 1 provides a sufficient condition for a nonnegative winner’s curse. Eq 4 shows that the

winner’s curse depends on the conditional bias and conditional estimation variance scaled by the

curvature of the objective function w.r.t. the parameter. For example, if the objective function has

increasing margin (positive curvature) over θ, such as quadratic treatment effects, it will amplify

the impact of estimation variance and increase winner’s curse.

In many applications we have a linear objective function. For example in targeting, the objective

is a summation over the causal effects of the treated individuals. In A/B testing, the objective is

the total causal effects of all the significant tests. Because the curvature is zero for a linear function,

the sufficient condition for a nonnegative winner’s curse is:

∇θf(t, θ0)
TE

[
θ̂− θ0

∣∣∣ T∗(θ̂) = t
]
≥ 0, (6)

for µ-almost every t ∈ T . Consider an A/B testing scenario where we have two experiments with

true effects θ0 = (θ01, θ02) and we want to choose the one with a higher estimated effect to launch.

Eq 6 is then E[θ̂1 − θ01|θ̂1 ≥ θ̂2] if the first experiment is chosen and E[θ̂2 − θ02|θ̂1 ≤ θ̂2] otherwise.

Lemma 1 shows that even if the estimators θ̂ are unbiased, conditioning on the fact that an

experiment is chosen, its conditional bias is no longer zero. Thus, the sufficient condition is satisfied

and we have a nonnegative winner’s curse.



10 Author: Winner’s Curse

Lemma 1. Assume that we have independent estimators θ̂j ∼N (θ0j, σ
2
j ) for j = 1,2. Then the

bias of an estimator conditioning on it being selected is:

E[θ̂1 − θ01|θ̂1 ≥ θ̂2] =
σ2
1

σs

φ( θ1−θ2
σs

)

Φ( θ1−θ2
σs

)
> 0,

where σs =
√
σ2
1 +σ2

2, φ,Φ are the PDF and CDF of a standard normal distribution.

Proof of Theorem 1 Let ξj = θ̂j − θ0j and ∆θ0 = θ01 − θ02. Then, we have:

E[θ̂1 − θ01|θ̂1 ≥ θ̂2] = E[ξ1|ξ1 − ξ2 ≥−∆θ0]

= E{E[ξ1|ξ1 − ξ2] |ξ1 − ξ2 ≥−∆θ0 } .

Note that because ξ1 and ξ1 − ξ2 are jointly normal, the conditional expectation E[ξ1|ξ1 − ξ2] is

linear and it is:

E[ξ1|ξ1 − ξ2] =
Cov(ξ1, ξ1 − ξ2)

V ar(ξ1 − ξ2)
(ξ1 − ξ2) =

σ2
1

σ2
s

(ξ1 − ξ2).

Plugging back we have:

E[θ̂1 − θ01|θ̂1 ≥ θ̂2] =
σ2
1

σ2
s

E{ξ1 − ξ2|ξ1 − ξ2 ≥−∆θ0}=
σ2
1

σs

φ(∆θ
σs
)

Φ(∆θ
σs
)
.

Q.E.D.

Lemma 1 conveys an important message: conditioning on selection, the distribution of estimators

change. Thus, an unbiased estimator could become biased if we know that it is selected among

other unbiased estimators. Although the precise impact of such bias on policy evaluation depends

on the functional form of the objective function (see Eq 4), the takeaway is that we need to account

for such biasedness to remove winner’s curse.

3. Correcting the Winner’s Curse

We showcase different methods for correcting the winner’s curse in this section. We start from three

major categories of remedies in the literature: sample splitting, Bayesian estimation, and selective

inference. Then, we propose a bootstrap-based correction estimator that is easy to implement and

lean in assumptions.

3.1. Sampling Splitting

The winner’s curse comes from optimizing and evaluating using the same dataset, so sample split-

ting divides the data into separate subsets, with one portion for inference-then-optimize and the

other for policy evaluation. Sample splitting does not suffer from winner’s curse because we are

using a hold-out sample for policy evaluation and it is easy to implement. However, splitting the

dataset reduces data efficiency, which has two consequences. First, the quality of the data-driven
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policy is deteriorated, as we only use half of the data for estimation. Second, the variance of policy

evaluation is large, hence the policy value estimate will be less reliable. The inefficiency problem

is more prominent when we have a small dataset, which is exactly when the winner’s curse is

significant.

3.2. Bayesian/Shrinkage Estimators

Bayesian estimators solve the inference-then-optimize problem and then evaluate the data-driven

policy using posterior mean of the demand parameters. Because the posterior mean naturally

shrinks the Maximum Likelihood Estimation (MLE) results, Bayesian estimators can reduce win-

ner’s curse. Consider an A/B testing application where the treatment effect estimators θ̂j ∈

N (θ0j, σ
2
j ) for j = 1, . . . , J experiments and the true mean follows the prior θ0j ∼N (m,s2). Then

the posterior mean of experiment j is:

Epost

(
θ̂Bayes
j

)
=

s2

s2 +σ2
j

θ̂j +
σ2
j

s2 +σ2
j

m. (7)

That is, the posterior mean shrinks the MLE estimates towards the prior mean, an example of which

is the standard normal N (0,1) . Notice that if we are uncertain about the MLE estimates, i.e.,

the variance σ2
j is large, the weights on the prior mean in Eq (7) will be larger and hence stronger

shrinkage. Because of this shrinkage structure, the choice of prior parameters play a significant role

in the performance of Bayesian estimators. If mis-specified, Bayesian estimators will either fail to

reduce winner’s curse or over-correct.

Empirical Bayesian methods provide an alterative to alleviate the critical reliance on prior spec-

ification. Empirical Bayes estimators either specify a functional form for prior distribution and

estimate its parameters, or estimate the entire prior distribution nonparametrically. A common

used prior model is the spike-and-slab prior in Eq 8, which contains an active component for no

effects (spike) and and inactive component for nonzero effects (slab).

