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Abstract

This article examines the powerful combination of machine learning and econometric models
to study unstructured data. Researchers estimate an econometric model (e.g., discrete choice)
that relates an outcome of interest (e.g., consumer purchases) to a focal feature in unstructured
data (e.g., pet presence in product images), with the feature extracted by machine learning.
We examine potential bias in the estimate of econometric model due to extraction errors by
machine learning. Extraction errors are not white noises but functions of unstructured data.
Consequently, the mechanisms and directions of bias are different from those in measurement
errors. We derive general approaches to alleviate the bias as compared to an“oracle”who directly
knows the focal feature. The approaches extend and improve the few pioneering works in this
area, by: (i) covering general nonlinear econometric models, and (ii) removing the restrictive
assumption that non-focal features of unstructured data have no effects on outcome of interest.
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1 Introduction

In recent years, more and more studies marry machine learning and econometric models. One

popular theme is to use machine-extracted variables in econometric models. The focus is usually a

feature of unstructured data (e.g., pet presence in product images). Researchers hope to estimate

an econometric model for the relation between this feature and an outcome of interest (e.g., sales).

One can manually label the feature but doing so for the entire sample can be too expensive. So, only

a small subsample is labeled. The subsample is used to train a machine learning model, which then

extracts the feature for the rest of the sample. In some cases, researchers directly use pre-trained

machine learning model or APIs.1

This practice has undoubtedly led to insights which were traditionally not possible with un-

structured data. However, it also brings new estimation issues, which this article aims to make

clear and tackle. We focus on the following questions: should one expect bias in the estimate

of econometric model after replacing a feature’s true value with machine-extracted value? If yes,

what are the causes of bias? Can we alleviate the bias (as compared to an “oracle” who knows the

feature’s true value for the entire sample)?

At first glance, some may think of the context here as a special case of measurement errors, with

the “error”being the difference between machine-extracted value and feature’s true value. However,

measurement errors are typically studied as white noises, or more broadly, noises with no additional

effects on the outcome of interest beyond the feature’s true value.2 In contrast, the error in our

context comes from unstructured data and is a function of the unstructured data. Thus, it is not a

white noise, and as we will discuss, it may contain “peripheral features” with additional effects on

the outcome of interest. Therefore, the mechanisms and direction of bias in the econometric model

can differ from those in measurement errors. For these reasons, we refer to the error as “extraction

error” instead of “measurement error.”

In this article, we clarify the different ways that extraction errors can introduce bias in the

estimate of the econometric model. Our benchmark is an oracle who knows the feature’s true value

for the entire sample. It is assumed that human labeling can give the feature’s true value.3 There

are a few pioneering works studying this setting, which we will discuss in a moment. We make two

extensions. First, existing works require a quite restrictive assumption that non-focal features of

unstructured data have no effect on the outcome of interest. We relax this assumption. Second, we

cover general nonlinear econometric models.

Our first extension concerns an important property of machine learning. When extracting

a focal feature, machine learning algorithms are designed to maximize prediction accuracy. To

do so, they often seek “peripheral” (i.e., non-focal) features in unstructured data that are easy

to recognize and correlate with the focal feature. As such, the machine extraction is inevitably

contaminated with peripheral features in unstructured data. This property introduces a source of

1See Section 2 for some examples of papers applying this approach.
2See Chen et al. (2011) for a survey on classical and non-classical measurement errors. Also see Chen et al. (2005).
3We do not attempt to address possible human errors in labeling. It is an important question for future research.
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bias in the econometric model. One convenient way to preclude this bias is to assume that all

peripheral features have no effect on the outcome of interest (e.g., sales) in the econometric model,

or equivalently, unstructured data affect the outcome of interest only via the focal feature. We refer

to this assumption as “no-effect-by-peripheral-features.” This assumption is indeed made in existing

works to simplify analysis, but can be restrictive or unrealistic for applications.

To make the above more concrete, consider an example with the lodging market. Suppose we

are interested in how property sales relate to pet presence in property photos. An oracle can regress

sales directly on pet presence (plus other controls). But we must first train a machine to recognize

pets on a labeled subsample, and then regress sales on machine-learned pet presence. Photos with

pets may have colors, brightness, or backgrounds that on average are different from other photos.

These peripheral features can be (rightfully) exploited by machines to help recognizing pets. To the

extent that these peripheral features have effects on sales too, our regression result will be different

from the oracle’s (i.e., a bias).

To alleviate this source of bias, we train a second machine learning model that predicts the true

value of the focal feature from its machine-extracted value. This allows us to construct estimation

objective functions that are the same as the oracle’s in population. Importantly, this second machine

uses both the control variables and the outcome of interest in the econometric model as additional

inputs. Here, including the outcome of interest (e.g., sales) as an input may be counter-intuitive.

However, as we will show, it is exactly this inclusion that allows us to remove the no-effect-by-

peripheral-features assumption.

Our second extension on the existing works is to cover general econometric models, including

linear regression, instrumental variable, discrete choice, as well as structural econometric models.

Specifically, we consider both MLE and GMM, and construct likelihood or moment functions that

are the same as an oracle’s in population.

An important note on bias alleviation is that our work focuses on bringing the estimate close

to that of the oracle (who observes the focal feature’s true value for the entire sample). However,

the oracle’s estimate can be biased too when the econometric model is mis-specified. For example,

the focal feature is endogenous but the endogeneity is not accounted for. In this case, the oracle’s

estimate has a causal bias and is only correlational. We do not attempt to correct the oracle’s

estimate. Our approach always tries to recover oracle’s estimate, whether the oracle’s estimate is

biased or not.

As mentioned, our extensions are made to the few pioneering papers that study the bias in

econometric models caused by machine-extracted variables. Qiao and Huang (2021) focus on

generalized linear regressions with distributional assumptions, under the restrictive no-effect-by-

peripheral-features assumption. Fong and Tyler (2020) study linear regressions, again under the

restrictive assumption.

In what follows, Section 2 reviews the current machine learning practice for feature extraction

from unstructured data. Section 3 defines extraction errors, then uses examples to illustrate the

different channels through which extraction errors cause bias in the econometric model. Section 4
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and 5 develop the two-step learning (2SL) approach that alleviates bias. We develop the approach

in two phases. We first extend the existing works to general nonlinear econometric models. The

resulting approach is referred to as “2SL type 1” and still requires the no-effect-by-peripheral-

features assumption. We then relax this assumption. The resulting approach is referred to as “2SL

type 2.” Section 6 conducts Monte Carlo studies. Section 7 tries out 2SL in an empirical application

with Amazon reviews data.

2 Literature Review

We first review some examples in marketing and related fields that combine machine learning and

econometric models to derive important insights. We highlight the diversity of machine learning

techniques used in these studies. Then, using pre-training as a particular example, we discuss how

machine learning algorithms rely on correlational data patterns and thus easily pick up peripheral

features. Finally, we consider recent machine learning research that guides algorithms towards

using true drivers instead of correlational patterns.