θ0j ∼ πδ0 +(1−π)N (m,s2), (8)

where δ0 is a Dirac function concentrated at zero (the spike) and π is the prior probability that

there is no effect. The posterior mean in this case is then:

Epost

(
θ̂EB
j

)
= (1−π)

[
s2

s2 +σ2
j

θ̂j +
σ2
j

s2 +σ2
j

m

]
.

Although the functional form is similar to the normal-prior-Bayesian estimator (7), the parameters

(m,s) are estimated from data, hence, it provides more accurate shrinkage as we will see in later

sections.
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Empirical Bayesian provides an efficient shrinkage estimator for the demand parameters but the

amount of reduction in winner’s curse is not guaranteed. Because Bayes estimators are optimization-

agnostic, its performance varies when the optimization problem differs. In the next section, we

will show a variant of Bayes methods where the posterior distribution is conditioned on the opti-

mization. Another drawback of empirical Bayes methods is its computational complexity. Solving

empirical Bayes with spike-and-slab prior (8) needs using Expectation-Maximization algorithm,

which could be computationally cumbersome, and it only gets worse when we have more compli-

cated models.

3.3. Selective Inference

Selective inference, also known as post-selection inference, explicitly models how the selection (or

optimization) process impacts a selected estimator and corrects for it. (Andrews et al. 2024) pro-

vides a median-unbiased estimator for the winner of several treatments or strategies. For example,

the message with the highest lift in subscription rate among multiple candidate messages in adver-

tising; The feature with the highest treatment effect among multiple randomized control trials.

Consider a set of candidate treatments T = {a1, . . . , aJ}. For each option, we observe an estimate

τ̂j assumed to be normally distributed: τ̂j ∼N (τ0j, σ
2
j ) The “winner” is defined as the option with

the largest observed estimate:

j∗ ∈ argmax
j∈{1,...,J}

τ̂j.

Due to the selection based on estimated effects τ̂j’s, the observed value τ̂j∗ is biased upward relative

to the true effect τj∗ .

To correct for the bias introduced by the selection, we condition on the event that X(θ̂) is

the maximum. Let L = maxj ̸=j∗ τ̂j denote the highest estimate among the non-selected options.

Consequently, the distribution of τ̂j∗ given τ̂j∗ ≥L is that of a normal variable truncated below at

L. Define the CDF of a normal distribution with mean µ and variance σ2 truncated below at L as

FTN(x;µ,σ,L). To obtain a median-unbiased estimator for τ̂j∗ , we invert the median condition:

FTN (τ̂j∗ ;µ,σj∗ ,L) = 0.5. (9)

The unique solution µ̂ to this equation serves as the median-unbiased estimator for the true effect

τj∗ .

Because the selection process favors extreme values, the naive estimator τ̂j∗ overstates the true

effect. By considering the truncated normal distribution—reflecting that τ̂j∗ is observed only when

it exceeds L—the inversion corrects for the upward bias. Solving Eq (9) yields an estimator whose

median equals τj∗ , thus effectively countering the winner’s curse.
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Bayesian selective inference follows a similar logic and condition the posterior of demand dis-

tributions on the selection event. Consider again the Bayesian estimators discussed in the last

section, where the likelihood model for the demand estimator is θ̂j ∼N (θ0j, σ
2
j ) and the prior for

θ0j could either be standard normal of a spike-and-slab model estimated from data. Let S denote

the selection event. Then the posterior model is:

f(θ0j|S, θ̂j)∝
f(θ̂j|θ0j)f(θ0j)

Pr(S|θ0j)
, (10)

where the numerator is the original posterior distribution without conditioning on selection. The

formulation Eq 10 assumes that the prior is not affected by selection, i.e., f(θ0j|S) = f(θ0j), which

fits into many practical scenarios such as when choosing a treatment does not change its true effect.1

Pr(S|θ0j) is the probability of selection given the prior parameters. For example, the probability

of treatment aj has the largest estimated effects among all treatments, or the probability that an

A/B test has a positively significant result.

Selective inference typically enjoys theoretical guarantees such as unbiasedness. It not only pro-

vides unbiased point estimates, but also generates valid confidence intervals. However, because

selective inference conditions for problem-specific selection rules, its estimators are not typically

generalizable. For example, (Andrews et al. 2024) corrects for selecting the largest effect, (Andrews

et al. 2022) corrects for selecting the k-largest effect, and (Andrews et al. 2021) corrects for selecting

the largest absolute values. In the Bayesian selective inference example, the probability of selection

Pr(S|θ0j) is different for different optimization problems. Thus, selective inference methods can be

mathematically intensive.

3.4. Bootstrap Correction

In this section, we introduce a bootstrap correction method for removing winner’s curse, which is

easy to implement and generally applicable. When we know that a statistic is bias, a natural way

to debias it is subtracting the bias from it. Thus, the bias correction method for removing winner’s

curse is the following:

V (T∗(θ̂)) = f(T∗(θ̂), θ̂)−WC (11)

By taking expectation, we see that the correction estimator is unbiased: when averaging over all

realizations of the training dataset D, the error of approximating the true value of the data-driven

policy T∗(θ̂) with the correction estimator (11) is zero:

E[V (T∗(θ̂))] = E[f(T∗(θ̂), θ0)]

Note that when doing correction, we treat the data-driven decision as given, regardless of whether

it is the “correct” decision. Our goal is to accurately estimate its value such that our estimation

error is zero on average.
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We propose using bootstrap to estimate the winner’s curse bias. Bootstrap (Efron (1979), Hall

(1992)) is a family of resampling methods commonly used to approximate the limiting distribution

of a statistic. Recall from Eq (4) that winner’s curse occurs when we evaluate the data-driven

decision T∗(θ̂) using sample statistic θ̂ against population statistic θ0. Bootstrap approximates

such discrepancy between sample and population statistics by resampling from the original dataset

with replacement to form bootstrap samples. We first estimate the treatment effects and construct

the bootstrap decision from the bootstrap samples, denoted as θ̂b and T∗(θ̂b) respectively. Then,

we can approximate the actual winner’s curse by the discrepancy when we evaluate the bootstrap

decision under the bootstrap estimate θ̂b and the sample estimate θ̂. Formally, let b ∈ {1, . . . ,B}
denote the index of B bootstrap samples. The bootstrap estimate for the winner’s curse (4) is:

ŴC =
1

B

B∑
b=1

f(T∗(θ̂b), θ̂b)− f(T∗(θ̂b), θ̂) (12)

The bootstrap correction estimator is computed by plugging the bootstrap-estimated winner’s

curse back into the bias correction formula:

V̂ (T∗(θ̂)) = f(T∗(θ̂), θ̂)− ŴC (13)

Algorithm 1 summarizes the bias correction procedure. Note that we use a standard nonparamet-

ric bootstrap in this algorithm, meaning that when bootstrapping, we sample with replacement

N observations from the original dataset D. That is, each bootstrap sample has the same num-

ber of observations as the original dataset. Standard bootstrap is robust and does not have any

hyperparameters to tune.

Validity of the bootstrap correction estimator (13) hinges on the convergence of standard non-

parametric bootstrap. There are three conditions (Van der Vaart 2000) required for standard

bootstrap to converge at the ideal rate. For the sake of simplicity, we remove the subscripts for the

treatments temporally. The first condition is that the estimator for the treatment effect itself needs

to be consistent, i.e., θ̂
p−→ θ0, which is satisfied by most estimators seen in practice if used appro-

priately. The second condition is that the bootstrap estimator θ̂b converges conditionally in distri-

bution to the same distribution as the original estimator θ̂. For example, if
√
N(θ̂− θ0)

d−→ T where

T is the asymptotic distribution such as a mean-zero normal, then we must have
√
N(θ̂b − θ̂)

d−→ T

conditional on the dataset D. This condition is satisfied by the standard bootstrap (Van der Vaart

and Wellner 1996) and many other bootstrap methods. The last condition is some level of smooth-

ness of the objective function f . Smoothness is necessary because when we use convergence of the

demand parameters to build convergence of the winner’s curse via (functional) Delta method, we

cannot have jumps in the objective function f . The critical role of smoothness for the convergence

of standard bootstrap is summarized Lemma 2.
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Algorithm 1 Standard Bootstrap Correction

Require: Dataset D with N observations; Number of bootstraps B.

1: Calculate sample estimate θ̂ from D

2: Optimize for the data-driven decision T∗(θ̂)

3: Evaluate the decision using sample estimate θ̂ and get f(T∗(θ̂), θ̂)

4: for b= 1, . . . ,B do

5: Draw N observations with replacement from D as a bootstrap sample Db

6: Calculate bootstrap estimate θ̂b from Db

7: Optimize for the bootstrap decision T∗(θ̂b)

8: Evaluate the bootstrap decision using bootstrap estimate θ̂b and get f(T∗(θ̂b), θ̂b)

9: Evaluate the bootstrap decision using sample estimate θ̂ and get f(T∗(θ̂b), θ̂)

10: end for

11: Calculate winner’s curse estimate ŴC = 1
B

∑B

b=1 f(T
∗(θ̂b), θ̂b)− f(T∗(θ̂b), θ̂)

12: Calculate bootstrap-corrected policy value estimate V̂ standard(T∗(θ̂)) = f(T∗(θ̂), θ̂)− ŴC

13: return V̂ standard(T∗(θ̂))

Lemma 2 (Theorem 3.1, Fang and Santos (2019)). Given an asymptotic normal estima-

tor rN(θ̂− θ0)
d−→N (0, σ2) for some convergence rate rN →∞ and a function f mapping from the

parameter space to the real line that is Hadamard directional differentiable at τ , assuming that a

bootstrap estimator θ̂b satisfies rN(θ̂
b − θ̂)

d−→N (0, σ2), i.e., weakly converging conditional on the

empirical distribution over the dataset D, then

rN(f(θ̂
b)− f(θ̂))

d−→ f ′
θ0
(N (0, σ2))

conditional on the empirical distribution if and only if f is fully Hadamard differentiable at τ .

However, winner’s curse often violates the smoothness condition. Notice that the optimal decision

operator T ∗(·) is an argmax function of the demand parameters and the decision space T is discrete

in many scenarios like selecting the best treatment, so the data-driven decision is non-differentiable.

For instance, if the treatment effect estimates vary slightly, the optimal treatment assignment

may change completely. Thus, the winner’s curse WC is a nonsmooth function of the demand

parameters θ. As a result, the winner’s curse estimator ŴC calculated via standard bootstrap will

converge slower than the estimators θ̂. Consequently, using standard bootstrap can only partially

mitigate winner’s curse in finite-sample regime.

A natural solution for nonsmoothness is by applying some smoothing techniques. We propose

using two major categories of alternative bootstrap methods: subsampling and perturbation. m-
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out-of-n bootstrap (Bickel et al. (1997), Bickel and Sakov (2008), etc.) is an important and easy-

to-implement subsampling method. Instead of drawing bootstrap samples of the same size N as

the original dataset D, we draw bootstrap samples with size m<N . Convergence of m-out-of-n

bootstrap requires the bootstrap sample size m satisfies m = o(N), i.e., m is a slower-growing

function than N itself. One typical rule for calculating m that satisfies this condition is m =

int(Npow) given pow ∈ (0,1).

Numerical bootstrap (Hong and Li 2020) offers another perspective into smoothing. First, recall

that we have winner’s curse because we are approximating the actual performance of the plugin

decision using estimated effects. To capture that discrepancy, we can rewrite the targeting value

estimate f(T∗(θ̂), θ̂) as the following:

f

(
T∗(θ̂), θ0 +

1√
N

√
N(θ̂− θ0)

)
Applying the bootstrap principle and replacing 1/

√
N with an adjustable hyperparameter ϵN , we

have:

f
(
T∗(θ̂b), θ̂+ ϵN

√
N(θ̂b − θ̂)

)
The purpose of the hyperparameter ϵN is to control the randomness introduced in the bootstrap

process. Notice that instead of evaluating the bootstrap decisions T∗(θ̂b) using bootstrap treatment

effect estimates θ̂b as in standard bootstrap, we use perturbed treatment effect estimates θ̂P =

θ̂+ ϵN
√
N(θ̂b− θ̂) for evaluation. Convergence of numerical bootstrap requires the hyperparameter

satisfying ϵN
√
N →∞ and ϵN ↓ 0 as N →∞. A typical rule for determining ϵN that satisfies the

conditions is ϵN =Npow given pow ∈ (−0.5,0). Algorithm 2 illustrates the procedure for calculating

a numerical bootstrap-based correction estimator.