Researchers across business disciplines have always been interested in studying unstructured

data such as text (Feldman et al. 2010), images (Biddle and Hamermesh 1998), video, and audio

(Vickery et al. 2004). Marketing literature has studied impact of user review text features such as

sentiment (Berger et al. 2012), valence, volume, variance (Chintagunta et al. 2010) and dispersion

(Godes and Mayzlin 2004) on sales. Earlier analyses were limited by the technology then; researchers

could only label simple concepts using traditional data mining methods. If they wanted more

nuanced concepts like readability, novelty (Burtch et al. 2021) or truthfulness (Clarke et al. 2020),

they could only get a few hundred labels using costly human experts.

Emergence of machine learning methods that can mimic human experts (Krizhevsky et al.

2012, Szegedy et al. 2015) has revolutionized the labeling of unstructured data at scale. Marketing

research has picked up a variety of methods including random forests, XGBoost, neural nets, etc.

For example, Puranam et al. (2021) are able to study the relationship between restaurant wages

and nuanced user review text features such as staff courtesy, friendliness, wait time and cleanliness

using nearly 100,000 reviews. Typically, marketing researchers split their analysis into two steps.

In the first step, a machine learning model is used to extract features from unstructured data and

in the second step the features are used as variables in econometric models to establish either

correlational or causal effect of the features on outcomes such as clicks and sales. This approach

has become very popular in the broad marketing literature and created great value to marketing

research. Yet, machine learning models were not developed with a second-step econometric model

in mind. Thus, it is important to examine whether the machine-extracted features should be used

as-is in econometric models.

One important characteristic of the current research practice is the diversity of machine learn-

ing methods used to extract features from unstructured data. This diversity is a result of high

customizability of machine learning methods. Take the neural net family for example. Image data
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are generally analyzed using convolutional neural networks (CNN) (e.g., Liu et al. 2020, Hartmann

et al. 2021). Text data is generally analyzed using recursive or long-short-term memory (LSTM)

networks (e.g., Wu et al. 2021, Chakraborty et al. 2021). Increasingly researchers combine these

architectures (Nian et al. 2021, Malik et al. 2020), refine on top of these architectures (Puranam et

al. 2021), and even construct custom architectures (Sun et al. 2021, Gabel and Timoshenko 2021)

to derive better performance. Even for a given model architecture, say a CNN, the researchers use a

variety of heuristics to select model hyperparameters such as number of convolutional layers, num-

ber of weights in each layer, strength of regularization for these weights, etc. Zhang et al. (2021)

settle on 13 convolutional layers for Airbnb photos while Liu et al. (2020) use 5 convolutional layers

for Instagram pictures.

An increasingly important development for the customizability in machine learning is pre-

training or transfer learning. Consider for example, a deep learning model to recognize whether an

Instagram picture depicts any glamorous elements (Liu et al. 2020). Given the cost, researchers

may only be able to collect labels for a few thousand images. But such a small, labeled sample

is unlikely to sufficiently train a CNN which typically has millions of weights to learn. A popular

solution is to re-use (i.e., “transfer”) weights that have been learned from a related task where large,

labeled training data are available, and then fine-tune some of the weights for the peculiar task at

hand. In marketing, Liu et al. (2020) use CaffeNet model which is pre-trained using 1 million image

samples albeit on a different task. Troncoso and Luo (2020) use the VGG16 model pretrained on

the ImageNet dataset. Timoshenko and Hauser (2019) and Wu et al. (2021) use the word2vec

model pretrained on Google News (Mikolov et al. 2013) or Wikipedia (Bojanowski et al. 2016).

A property of machine learning algorithms, which especially applies to transfer learning, is that

they are very good at picking up correlational patterns in data that contribute to more accurate

prediction of the focal feature. These patterns do not necessarily reflect the “true driver” of the

feature or the “mechanisms”by which human recognizes the feature. For example, blue background

occurs frequently in pictures of airplanes and thus is picked up by machine to recognize airplanes.

This strategy may in fact be effective in improving the machine’s accuracy, but does not capture

proper mechanism to identify an airplane. Similar examples should be more common in transfer

learning, where the machine is explicitly forced to build on simpler, first-order features learned

during pre-training. For example, consider the task of classifying the tidiness of a room based

on a machine learning model pre-trained to classify common objects (e.g., AlexNet, GoogLeNet).

The fine-tuning stage typically has a much smaller training sample than that used in pre-training.

Thus, it must heavily rely on correlations, say, between the object count in the picture and the

tidiness of the room. While this approach can be effective to achieve good accuracy given the small

training sample, it misses true mechanisms such as how the objects in the room are organized. All

in all, this tendency to pick up correlational patterns means that the machine-extracted variable

can introduce into the econometric model some “peripheral” features of the unstructured data that

researchers are unaware of or do not intend to model.

In recent years, computer science research has started to scrutinize and rectify this property of
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machine learning. Research on machine learning bias and fairness (Chouldechova and G’Sell 2017,

Zhang and Neill 2016, Ascarza and Israeli 2022) identify and correct machine learning predictions

that show systematic biases across social groups. Another stream of research designs training

algorithms such that predictions are based on true drivers. They do so by distilling rules written by

human experts into machine learning models (Ganchev et al. 2010, Hu et al. 2016). An example

is directly telling the machine to look for wings, body, and tail composed in a certain way when

recognizing airplanes. In a similar vein, a stream of research explores learning from a single example

by exploiting prior knowledge and rules (Miller et al. 2003, Lake et al. 2013). These techniques are

useful, but as of now they are not generally applicable to the breadth of machine learning models

used in business research. In addition, they are not developed with a later econometric model in

mind. Future research is needed to examine their value for econometric exercises.

Rectifying machine learning models for econometric exercises faces another challenge. More

recently it has become common to extract features from unstructured data via paid APIs (appli-

cation programming interfaces). Examples include Li & Xie (2019) who use Google Vision API

for emotion and colorfulness of images, Shin et al. (2020) who use Kairos API for aesthetics,

celebrity appearance, and adult content in images, and Gunarathne (2021) for racial recognition.

Such ready-for-use, black-box packages altogether block scrutiny and correction of the underlying

machine learning models.

Given this context, instead of rectifying feature extraction, this article focuses on developing the

estimation procedure for the econometric model after feature extraction. In other words, we put

little restriction on which machine learning model is used, how it is configured, or how it is trained

to recognize the focal feature. This approach follows the very few pioneering works on the same

topic (Fong and Tyler 2020, Qiao and Huang 2021). As discussed in the introduction, we make

two extensions. First, we consider a much larger class of econometric models (any model estimable

by MLE or GMM). Second, we remove the restrictive no-effect-by-peripheral-features assumption.