4. Monte Carlo Simulation: A/B Testing

Using A/B tests to evaluate the impact of new features is an important practice across a wide

range of online platforms, including e-commerce, social media, online learning, etc. When we select

features based on estimated effects, we suffer from winner’s curse, i.e., we overestimate the total

effect of the selected features. We demonstrate the existence of winner’s curse using Monte Carlo

simulations and compare the performance of various correction methods.

The simulation is set up as the following. Consider J A/B tests, whose true effects τj are drawn

from a normal distribution τj ∼N (m,s2) for j = 1, . . . , J . After the true effects are drawn, they

are fixed throughout the experiments. Each A/B test has N responses in the treated and control

respectively. We assume that the response is a continuous variable, such as time-spent on the

platform, following normal distribution Yi ∼N (τj, σ
2) for i= 1, . . . ,N .
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Algorithm 2 Numerical Bootstrap Correction

Require: Dataset D with N observations; Number of bootstraps B; Hyperparameter ϵN

1: Calculate sample estimate θ̂ from D

2: Optimize for the data-driven decision T∗(θ̂)

3: Evaluate the decision using sample estimate θ̂ and get f(T∗(θ̂), θ̂)

4: for b= 1, . . . ,B do

5: Draw N observations with replacement from D as a bootstrap sample Db

6: Calculate bootstrap estimate θ̂b from Db

7: Calculate perturbation θ̂P,b = θ̂+ ϵN
√
N(θ̂b − θ̂)

8: Optimize for the bootstrap decision T∗(θ̂b)

9: Evaluate the bootstrap decision using perturbed estimate θ̂P,b and get f(T∗(θ̂b), θ̂P,b)

10: Evaluate the bootstrap decision using sample estimates θ̂ and get f(T∗(θ̂b), θ̂)

11: end for

12: Calculate winner’s curse estimate ŴC = 1
B

∑B

b=1 f(T
∗(θ̂b), θ̂P,b)− f(T∗(θ̂b), θ̂)

13: Calculate bootstrap-corrected policy value estimate: V̂ num(T∗(θ̂)) = f(T∗(θ̂), θ̂)− ŴC

14: return V̂ num(T∗(θ̂))

The inference-then-optimize procedure for decision making is setup as the following. We esti-

mate the treatment effect for each experiment using difference in mean. The resulting estimator

hence follows a normal distribution τ̂j ∼N (τj, σ
2/N). We consider selecting the experiments with

positive estimated effects. The corresponding optimization is formulated as the following, where

the objective is the average effect of the selected tests.

T∗(τ̂1:J)∈ argmax
Tj∈{0,1}

f(T1:J , τ̂1:J) =
1

J

J∑
j=1

τ̂jTj.

We repeat draw R= 500 datasets from the DGP and conduct inference-then-optimize for each of

them. The average performance of different estimators are summarized in Figure 1.

We see that without correction, we overestimate the policy performance. Standard bootstrap

correction is able to reduce the winner’s curse, but only partially. m-out-of-n and numerical boot-

strap further removes the winner’s curse, but risks slight over-correction. The reason is that the

exact convergence speeds of the two components in Eq (13), the objective value and the winner’s

curse estimate, are different. If the objective value f(T∗(τ̂1:J), τ̂1:J) converges faster than ŴC, then

we will over-correct slightly. The convergence speed is controlled by the hyperparameters m and

ϵN in the two methods and we use m= int(N 0.95) and ϵN =N−0.45 throughout the paper.

Empirical Bayes also provide good remedies for winner’s curse under the current setting. They

provide similar policy value estimates as the bootstrap estimators and are close to the true value.
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Figure 1 Estimated Average Value of Selecting A/B Tests with Positive Effects

Note. Red dashed line indicates the true policy value f(T∗(τ̂1:J), τ1:J); Blue bars represent the estimates from each

method; Red bar on the right is the true value of the sample splitting policy. DGP parameters: prior m= s= 0.1,

response noise level σ = 1, sample size N = 100. Estimators from left to right are: no correction, standard bootstrap

correction, m-out-of-n bootstrap correction, numerical bootstrap correction, Bayes with normal prior, empirical Bayes

with normal prior, empirical Bayes with spike-and-slab prior, selection-adjusted Bayes with normal prior, selection-

adjusted Bayes with spike-and-slab prior, and sample splitting.

On the other hand, Bayes estimator with a standard normal prior fails to reduce winner’s curse.

The reason is that the difference-in-mean estimators have much smaller variance compared to the

prior variance As a result, the posterior mean (7) is dominated by the MLE estimates and there

is effectively no shrinkage. Thus, empirical Bayes is a better shrinkage method for dealing with

winner’s curse.

Bayesian selective inference provides a conservative estimates for the policy value with an appro-

priate prior. Recall that Bayesian selective inference adjust the posterior distribution to the selec-

tion. So if the posterior itself is bad, adjustment cannot help, such as the case where we use

standard normal distribution as the prior. The selection event in this scenario is choosing the pos-

itive effects, which has a probability of Pr(τ̂j > 0|τj). After adjusting for it, the posterior effect

becomes conservative, and hence the policy value estimate.

Lastly, sample splitting provides an unbiased estimate for its own policy. Because we use only

half of the sample for learning the policy, it is different from the focal policy learned from the

entire dataset. Because of the independence between the subsets of data, the policy value estimate

is unbiased. However, comparing the red bar of sample splitting in Figure 1, we see that the

average quality of the sample splitting policy is lower. In addition, the sample splitting estimate
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has a higher variance compared with other estimators like bootstrap. As we will show later, the

lower-quality-decision issue could be more prominent in other settings.

Next, we evaluate the winner’s curse magnitude of different estimators when we change the prior

mean of the true effects (Figure 2). Because the true effects have an average of m, which translates

to the amount of lift from null, we report the winner’s curse as a percentage of it, i.e., WC/m. As

the average true effect diminishes, it is harder the identify the A/B tests with a positive effect, and

hence, the winner’s curse increases. On the other hand, when the average true effect is large enough,

there will be no winner’s curse as it is easy to identify the positive tests. m-out-of-n and numerical

bootstrap estimators show robustness across different level of m, while standard bootstrap can only

partially mitigate winner’s curse when the average effect is closer to null because the impact of

non-smoothness is stronger. Empirical Bayes with a spike-and-slab prior turns conservative when

the average effect is small because the spike component will get a higher proportion in the posterior

as the estimator could not identify whether a test has a small but positive effect or a null effect.

Figure 2 Selecting A/B Tests with Positive Effects: Winner’s Curse vs. Average True Effect

Lastly, we show winner’s curse and the performance of different estimators under different selec-

tion rules. Figure 3 shows the policy value estimates for selecting the A/B tests with a positive and

significant effects, and for selecting the tests with the largest 10% effects among all tests. First,

winner’s curse is persistent under different selection rules without correction. Second, empirical

Bayes with a spike-and-slab prior performs worse because the posterior mean of the selected tests

is higher. Last but not least, although sample splitting is unbiased for its own policy, it has a

significantly lower quality than the focal policy.
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Figure 3 Estimated Average Value of Selection with Positively Significant Effects & the Largest 10% of Effects

5. Monte Carlo Simulation: Personalized Targeting

We show winner’s curse in a wide range of simulated targeting problems in this section and com-

pare the performance of our bootstrap correction method against other benchmarks. We start from

the single segment targeting problem discussed in Section 2. Then, we illustrate the universality

of winner’s curse and the generality of our bootstrap correction method in a more complex target-

ing setting with multiple consumer segments and budget limit. Finally, we consider a continuous

segment scenario where we do not have access to the actual functional form of the DGP and can

only approximate it via a mis-specified model like causal forest. In this case, we do not have an

unbiased estimator and winner’s curse is more severe, but we show that our bootstrap correction

method can still resolve the overestimation issue.

5.1. Single Segment

In this section, we consider the single segment targeting problem with a continuous response as in

(1). We use the simulation procedure summarized in Algorithm 3.

We first compare the winner’s curse in a single segment targeting problem before and after

corrected by standard bootstrap, the results of which are shown in Figure 4. We report winner’s

curse as percentages of the treatment effect difference WC/∆τ throughout the discussion. The

left plot in Figure 4 shows that we overestimate the actual targeting value on average without

correction. Although in some realizations, the estimated targeting value underestimates, potentially

because we underestimate the causal effects of both treatments simultaneously, on average we are

still over-optimistic. The right plot in Figure 4 shows that when we correct the winner’s curse

using standard bootstrap, the magnitude of overestimation drops significantly. Without correction,

the average winner’s curse is 71.49% (12.15%), while after correction with standard bootstrap,

the average winner’s curse is 18.95% (13.38%). Notably, bootstrap correction reduces the winner’s

curse to a statistically insignificant level without compromising the shape of the distribution and

hugely increasing the standard error.
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Algorithm 3 Simulation Procedure for Single Segment Targeting

Require: DGP variance σ2; Sample size N ; Baseline treatment effect τ1; Treatment effect differ-

ence ∆τ ; Number of repeats R; Number of bootstraps B; m-out-of-n bootstrap parameter m;

Numerical bootstrap parameter ϵN

1: for r= 1, . . . ,R do

2: Draw N customers from N (0, σ2) and assign treatments (a1, a2) with propensity 0.5 to form

the training dataset Dr = {(Ti, Yi)}Ni=1 according to (1)

3: Estimate treatment effects τ̂r,1:2 and solve (2) for the plugin decision T∗
r(τ̂1:2)

4: Evaluate the plugin decision with no correction and get fr(T
∗(τ̂1:2), τ̂1:2)

5: Evaluate the plugin decision with standard, m-out-of-n, and numerical bootstrap correction

as in Algorithm 1 and 2 and get V̂ standard
r (T∗(τ̂1:2)), V̂

mn
r (T∗(τ̂1:2)), V̂

num
r (T∗(τ̂1:2))

6: end for

7: return No-correction and bootstrap-correction estimates

Figure 4 Histogram of Winner’s Curse of Single-Segment Targeting

Note. The left-hand-side plot is the histogram of winner’s curse without correction across R repeated experiments.

The right-hand-side plot adds the histogram of the winner’s curse after corrected by standard bootstrap. The average

winner’s curse of no correction (blue) is 71.49% (12.15%); The average winner’s curse of standard bootstrap correction

estimator (orange) is 18.95% (13.38%). The simulation parameters are the following: DGP variance σ = 1; Sample

size N = 100; Baseline treatment effect τ1 = 1; Treatment effect difference ∆τ = 0.1; Number of repeats R = 5000;

Winner’s curse reported as percentages of treatment effect difference WC/∆τ .

Next, we examine the winner’s curse magnitude and the performance of standard bootstrap

correction under different DGP parameters. Recall from Theorem 2 that the treatment effect

difference ∆τ and the sampling variance σs affect winner’s curse. Thus, we fix the baseline treatment

effect τ1 = 1 and the DGP variance σ = 1 and change ∆τ . Table 2 summarizes the results. When

the difference between the two treatment arms is profound (∆τ = 0.5), there is no winner’s curse

because it is easy to identify which treatment is a better one. When the difference is moderate, there
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is significant winner’s curse and standard bootstrap can mitigate most of it. When the difference

shrinks further to ∆τ = 0.05, the winner’s curse worsens. In this case, standard bootstrap can only

partially mitigate the winner’s curse.

Table 2 Comparative Statics of Winner’s Curse under Single
Segment Targeting

∆τ = 0.05 ∆τ = 0.1 ∆τ = 0.5

No Correction
156.27%∗∗∗ 71.49%∗∗∗ −0.02%

(23.55%) (12.15%) (2.83%)

Standard Bootstrap
46.70%∗ 18.98% −2.49%

(26.10%) (13.38%) (3.05%)

m-out-of-n Bootstrap
25.74% 4.00% −3.52%

(26.17%) (13.47%) (3.11%)

Numerical Bootstrap
18.62% −0.91% −3.11%

(26.84%) (13.94%) (3.11%)

∗∗∗, ∗∗, and ∗ represents 1%, 5%, and 10% significance level respec-
tively. No stars meaning the value is statistically insignificant.