This assumption sidesteps the property of machine learning discussed above that it tends to pick

up peripheral features in unstructured data.

3 Examples

We use examples to illustrate the mechanisms by which machine-extracted feature introduces bias

in the estimate of an econometric model. In this section, we focus on linear econometric models

and a binary feature, where the intuitions are most clear. The next sections will cover general cases

(nonlinear models and the feature may have more than two classes) and describe ways to alleviate

the bias.

Let wi be a feature of the high-dimensional object zi (e.g., an image). We are interested in

how wi relates to an outcome of interest yi (e.g., sales). For this section we focus on cases where

wi P t0, 1u is binary. There is a mapping F such that wi “ F pziq. We can think of F as manual

labeling. Let N “ t1, ..., nu index the sample. We take a random subsample S Ă N for manual
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labeling. Thus, wi is known in S but not in N zS. In this paper, we use “oracle” to refer to someone

who knows wi for the entire sample N .

Using the subsample S, we train an machine learning model f that tries to extract wi from

zi. Examples of f include neural net, tree, and SVM. The output fpziq can be either binary or a

probability. In this article we do not take a stand on what machine learning model should be used

or how it should be trained. Instead, we treat f as a generic prediction model, and write

wi “ pwi ` pvi, where pwi “ fpziq.

In above, pvi is the extraction error. Here we follow the convention in prediction models that defines

an error as the truth minus prediction (instead of the prediction minus truth).4 The extraction error

pvi picks up variation in wi unexplained by pwi. Thus typically wi and pvi are positively correlated:

covpwi, pviq ą 0.

It is useful to note the differences between extraction errors and measurement errors. In the

measurement error literature, the measurement is typically expressed as follows, with rvi being the

measurement error.

rwi “ wi ` rvi,

Most notably, classical measurement error is uncorrelated with truth: covpwi, rviq “ 0 (see, e.g.,

Wooldridge 2002). In contrast, as pointed out above we typically have covpwi, pviq ą 0. A more

fundamental difference is that rvi is assumed to have no effects on yi beyond wi (Chen et al. 2011).

In contrast, the extraction error pvi usually contains traits of unstructured data (zi) that may have

effects on yi. Below, we illustrate how these differences introduce new sources of bias in econometric

model.

3.1 Linear regression

Let xi collect the explanatory variables other than wi. We consider the following linear regression

model.

yi “ β1xi ` δwi ` εi, (1)

with the OLS conditions covpxi, εiq “ 0 and covpwi, εiq “ 0. Given this econometric model, the

oracle simply regresses yi on xi and wi by OLS to obtain the estimates of β and δ.

As a hypothetical example, consider lodging rentals (e.g., Airbnb). Photos are displayed for

each rental listing. We want to estimate how showing pets in photos affects demand. Let i index

listing-month combinations. Outcome yi is the number of days booked, zi represents the photos,

wi P t0, 1u indicates whether zi show pets, and xi collects control variables such as price, square

footage, furnishing. If xi and wi are exogenous, model (1) is causal. If there is endogeneity, model

(1) is mis-specified and the OLS estimates are only correlational. In other words, even the oracle

has a “causal” bias. As discussed, our focus is the potential bias of our estimate as compared to the

4An example of this convention is linear regressions, where the prediction error (also known as the regression
residual) equals the observed outcome minus the predicted outcome.
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oracle’s, whether the oracle has a causal bias or not. We will not attempt to correct the oracle’s

bias.

Unlike the oracle, we do not observe wi in N zS but we are interested in reaching the ora-

cle’s estimates as much as possible. The prevailing approach is to replace wi with pwi (i.e., direct

substitution). Then, we have for i P N zS,

yi “ β1xi ` δ pwi ` pδpvi ` εiq. (2)

The regression residual becomes δpvi ` εi. If we run a regression as above, the coefficient estimates

will be biased in general (as compared to the oracle’s). There are three sources of bias, which we

describe below.

Three sources of bias The first source of bias is the correlation between pwi and pvi. The sign

of correlation depends on the machine learning model f . However, it is useful to note that for

classification algorithms that output binary pwi (e.g., SVM, classification forest), the correlation

is always negative. To see this, note that because wi P t0, 1u, we have pwi “ 0 ñ pvi ě 0 and

pwi “ 1 ñ pvi ď 0 . As a result, covp pwi, pviq ă 0, which biases our estimate of δ towards zero as

compared to the oracle.

For algorithms that give probabilistic pwi (e.g., k-NN, neural net), covp pwi, pviq can be either

negative or positive. Later we will show an example of positive correlation, leading to an over-

estimate of δ as compared to the oracle. This is the opposite of the attenuation bias mostly seen

with classical measurement errors.

The second source of bias is the correlation between xi and pvi. This correlation is likely nonzero

in many applications because: (i) pvi is a function of zi and thus may pick up features in zi, and (ii)

features in zi may very well be correlated to the variables in xi. A non-zero correlation between

xi and pvi causes estimation bias for β, which indirectly affects the estimate for δ.

To see this source of bias in a concrete context, consider the lodging rentals example again. Let

us take a step back and suppose covp pwi, pviq “ 0, i.e., the first source of bias is not present. Then,

we necessarily have covpwi, pviq ą 0 because covpwi, pviq “ covp pwi ` pvi, pviq “ σ2ppviq. That is, pvi has

to pick up some variation in wi. Now suppose that xi includes an indicator for whether the rental

property is listed by a single person or a couple. To the extent that couples are more likely pet

owners, xi is correlated with wi. Consequently, xi is likely correlated with pvi because pvi picks up

variation in wi.

The third source of bias is the main focus of this article and it is the correlation between pwi and

εi. It is important to note that this correlation is not guaranteed to be zero by the OLS condition

covpwi, εiq “ 0. In other words, covpwi, εiq “ 0 ­ñ covp pwi, εiq “ 0. If indeed covp pwi, εiq ‰ 0, then

it will bias our estimate of δ as compared to the oracle’s. Specifically, the case covp pwi, εiq ‰ 0

arises when two events happen: (i) pwi picks up peripheral features in zi and (ii) these peripheral

features enter εi. Event (i) is possible because the machine learning model f that outputs pwi can

exploit any information in zi. Event (ii) is possible because the peripheral features can have effects
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Notes: Illustration of the third source of bias in linear regression. The left side depicts the oracle’s econometric
exercise, where yi is the outcome of interest, wi is the focal feature, xi collects controls, and εi is the regression
residual. The right side depicts our econometric exercise that replaces wi with pwi. Peripheral features can enter both
pwi and εi (blue dashed arrows). As a result, the effect of pwi on yi does not only include the effect of wi on yi but
also picks up some effect of peripheral features on yi.

Figure 1: The Third Source of Bias

on yi just like the focal feature.

To see this third source of bias in a concrete context, consider the lodging rentals example again.

Suppose it is relatively easy for algorithms to spot “fluffy objects” in photos. Then, our machine

learning model f may exploit fluffy objects to help predict pet presence. Consequently, pwi picks up

all types of fluffy objects other than pets: sofa, rug, etc. Now suppose that photos featuring sofa

increase sales yi, which means the presence of sofa enters εi in equation (1). Because sofa enters

both pwi and εi, we have covp pwi, εiq ‰ 0, i.e., the third source of bias. In general, pwi always has

extraction error. The key observation here is that the extraction error is not a white noise but

composed of peripheral features (sofa) relevant to the outcome yi.

Figure 1 visually illustrates the third source of bias. The left side depicts the oracle’s econometric

exercise. The right side depicts our econometric exercise, which replaces wi with pwi. As peripheral

features can enter pwi (blue dashed arrows), the effect of pwi on yi does not only include the effect

of wi on yi but also picks up some effect of peripheral features on yi.

One way to ensure covp pwi, εiq “ 0 is to replace the OLS condition with a stronger assumption:

Epεi|ziq “ 0. We have Epεi|ziq “ 0 ñ covp pwi, εiq “ 0 because pwi is a function of zi. This stronger

assumption says that εi is “clean” of zi. Together with equation (1), the assumption implies that

the only channel for zi to affect yi is the focal feature wi, or that no peripheral features of zi

affect yi. We thus refer to it as no-effect-by-peripheral-features assumption. This assumption has

simplified analysis in previous studies on the econometric bias due to machine-extracted variables

(Qiao and Huang 2021, Fong and Tyler 2020). However, the discussion so far should have shown

that this stronger assumption often does not hold in applications.

We have identified three sources of bias. At a high level, these sources of bias arise because of

the complexity of extraction errors – they are not just white noises but functions of the unstructured

data.
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Table 1: Monte Carlo Example - Linear Regression Model

Estimates of δ (1) (2) (3)
(True value = 1) Mean RMSE Mean RMSE Mean RMSE

Oracle 1.003 0.035 0.995 0.061 1.003 0.032
Direct Substitution 1.564 0.564 0.801 0.23 1.98 0.985
Projected Substitution 1.011 0.065 1.019 0.168 1.281 0.289
2-Step Learning 1.013 0.079 0.988 0.107 0.979 0.055

Notes: Based on estimates of δ from 100 Monte Carlo samples. True value of δ “ 1. Each sample has a size of 5000,
and the labeled subsample has a size of 1000. Red color indicates bias of magnitude ě 10%.

Monte Carlo example Table 1 displays some Monte Carlo results that demonstrate the three

sources of bias. Reported are mean and RMSE of the estimate for δ across 100 samples. The true

value of δ “ 1. Standard errors are not reported to avoid clutter, but an upper bound for standard

error can be quickly calculated as RMSE{
?
100 (because RMSE ď standard deviation). The details

of the Monte Carlo setup follows the later Section 6 (except that the econometric model here is

linear while in Section 6 is logistic). So we omit these details here.

We first focus on the row “direct substitution,” which is an OLS regression of yi on xi and pwi.

Column 1 shows a setup where both xi and εi are independent of zi. Note this setup precludes

the second and third sources of bias. We see a >50% over-estimate of δ compared to the oracle.

The cause of bias is a positive correlation between pwi and pvi (the first source of bias). Column 2

follows the setup in Column 1 except that it specifies xi to be correlated with wi, which leads to

corrpxi, pviq ‰ 0. We see the bias is reversed from Column 1 to an under-estimate of δ. This result

demonstrates the second source of bias. Column 3 follows the setup in Column 1 except that a

peripheral feature of zi now enters εi. As a consequence, corrp pwi, εiq ‰ 0. We see a larger bias

than that in Column 1. This result shows the third source of bias.

The last two rows of Table 1 show“projected substitution”and“2-step learning.” Projected sub-

stitution refers to a bias-correction method proposed by Fong and Taylor (2021). It assumes linear

regression as the econometric model and requires the no-effect-by-peripheral-features assumption.

Thus, as expected, we see it showing a bias in Column 3. Two-step learning is a method to be

developed in this article. It works for general nonlinear econometric models and does not require

the no-effect-by-peripheral-features assumption. It shows virtually no bias in all three columns.

3.2 Instrument variable

We consider the setting of instrument variable (IV) where wi is endogenous. This setting is of

particular interests because IV is a well-known method to correct the attenuation bias due to

classical measurement error. Thus, when a researcher has an instrument for wi, it is tempting

to think that the IV regression will correct the bias due to the extraction error in pwi. In what

follows, we show this is not the case. Actually, using IV can make bias even worse. In this regard,

this example further illustrates the difference between extraction errors and classical measurement

errors.
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Table 2: Monte Carlo Example - Instrumental Variable

Estimates of δ (true value = 1) Mean RMSE

Oracle (OLS) 1.425 0.426
Oracle (IV) 1.002 0.089
Direct Substitution (OLS) 2.21 1.215
Direct Substitution (IV) 3.587 2.613
2-Step Learning (IV) 1.032 0.115

Notes: Based on estimates of δ from 100 Monte Carlo samples. True value of δ “ 1. Setup follows Column 1 of Table
1 except that wi is endogenous. Red color indicates bias of magnitude ě 10%.

In terms of notation, let xi “ ps1
i, tiq

1, where ti denotes the instrument and si collects the

exogenous regressors (i.e., controls). The econometric model is

yi “ β1si ` δwi ` εi,

with covpwi, εiq ‰ 0, covpti, wiq ą 0, and covpti, εiq “ 0. The oracle can estimate β and δ via

standard IV regression. IV regression is a special case of GMM, with the moment condition being

E
“

pyi ´ β1si ´ δwiq ¨ xi

‰

“ 0.

Aside from addressing the endogeneity of wi, an instrument can also address classical measure-

ment errors. To see this, suppose we do not observe wi but only a measurement of it: rwi “ wi ` rvi

where rvi is a white noise. Replacing wi with rwi in the econometric model, we have

yi “ β1si ` δ rwi ` p´δrvi ` εiq.

The regression residual is now ´δrvi ` εi. The key observation here is that ti is a valid instrument

for rwi. To this see, note covpti,´δrvi`εiq “ ´δcovpti, rviq`covpti, εiq “ 0. The second equality has

used the fact that rvi is a white noise and thus uncorrelated with ti. As a result, unbiased estimates

of β and δ can be obtained via an IV regression of yi on si and rwi using ti as an instrument for rwi.

The same IV approach, however, will most likely fail in the case of extraction error. Let pwi be

the machine-extracted value of wi. Continuing with the notation so far, we write wi “ pwi ` pvi.

Replacing wi with pwi in the econometric model, we have

yi “ β1si ` δ pwi ` pδpvi ` εiq.