Standard bootstrap does not fully eliminate winner’s curse when the treatment effects are close

because the value function f(T∗(·), ·) is non-differentiable when ∆τ = 0. As discussed in Section 2,

nonsmoothness of the value function slows down the convergence of winner’s curse estimates. That

is, as we move closer to the non-differentiable point, we need more observations to identify which

treatment has the higher effect. m-out-of-n and numerical bootstrap can bypass the smoothness

assumption and speed-up the convergence. As a result, they both achieve statistically insignificant

winner’s curse.

The performance of m-out-of-n and numerical bootstraps are sensitive to hyperparameters. In

the case of m-out-of-n, a smaller bootstrap sample size m means stronger smoothing as we are

infusing more noise into the estimator. If the bootstrap sample size m approaches the original

sample size N , m-out-of-n bootstrap correction will be the same as a standard bootstrap. On

the other hand, reducing m arbitrarily can potentially lead to over-correction. Similarly, because

ϵN in numerical bootstrap controls how much noise we introduce, a larger ϵN yields stronger

smoothing and increasing it could lead to over-correction. Thus, it is important to determine the

hyperparameters carefully.

Tuning the hyperparameters depend on the specific targeting problem. Intuitively, the closer we

are to the non-differentiable point, the stronger smoothing we need. However, because the opti-

mization landscape of different targeting problems vary drastically, it is challenging to design a

fixed rule for determining the hyperparameters. Although there are some heuristics proposed in the



Author: Winner’s Curse 23

statistics literature (Bickel and Sakov (2008), Chakraborty et al. (2013), etc.), their performance is

not theoretically grounded. Thus, we recommend the following rule for choosing the hyperparam-

eters and reporting results. First, standard bootstrap mitigates a significant amount of winner’s

curse and does not require parameter-tuning, so we should always report the standard bootstrap-

corrected estimates. Second, if decided to use m-out-of-n or numerical bootstraps without following

a heuristic parameter-tuning method, one should either fix a set of hyperparameters before ana-

lyzing the data and stick to it throughout, or report all results under all tested hyperparameters

to avoid p-hacking. In this paper, we use m= intN 0.95 and ϵN =N−0.45 for all experiments.

Next, we compare the bootstrap correction estimator with other methods proposed in the litear-

ture in Table 3. In addition to continuous response (1), we also investigate binary response (e.g.,

purchase decision) modeled either as a Bernoulli random variable or as a logit choice. More specif-

ically, if we model the purchase decision as a Bernoulli random variable, then the purchase prob-

ability is Pr(Yi = 1) = τ11{Ti = a1} + τ21{Ti = a2}. If we model the purchase decision via logit

choice model, then the purchase probability is Pr(Yi = 1) = exp(ui)/(1 + exp(ui)) where utility

ui = τ11{Ti = a1}+ τ21{Ti = a2}.

The first set of benchmark is sample splitting and cross validation. The idea of sample splitting

is dividing the dataset into two, one for estimation and designing the optimal treatment policy, and

the other one for evaluating the optimal policy. The advantage is that the evaluation is unbiased

for the treatment policy calculated from the first half of the dataset. However, because we only use

half of the dataset for optimization, the resulting policy is worse than the one designed using the

entire dataset on average. In addition, sample splitting and cross validation are inefficient in the

sense that their standard errors could be over 50% higher than no correction. Bootstrap can be

thought as a more efficient way of doing sample splitting, which instead of splitting the dataset into

two, we use subsampling to separate policy optimization and policy evaluation. Thus, bootstrap

methods enjoy better policy design and smaller estimation variation.

The second set of benchmark is the Bayesian estimators. When using the Bayesian estimators, we

follow the cited papers to select the optimal treatment based on frequentist estimates and evaluate

it using the posterior mean of the selected treatment. Because Bayesian methods are sensitive

to the choice of the prior distribution, we compare against two Bayesian methods, one with a

normal prior and the other not requiring prior specification. The first benchmark uses standard

Bayesian with a normal prior, which comes from an industry report from Amazon. It barely reduces

winner’s curse as seen in Table 3. The second benchmark is an empirical Bayes approach (Efron

2011), which relaxes the dependence of Bayesian estimation on a prior distribution but assumes

normally distributed observations and requires a smooth density estimation of data. The additional
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Table 3 Average Winner’s Curse of Single-Segment Targeting

Continuous Response Bernoulli Response Logit Response

No Correction
71.49%∗∗∗

(12.15%)

39.18%∗∗∗

(8.99%)

335.48%∗∗∗

(48.77%)

Standard Bootstrap
18.95%

(13.38%)

7.95%

(9.55%)

92.82%∗

(52.88%)

m-out-of-n Bootstrap
4.00%

(13.47%)

1.54%

(9.55%)

44.34%

(52.72%)

Numerical Bootstrap
-0.91%

(13.94%)

-0.22%

(9.72%)

29.88%

(54.09%)

Empirical Bayes

(Efron 2011)

-11.16%

(83.22%)
N/A N/A

Standard Bayes

(Kessler 2024)

66.83%∗∗∗

(11.93%)

38.28%∗∗∗

(8.95%)

332.67%∗∗∗

(48.55%)

Conditional Selective Inference

(Andrews et al. 2024)

-426.13%

(708.84%)

-72.52%

(42.40%)

69.12%

(826.54%)

Sample Splitting
-1.25%

(20.00%)

-1.59%

(13.70%)

19.40%

(85.56%)

Cross Validation
-2.14%

(17.47%)

-3.42%

(11.96%)

70.95%

(104.91%)

The average winner’s curse and standard errors are calculated from R= 5000 repeated experiments; The DGP

parameters for continuous response are the same as before: N = 100, τ1 = 1, ∆τ = 0.1, and σ = 1. The DGP
parameters for Bernoulli and Logit response are N = 100, τ1 = 0.1, and τ2 = 0.15. The hyperparameters for

m−-out-of-n and numerical bootstraps are m= int(N0.95) and ϵN =N−0.45 under all scenarios.

restrictions limit the use of their method on binary response scenarios. But even in the continuous

response scenario, the method over-corrects and suffers from large standard errors.