The regression residual is δpvi ` εi. As discussed in the beginning of this section, pvi is not a white

noise and typically picks up variation in wi. This fact, coupled with the setup covpti, wiq ą 0,

implies that covpti, pviq ą 0 is likely true. If so, then covpti, δpvi ` εiq “ δcovpti, pviq ‰ 0, which says

ti is not a valid instrument for pwi. Therefore, IV cannot address extraction errors.

In fact, using IV in the case of extraction error can lead to an even larger bias than OLS. Table

2 shows a Monte Carlo example. The setup follows that in Column 1 of Table 1, with the exception

that wi is made endogenous (positively correlated with εi). A valid instrument is constructed for
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wi (see Appendix A for replication details). The true value of δ is 1. The first two rows show the

oracle’s case. We see that OLS has a significant over-estimate whereas IV has virtually no bias,

which are expected. The next two rows show the estimates by direct substitution. OLS has a large

bias but IV has an even larger bias.

Table 2 also reports the result from 2-step learning, the method to be developed in this article.

The method is general enough to cover IV regression (as a special case of GMM). We see that it

removes the bias, and the RMSE is not far from that of the oracle.

4 Setup

We now turn to general econometric models. Suppose that our interest is to estimate an econometric

model that specifies some outcome yi as a (linear or nonlinear) function of wi,xi, εi, and parameter

θ. Here, wi is a feature of high-dimensional object zi (e.g., an image), xi collects other explanatory

variables and is much lower-dimensional than zi, and εi collects the residual/error terms. There is

a mapping F : wi “ F pziq. One way to think of F is manual labeling – a human can correctly label

wi from zi. In this article we study the case where wi is a discrete variable with a finite number of

possible values.

A hypothetical example of this setting was given in Section 3. We considered the context of

lodging rentals (e.g., Airbnb) and particularly pet presence in rental listing photos. We wish to

estimate the relation between pet presence and rental sales. In this example, i indexes listing-month

combinations. Outcome yi is the number of bookings, zi collects the property photos, wi indicates

the presence of pets in photos, and xi collects control variables such price, review rating, square

footage, etc.

We use N “ t1, ..., nu to denote the entire sample. An oracle refers to someone who directly

observes wi for all i P N . Below, we first recall common approaches to estimate θ from the oracle’s

perspective. The purpose is to set up boundaries for the set of econometric models that we will

consider in the next section, where we move to the non-oracle case in which wi is only known for a

subset of N .

Common approaches to estimate θ include MLE and GMM, which apply to a wide range of

econometric models, including OLS, IV regression, discrete choices, and most structural econometric

models. We first consider GMM, which sometimes starts with a conditional mean specification:

Epyi|xi, wiq “ mpxi, wi,θq. (3)

For example, a linear regression specifies mp¨q “ β1xi ` δwi, with θ “ pβ1, δq1. In structural

econometric models, mp¨q often has no closed form and is evaluated via simulations.

More generally, GMM does not have to rely on conditional mean specifications. It only requires

a moment function g such that

E rgpyi,xi, wi,θqs “ 0. (4)
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For example, under equation (3), we have Etryi ´ mpxi, wi,θqs ¨ px1
i, wiq

1u “ 0. So conditional

specification such as (3) is covered by the more general moment condition (4). The oracle estimates

θ by trying to solve
ř

iPN gpyi,xi, wi,θq “ 0 in case of exact-identification or using the two-step

GMM procedure in case of over-identification.

Next, we turn to MLE, which relies on a likelihood function as implied by the econometric

model specified by the researcher:

Prpyi|xi, wiq “ ℓpyi,xi, wi,θq. (5)

Take probit as an example. Let Φ be the standard normal cdf and pi ” Φpβ1xi ` δwiq. We have

ℓp¨q “ yipi ` p1 ´ yiqp1 ´ piq with θ “ pβ1, δq1. The oracle estimates θ by maximizing the sample

objective function
ř

iPN log ℓpyi,xi, wi,θq.

So far, we have been taking the oracle’s perspective. When wi is only known for a subset of N ,

a common practice is to replace wi with a machine-extracted value pwi and then carry out GMM

or MLE as usual (i.e., direct substitution). We know from the discussion in Section 3 that direct

substitution leads to biased estimate of θ as compared to the oracle’s. The next section discusses

how to reduce this bias.

5 Two-step learning

We now move to the non-oracle scenario, where wi is known (e.g., via manual labeling) only in a

random subsample S Ă N . Of course, one can choose to use only S for estimation. But in practice

S is often a small portion of N , especially with large data becoming common nowadays. So the

interesting question is how to make use of N zS. We propose a two-step learning (2SL) approach

to construct correct likelihood/moment function in N zS. The approach has two different types.

Below we first describe type 1, which is more intuitive and motivates type 2. However, type 1

requires the no-effect-by-peripheral-features assumption. Type 2 removes the assumption. Both

types are applicable to general nonlinear econometric models as outlined in Section 4.

5.1 Type 1

We start with the GMM case and then turn to the MLE case.

2SL type 1 for GMM starts with an econometric model that specifies a conditional expectation

as in equation (3): Epyi|xi, wiq “ mpxi, wi,θq. We do not know wi for i P N zS and thus cannot

evaluate mp¨q there. As noted, 2SL type 1 requires the no-effect-by-peripheral-features assumption.

In GMM, the assumption is formalized as

Epyi|xi, ziq “ mpxi, wi,θq. (6)
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The left side of equation (6) conditions on zi, and thus it is stronger than and implies (3). It

essentially says that zi affects yi only through the focal feature wi, or that no peripheral features

of zi affect yi. This is a rather restrictive assumption but it simplifies estimation (see Section 3.1

that illustrates the role of this assumption in linear regression).

To estimate θ under (6), we proceed as follows. First, split the labeled subsample into two

parts: S “ S1 Y S2. One may consider equal split for simplicity. (We discuss why it is important

to split S later in Section 5.3). We use S1 to train a machine learning model f that predicts wi

from zi. In applications the choice of f (e.g., neural net, boosting, k-NN) is up to the researcher.

The output fpziq is a vector collecting the predicted probability for each possible value of wi. In

the case that f makes deterministic predictions, the vector fpziq has 1 in one entry and 0 in other

entries.

Then, apply f out-of-sample for each i P N zS1 and collect the predictions in a vector pwi “

fpziq. In the special case where wi is binary, pwi has two elements that always sum up to one (thus

we can use a scalar pwi, as we did in Section 3).

Next, we use S2 to train a second machine learning model p that makes probabilistic prediction

of wi using txi, pwiu. Notation-wise, let K collect the possible values of wi. For each k P K, let

pkpxi, pwiq denote the predicted probability for wi “ k. Note txi, pwiu is low-dimensional compared

to zi. Thus, it is possible for pkpxi, pwiq to achieve a good approximation of Prpwi “ k|xi, pwiq even

when the size of S2 is modest. We discuss the choice of p later in Section 5.3.

Finally, we consider the following conditional expectation for i P N zS.

Epyi|xi, pwiq “
ÿ

kPK
Prpwi “ k|xi, pwiq ¨ Epyi|xi, pwi, wi “ kq

“
ÿ

kPK
Prpwi “ k|xi, pwiq ¨ mpxi, wi “ k,θq

»
ÿ

kPK
pkpxi, pwiq ¨ mpxi, wi “ k,θq.

The second equality makes use of assumption (6) and the fact that pwi is a function of zi. Also note

the equality would not hold under only (3). Now, one can use the above expression of Epyi|xi, pwiq

to derive moment conditions. In particular, E tryi ´ Epyi|xi, pwiqs ¨ ϕpxi, pwiqu “ 0 for any function

ϕ. In case of exact-identification, we estimate θ by trying to solve

ÿ

iPN zS
ryi ´ Epyi|xi, pwiqs ¨ ϕpxi, pwiq “ 0. (7)

In case of over-identification, one follows the usual two-stage GMM procedure.

It is useful to note that we can carry out 2SL twice by flipping the roles of S1 and S2. This will

give us two estimates of θ, which we can average. At least in the case of equal split, the average

estimate will have a smaller variance.

Example. (2SL type 1 for linear regression) It is instructive to see how 2SL type 1 applies (and
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simplifies) in a linear regression with a binary focal feature wi P t0, 1u. The econometric model

is yi “ β1xi ` δwi ` εi with Epεi|xi, wiq “ 0, which implies Epyi|xi, wiq “ β1xi ` δwi. Adding

the no-effect-by-peripheral-features assumption, we have Epyi|xi, ziq “ β1xi ` δwi. Because wi is

binary, we can use a scalar pwi to denote the output of f . We may use another scalar p

pwi to denote

the output of the 2nd machine p, that is, p

pwi “ p1pxi, pwiq “ 1 ´ p0pxi, pwiq. Applying the idea of

2SL type 1, we have for i P N zS,

Epyi|xi, pwiq “ Prpwi “ 1|xi, pwiq ¨ Epyi|xi, pwi, wi “ 1q ` Prpwi “ 0|xi, pwiq ¨ Epyi|xi, pwi, wi “ 0q

“ Prpwi “ 1|xi, pwiq ¨ pβ1xi ` δq ` Prpwi “ 0|xi, pwiq ¨ β1xi

» p

pwi ¨ pβ1xi ` δq ` p1 ´ p

pwiq ¨ β1xi

“ β1xi ` δ p

pwi.

The last line suggests that we may regress yi on xi and p

pwi to obtain the estimates for β and δ. So in

the case of linear regression, 2SL type 1 essentially tells us to substitute wi with p

pwi (instead of pwi).

Further, one can show that in this context, the 2nd machine learning model need not be flexible

– a simple linear model will be sufficient. This special case is actually the estimator proposed by

Fong and Taylor (2021). ■

2SL type 1 for MLE starts with the likelihood in equation (5): P pyi|xi, wiq “ ℓpyi,xi, wi,θq. As

noted, 2SL type 1 requires the no-effect-by-peripheral-features assumption. In MLE, the assumption

is formalized as

P pyi|xi, ziq “ ℓpyi,xi, wi,θq. (8)

The left side of equation (8) conditions on zi, and thus it is stronger than and implies (5). Like in

GMM, the assumption essentially says that no peripheral features of zi affect yi.

The procedure of 2SL type 1 for MLE is the same as in the GMM case except for the last part.

That is, we split S and train f on S1, let pwi “ fpziq, and then train p on S2. We omit the details

as they follow exactly those in the GMM case. The procedure differs in the last part, where we

consider the following conditional probability for i P N zS.

Prpyi|xi, pwiq “
ÿ

kPK
Prpwi “ k|xi, pwiq ¨ Prpyi|xi, pwi, wi “ kq

“
ÿ

kPK
Prpwi “ k|xi, pwiq ¨ ℓpyi,xi, wi “ k,θq

»
ÿ

kPK
pkpxi, pwiq ¨ ℓpyi,xi, wi “ k,θq.

The second equality above follows from assumption (8) and the fact that pwi is a function of zi. Also

note that the equality would not hold under only (5). With the above expression for Prpyi|xi, pwiq,
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we may estimate θ by maximizing the following log likelihood

ÿ

iPN zS
log Prpyi|xi, pwiq. (9)

As noted, we can always carry out 2SL twice by flipping the roles of S1 and S2. This will give

us two estimates of θ, which we can average to reduce the estimation variance.

5.2 Type 2

Again, we start with the GMM case and then turn to the MLE case.

2SL type 2 for GMM starts with the moment condition as in equation (4): E rgpyi,xi, wi,θqs “ 0,

which covers the conditional expectation specification (3) as a special case. We do not need to make

the additional no-effect-by-peripheral-features assumption.

The first step of 2SL type 2 is the same as in type 1, which we reproduce here. Split S into two

parts: S “ S1 YS2. One may consider equal split for simplicity. (We discuss why it is important to

split S later in Section 5.3). We use S1 to train a machine learning model f that predicts wi from

zi. In applications the choice of f is up to the researcher. The output fpziq is a vector collecting

the predicted probability for each possible value of wi. In the case that f makes deterministic

predictions, the vector has 1 in one entry and 0 in other entries. Let pwi “ fpziq.

The second step differs from 2SL type 1. We use S2 to train a second machine learning model

q that makes probabilistic prediction of wi using tyi,xi, pwiu. Note that yi is used an input of q.

The reason for doing so will be clear in a moment. Let K collect the possible values of wi. For each

k P K, let qkpyi,xi, pwiq denote the predicted probability for wi “ k. Again, because tyi,xi, pwiu is

low-dimensional, qkpyi,xi, pwiq should achieve a good approximation of Prpwi “ k|yi,xi, pwiq even

when the size of S2 is modest. We discuss the choice of q later in Section 5.3.

The key component of 2SL type 2 is to condition the moments on xi, pwi, and yi. Specifically,

for i P N zS,

E rgpyi,xi, wi,θq|yi,xi, pwis “
ÿ

kPK
Prpwi “ k|yi,xi, pwiq ¨ gpyi,xi, wi “ k,θq

»
ÿ

kPK
qkpyi,xi, pwiq ¨ gpyi,xi, wi “ k,θq. (10)

The second line uses the second machine learning model q. By the law of iterated expectation, we

have for i P N zS,
E

!

E rgpyi,xi, wi,θq|yi,xi, pwis

)

“ E rgpyi,xi, wi,θqs .

The inner conditional expectation on the left hand side can be evaluated with equation (10). The

right hand side is the moment condition used by the oracle. In other words, equation (10) allows

us to approximate a moment condition that equals the oracle’s.
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Notes: Illustration of the difference between direct substitution and 2SL type 2. Direct substitution is shown on the
left, where the extracted feature pwi directly replaces wi in the moment function. 2SL type 2 is shown on the right.
The pwi is joined with xi and yi to predict wi in the 2nd machine learning model, which then allows us to calculate
the moment condition by law of iterated expectation.