Finally, we compare our results with the conditional selective inference method from (Andrews

et al. 2024). This method tries to find the location of the largest treatment effect’s distribution so

that the observed largest effect is median unbiased (i.e., equally likely to over-and under-estimate)

when evaluated under the same distribution truncated on the left by the second largest treatment

effect. As seen in Table 3, this method has arbitrary winner’s curse on average and has the largest

standard errors. The main reason is because when the largest two treatment effects are close,

this method is infeasible and leads to numerical errors. As a result, across the R= 5000 repeated

experiments, whenever the two estimated treatment effects τ̂1:2 are close, the correction estimate is

arbitrary. In spite of this, the median winner’s curse for the continuous response scenario is merely

3.12%, thanks to the fact that there is only a small number of cases where the two estimated

effects are close. An additional limit of (Andrews et al. 2024) is that their normality assumption
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could lead to inaccurate correction with binary response cases, where the median winner’s curse is

−4.19% and 300.31%.

5.2. Targeting with Multiple Segments and Budget Constraints

In this section, we consider a more practical and difficult setting where we have multiple consumer

segments and face a budget constraints. First, we assume that there are S discrete consumer

segments, of which the segmentation rule is known. We will discuss unknown segmentation in the

next section. Consumers in different segments have different treatment effects. Let τjs denote the

causal effect of treatment aj on a consumer from segment s. The data generation process for a

consumer belonging to segment s is yi = τ1s1{Ti = a1}+ τ2s1{Ti = a2}+ ϵi. A more compact way

of writing the DGP is:

yi =
S∑

s=1

2∑
j=1

τjs1{Ti = aj}1{i is in Segment s}+ ϵi

where ϵi ∼N (0, σ2). In simulation, we assume that τjs are drawn from N (τ̄j, σ
2) where τ̄j denote

the base causal effects for treatment aj. More specifically, in the first step of the simulation, we

will draw τjs ∼N (τ̄j, σ
2
τ ) for j ∈ {1,2} and use them for all repeated experiments.

Second, after estimating the treatment effects τ̂js from the training dataset, we will have K

out-of-sample customers to target. However, we only have the budget to assign treatment a2 to c

of them. Treatment a1 can be assigned without limit. The optimization problem is then formulated

below:

max
Ti∈T ={a1,a2}

1

K

K∑
k=1

S∑
s=1

2∑
j=1

τ̂js1{Tk = aj}1{k is in Segment s} (14)

s.t.
K∑

k=1

1{Tk = a2} ≤ c

We report Winner’s curse as percentages of the base treatment effect difference: WC/(τ̄2 − τ̄1)

in Table 5. First, note that although standard bootstrap removes a significant amount of winner’s

curse in the continuous and logit response cases, the resulting winner’s curse remains statistically

significant at 99% level due to a different optimization landscape. On the contrary, m-out-of-

n and numerical bootstrap eliminate winner’s curse across all scenarios under the same set of

hyperparameters.

(Andrews et al. 2024) does not apply to the constrained targeting problem (14) because it is

designed for choosing a single winner out of some candidates. Selective inference methods are

problem-specific in general. For example, (Andrews et al. 2021) corrects for the winner’s curse when

choosing the k-th largest value and (Andrews et al. 2022) applies to choosing a single winner based

on absolute value. On the contrary, our bootstrap method is generally applicable to all optimization

problems.
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Table 4 Average Winner’s Curse of Targeting with Multiple Segments and Budget Constraints

Continuous Response Bernoulli Response Logit Response

No Correction
36.38%∗∗∗

(2.75%)

6.15%∗∗∗

(1.19%)

100.96%∗∗∗

(5.40%)

Standard Bootstrap
7.55%∗∗∗

(2.85%)

-0.91%

(1.23%)

22.59%∗∗∗

(5.49%)

m-out-of-n Bootstrap
-0.92%

(2.87%)

-1.26%

(1.24%)

0.28%

(5.44%)

Numerical Bootstrap
-2.81%

(2.90%)

-1.33%

(1.23%)

-6.07%

(5.57%)

Empirical Bayes

(Efron 2011)

−22.87%∗∗∗

(2.33%)
N/A N/A

Standard Bayes

(Kessler 2024)

13.21%∗∗∗

(2.70%)

5.03%∗∗∗

(1.18%)

99.50%∗∗∗

(5.38%)

Conditional Selective Inference

(Andrews et al. 2024)
N/A N/A N/A

Sample Splitting
1.31%

(3.93%)

-0.38%

(1.71%)

11.49%

(8.46%)

Cross Validation
-3.44%

(3.17%)

-2.98%

(1.34%)

15.87%∗∗

(7.69%)

The average winner’s curse and standard errors are calculated from R= 5000 repeated experiments; Training

data has size N = 500; There are K = 100 out-of-sample customers to target and we can only assign c = 30
treatment a2. There are S = 5 discrete segments. The DGP parameters for continuous response are: (τ̄1, τ̄2) =

(1,1.1), σ = 1, and στ = 0.1. The DGP parameters for Bernoulli and Logit response are (τ̄1, τ̄2) = (0.1,0.15) and

στ = 0.1. The hyperparameters for m−-out-of-n and numerical bootstraps are m= int(N0.95) and ϵN =N−0.45

under all scenarios.

5.3. Continuous Segmentation

In many (if not most) empirical settings, the causal effect is a continuous function of consumer

characteristics instead of based on discrete segments. In addition, we do not know the functional

form of the true data generation process. Thus, we examine the impact of a misspecified demand

model on winner’s curse as well as the robustness of our bootstrap correction estimator in this

section.