Figure 2: Two-Step Learning (2SL) Type 2

From this point on, we follow standard GMM procedure. In the case of exact-identification, we

estimate θ by trying to solve

ÿ

iPN zS
E rgpyi,xi, wi,θq|yi,xi, pwis “ 0. (11)

The conditional expectation is again evaluated by equation (10). In the case of over-identification,

we use the two-stage GMM. A graphical illustration of 2SL type 2 in comparison to direct substi-

tution is given in Figure 2. Again, we note that yi is included as input to the 2nd machine learning

model.

As in type 1, we can carry out 2SL type 2 twice by flipping the roles of S1 and S2. This will

give us two estimates of θ, which we can average. At least in the case of equal split, the average

estimate will have a smaller variance.

Example. (2SL type 2 for linear regression) It is instructive to see how 2SL type 2 applies in a

linear regression with a binary focal feature wi P t0, 1u. The econometric model is yi “ β1xi `

δwi ` εi with Epεi|xi, wiq “ 0, which implies Epyi|xi, wiq “ β1xi ` δwi. The moment function is

gp¨q “ pyi ´ β1xi ´ δwiq ¨ px1
i, wiq

1. Because wi is binary, we can use a scalar pwi to denote the

output of f . We may use another scalar p

pwi to denote the output by the 2nd machine q, that is,

p

pwi “ q1pyi,xi, pwiq “ 1 ´ q0pyi,xi, pwiq. So the right side of equation (10) becomes

p

pwi ¨ pyi ´ β1xi ´ δq

«

xi

1

ff

` p1 ´ p

pwiq ¨ pyi ´ β1xiq

«

xi

0

ff

“

«

pyi ´ β1xi ´ δ p

pwiqxi

pyi ´ β1xi ´ δq p

pwi

ff

.
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Thus, the estimates for β and δ are obtained as the solution to

ÿ

iPN zS

«

pyi ´ β1xi ´ δ p

pwiqxi

pyi ´ β1xi ´ δq p

pwi

ff

“ 0.

Note that the last moment has δ instead of δ p

pwi inside the parentheses. So the estimates are not

the same as those from an OLS regression of yi on xi and p

pwi. ■

2SL type 2 for MLE starts with the likelihood specification in equation (5): P pyi|xi, wiq “

ℓpyi,xi, wi,θq. Unlike in type 1, we do not need to make the additional no-effect-by-peripheral-

features assumption.

The procedure of 2SL type 2 for MLE is the same as in the GMM case except for the last part.

That is, we split S and train f on S1, let pwi “ fpziq, and then train q on S2. We shall omit the

details as they follow exactly those in the GMM case. The procedure differs in the last part, where

we consider the expectation of log likelihood conditional on xi, pwi, and yi:

E rlog ℓpyi,xi, wi,θq|yi,xi, pwis “
ÿ

kPK
Prpwi “ k|yi,xi, pwiq ¨ log ℓpyi,xi, wi “ k,θq

»
ÿ

kPK
qkpyi,xi, pwiq ¨ log ℓpyi,xi, wi “ k,θq. (12)

By the law of iterated expectation, we have for i P N zS,

E
!

E rlog ℓpyi,xi, wi,θq|yi,xi, pwis

)

“ E rlog ℓpyi,xi, wi,θqs .

The inner conditional expectation on the left side can be evaluated with equation (12). The

right hand side is the population log likelihood used by the oracle. So equation (12) allows us

to approximate a likelihood objective that equals the oracle’s in population – the idea here is

similar to that in the GMM case.

From this point on, we follow standard MLE procedure. Specifically, using sample analogue,

we estimate θ by maximizing

ÿ

iPN zS
E rlog ℓpyi,xi, wi,θq|yi,xi, pwis , (13)

with the conditional expectation again evaluated by equation (12).

As noted, we can always carry out 2SL twice by flipping the roles of S1 and S2. This will give

us two estimates of θ, which we can average to reduce the estimation variance.

Finally, it is instructive to note that the 2SL type 2 for MLE can be alternatively derived from

2SL type 2 for GMM. This is done by treating the first-order conditions of the likelihood as moment

conditions (Newey and McFadden 1994), that is, E rB log ℓpyi,xi, wi,θq{Bθs “ 0. We give details in
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the footnote.5

5.3 Discussion

We discuss several implementation details that are important to both types of 2SL. These include

the importance to split subsample S, choice of the 2nd-step machine learning model, and how to

incorporate likelihood/moments from S.

Split of subsample S Recall that we split S for separate trainings of the two machine learning

models. The 1st machine (f) is trained on S1 and the 2nd machine (p or q) is trained on S2. (Note

this split is different from the usual training-validation split. The training-validation split is used

within the training of each machine learning model. For example, when training f we may split

S1 into five folds for cross-validation. When training p or q, we may split S2 into five folds for

cross-validation).

The reason for the splitting S is the following. Take 2SL type 1 for example. Recall that we

first train f to output pwi. Then, when constructing the likelihood or moments in N zS, we need the

probability distribution Prpwi|xi, pwiq and we use p to learn it. Note in N zS, pwi is an out-of-sample

prediction. Thus, we need p to learn Prpwi|xi, pwiq where pwi is out-of-sample too. This is achieved

by the splitting. If we forgo the splitting and train both f and p on the entirety of S, then p learns

Prpwi|xi, pwiq where pwi is within-sample.

The distinction between within-sample and out-of-sample is important here because machine

learning models can be very flexible. As a consequence, the relation between wi and in-sample pwi

can be quite different from the relation between wi and out-of-sample pwi. An extreme example

is f being k-nearest neighbors with k “ 1. In this case, in-sample pwi always coincides with wi

but out-of-sample pwi does not. In general, the exact extent of problem caused by not splitting S
depends on the model used for f . The problem is likely more severe with “local” models, such as

k-nearest neighbors, kernel methods, and random forest, as opposed to “global” models. We will

verify this point in Monte Carlo studies (Section 6.4).

Splitting has an obvious downside that it reduces the size of training data for either machine

learning model. However, as pointed out, this downside can be mitigated by flipping S1 and S2.

2nd-step machine learning model In 2SL, the 2nd machine learning model is denoted as p in type

1 and q in type 2. Model p estimates Prpwi|xi, pwiq and q estimates Prpwi|xi, pwi, yiq. Because the

functional forms of these conditional distributions can be more complex than simple models (e.g.,

logit, multinomial logit), it is important to use a relatively flexible 2nd machine learning model.