We consider a linear specification (15) for the data generation process. Consumer characteristics

is summarized in a univariate Gaussian variable Xi with follows standard normal distribution in

the population. The causal effect is a linear function τjXi of the characteristics. There are two

candidate treatments (a1, a2) similar as before. The idiosyncratic noise ϵi follows N (0, σ2).

Yi = τ1Xi1{Ti = a1}+ τ2Xi1{Ti = a2}+ ϵi (15)
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When the functional form of the DGP is unknown, two popular choices for estimating heteroge-

neous causal effects are the segment-based model and the causal forest (Wager and Athey 2018). A

segment-based model first groups customers into segments using clustering algorithms or based on

prior knowledge then estimates the treatment effect for each segment. We use a simple two-segment

model with threshold zero for experiments. That is, customers with Xi < 0 belong to segment

one and the ones with Xi > 0 belong to segment two. Causal forest can be thought of as a more

data-driven way of segmenting customers but with a consistency guarantee. If the depth of the

decision trees of a causal forest is upper bounded by one, then the causal forest is equivalent to

the two-segment model. Increasing the maximum depth allowed for the decision trees introduces

more flexibility but also risks over-fitting.

We compare the true and estimated treatment effects on part of the feature space in Figure 5.

The models are trained from one realization of the dataset. We see that causal forest with max

depth one (denoted as CF1 from now on) basically aligns with the two-segment model and provides

a step-function approximation for the true treatment effect. Causal forest with max depth ten

(denoted as CF10 from now on) has a much flexible approximation to the true treatment effect,

but it also has much higher variance than CF1 due to overfitting. High estimation variance could

be fatal when we use the models for estimating targeting values, as discussed in Theorem 2.

Figure 5 True vs. Estimated Heterogeneous Treatment Effects of Segment-Based Model and Causal Forest

Note. The black line indicates the true treatment effect τ2Xi − τ1Xi as a function of consumer characteristics Xi.

The blue line is the estimated effect from a two-segment model with segmentation threshold at 0. The orange (left)

and green (right) lines are the estimated effects from causal forest models with max depth 1 and 10 respectively. The

simulation parameters are: (τ1, τ2) = (1,1.1), σ= 1, sample size N = 5000.

Next, we investigate the impact of different demand models on the winner’s curse. We also

include a demand model with the correctional functional form for comparison. We measure the

winner’s curse as a percentage of τ2−τ1 and report the results in Table 5. First, even if the demand

model has a correctly specified functional form as the data generation process, we still have a
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statistically significant winner’s curse of 15.10%. Misspecified model exaggerates winner’s curse.

When we approximate the linear treatment effect function with a step function like the two-segment

model or CF1, the winner’s curse is almost three times the correct model. Furthermore, overfitting

will make things even worse, such as the CF10 model in this case.

Table 5 Average Winner’s Curse of Different Demand Models

Correct

Functional Form

Two-Segment

Model

Causal Forest

(Max Depth = 1)

Causal Forest

(Max Depth = 10)

No Correction
15.10%∗∗∗

(1.46%)

51.09%∗∗∗

(4.09%)

43.84%∗∗∗

(4.81%)

103.39%∗∗∗

(4.67%)

Standard Bootstrap
0.06%

(1.72%)

11.63%∗∗∗

(4.31%)

1.30%

(4.64%)

22.96%∗∗∗

(4.60%)

m-out-of-n Bootstrap
−4.75%∗∗∗

(1.76%)

1.01%

(4.32%)

-5.58%

(5.04%)

24.93%∗∗∗

(4.97%)

Numerical Bootstrap
−5.42%∗∗∗

(1.84%)

-2.75%

(4.41%)

−13.19%∗∗∗

(4.79%)

-7.41%

(4.79%)

The winner’s curse is measured as percentages of τ2 − τ1. The simulation parameters are: (τ1, τ2) = (1,1.1), σ = 1,

sample size N = 500. The hyperparameters for m-out-of-n and numerical bootstraps are m = int(N0.95) and ϵN =
N−0.45 under all scenarios.

Bootstrap correction successfully correct most of the winner’s curse while the exact performance

depends on the demand model. First, standard bootstrap achieves insignificant winner’s curse in the

correction functional form and CF1 because they have smooth estimation function for the treatment

effect. As a result, applying further smoothing via m-out-of-n or numerical bootstrap will over-

correct. Second, the estimation function of CF10 has many sharp turns (on the left of Figure 5),

serving effectively as non-differentiable points. Thus, standard bootstrap can only partially mitigate

its winner’s curse. Third, m-out-of-n and numerical bootstrap successfully eliminate winner’s curse

for the nonsmooth demand models, the two-segment model and CF10, with only one exception:

m-out-of-n bootstrap for CF10. We conjecture that CF10 is a highly flexible model learned via

bootstrap aggregation, so bootstrap with subsampling has very limited effect except for adding

more trees in the causal forest effectively. In comparison, CF1 is a simple model with limited degree

of freedom, so bootstrap with subsampling manages to introduce noise into the model to smooth

the estimation function.

6. Conclusion

In this paper, we demonstrate the existence of winner’s curse-over-optimistic policy value estimate-

exists in a wide range of data-driven marketing decision-making problems. It happens because when
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selecting decisions based on their estimated efficacy, a procedure we call inference-then-optimize,

the algorithm tends to select the overestimated ones, leading to inflated policy value estimate.

Winner’s curse is a systemic issue behind almost all data-driven decision-making problems, even

when the data-driven decision is itself correct. Because accurate forecast of policy values is critical

for many subsequent investment decisions, such as how much resource a firm should allocate to

launch the policy, it is significant to provide a fix for the winner’s curse. We discuss some existing

remedies, including sample splitting, Bayesian/shrinkage estimators, and selective inference, from

the statistics and economics literature. We note that their effectiveness rely on some restrictive

assumptions. We propose an easy-to-implement and assumption-lean bootstrap correction method,

includes standard nonparametric bootstrap as well as subsampling and perturbation variants, that

systematically corrects the upward bias from inference-then-optimize. Through extensive simu-

lation studies across different marketing applications, we find that bootstrap-correction method

demonstrate a consistent debiasing performance.

Endnotes

1. For a detailed discussion, please refer to (Rasines and Young 2020)
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