The extent to which using an inflexible 2nd machine learning model is problematic depends on the

5The moment function is gpyi,xi, wi,θq “ B log ℓpyi,xi, wi,θq{Bθ. Note the number of moments equals the dimen-
sion of θ. Equation (10) becomes E rgpyi,xi, wi,θq|yi,xi, pwis »

ř

kPKqkpyi,xi, pwiq ¨ B log ℓpyi,xi, wi “ k,θq{Bθ. As a
result, the system of equations as given in (11) becomes

ř

iPN zS
“
ř

kPKqkpyi,xi, pwiq ¨ B log ℓpyi,xi, wi “ k,θq{Bθ
‰

“ 0,
which is the first-order conditions for the maximization problem in (13).
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application. In Section 6.5 we illustrate a Monte Carlo study where noticeable biases still remain

if logit is used for p and q.

A candidate that we have found to work well for the 2nd machine learning model is neural nets.

Neural nets, even the shallow ones, are universal approximators. In addition, statistical properties

of shallow neural nets are well developed (e.g., White 1990, Chen 2007). A main result there is

the generic consistency of neural nets when the number of training examples is large relative to the

input dimension. In 2SL, the input to the 2nd machine is either txi, pwiu or txi, pwi, yiu, which are

typically low-dimensional (especially compared to zi). Thus, a neural net should work well even

with a modest sized S2.

It is important to carefully select the hyperparameters of the 2nd machine in 2SL, because

the goal here is to estimate conditional probability distributions rather than just make a working

predictor. The hyperparameters of a shallow neural net, including the number of hidden nodes and

regularization parameter, can be chosen via cross-validation (on the subsample S2).

With the above said, hyperparameter selection can be time-consuming. So it can be a good idea

to start 2SL with a simple 2nd machine learning model, such as logit. The resulting estimate of θ

typically has removed at least some bias from direct substitution. Thus, it serves as a preliminary

estimate of θ or a reference point when we move to “full-fledged” 2SL with a flexible 2nd machine

learning model.

Incorporating likelihood/moments in S So far we have focused on constructing the correct like-

lihood or moments in N zS. A question is how to incorporate the likelihood or moments from the

observations in S. A natural approach is to simply sum the likelihoods or moments across all obser-

vations. For example, in 2SL type 2 for GMM, the approach amounts to adding
ř

iPS gpyi,xi, wi,θq

to the left side of equation (11). In 2SL type 2 for MLE, the approach amounts to adding
ř

iPS log ℓpyi,xi, wi,θq to the maximand (13). Intuitively, the resulting estimate of θ will be some

average between the direct estimate from S and the 2SL estimate from N zS.
While the above approach is natural and intuitive, we note that it is not necessarily the optimal

way to combine the likelihoods or moments from N zS and from S. Finding the optimal estimator

is beyond the scope of this article. It will be a valuable exercise for future research.

6 Monte Carlo

We consider a logistic regression with an explanatory variable extracted from images. Logit re-

gression is one of the most widely used nonlinear econometric models. Our images are taken from

CIFAR-10, a standard test ground for image recognition. Each image in CIFAR-10 has a resolution

of 32x32 and shows one of the 10 objects including airplane, car, bird, cat, etc. We focus on a

binary feature of these images: whether it shows a pet (cat, dog, or bird).
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6.1 Econometric setup

We consider a binary outcome yi that follows the logit model specified below:

yi “

$

&

%

1, if β1xi ` δwi ` εi ą 0;

0, otherwise,

In the above, wi “ 1 if image i shows a pet and wi “ 0 otherwise. Continuing with notations so far,

we use zi to denote the image. The error term εi follows logistic distribution and is independent

of xi and wi. The likelihood implied by the logit model is

Prpyi “ 1|xi, wiq “
1

1 ` e´β1xi´δwi
. (14)

The no-effect-by-peripheral-features assumption is satisfied if εi is independent of the image zi,

which implies Prpyi “ 1|xi, ziq “ 1{p1 ` e´β1xi´δwiq. As discussed, this assumption effectively says

that the only channel for zi to potentially affect yi is through the focal feature wi. We will examine

scenarios where this assumption holds as well as scenarios where it does not hold.

CIFAR-10 has 60,000 images. We extend it to 120,000 by horizontally flipping every image. In

a Monte Carlo experiment, we draw n images from the extended CIFAR-10 to form a sample. So

by the notations so far, N ” t1, ..., nu and S “ t1, ..., su with s ă n. We observe wi for i P S and

pretend not observing wi for i P N zS. As a benchmark, we also include the oracle that knows wi

in N zS. We examine n P t2500, 5000, 10000u while fixing s “ n{5.

We specify xi to be 10 by 1. We explore several different distributions of xi, which we will

describe later when discussing the results. We set β0 “ 1, β1 “ β2 “ 0.5, β3, β4, ..., β9 “ 0, and

δ “ 1. The outcome yi is simulated under these “true” values of coefficients. Note that although

seven coefficients are zero, they not known to be zero a priori and must be estimated.

6.2 Feature extraction

For extracting wi from zi, we make use of GoogLeNet, a pre-trained CNN that classifies images

into 1000 objects. Examples of these objects are keyboard, coffee mug, pencil, wood rabbit, hare,

bloodhound, beagle, golden retriever, airship, space shuttle, apron, cloak, etc. For each zi (a 32x32

image), GoogLeNet outputs an 1000 by 1 vector πi, where entry πij gives the probability for object

j. So
ř1000

j“1 πij “ 1.

To project πi into wi, we consider two algorithms. The first algorithm tries to calculate the

association between wi and each of the 1000 objects that GoogLeNet includes. We refer to the

algorithm as“scorecard.” Specifically, we compute a score for each object j as cj “
ř

i πijwi{
ř

i πij ,

where the summations are over all training images. Intuitively, cj measures the association of object

j with wi “ 1. We predict wi with pwi “
ř1000

j“1 cjπij . The second algorithm is k-nearest neighbors

(k-NN). Distances are calculated based on πi and k is chosen via cross-validation. We only briefly

examine k-NN and will specifically point out so when we do.
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To get a feeling of these algorithms, we note that when using 1000 training images, the out-

of-sample accuracy of scorecard is around 83% and of the k-nearest neighbors is around 81% (the

baseline is 70%). These levels of accuracy are within the range typically found in marketing/IS

literature.6

6.3 Main results

Table 3 shows our main Monte Carlo results. It considers four scenarios separated into four panels,

which we will discuss in order below. Reported are means and root mean squared errors (RMSEs)

for the estimate of δ, based on 100 Monte Carlo samples. The true value of δ is 1. Red color

marks bias of magnitude ě 10%. Standard errors of means are not reported to avoid clutter,

but an upper bound of standard error can be easily calculated as RMSE{
?
100 (because RMSE ě

standard deviation).

Scenario (1) specifies both xi and εi as independent of zi (i.e., xi KK zi, εi KK zi). Each element

of xi „ Np0, 1q. The first row shows the oracle that runs a logit regression of yi on xi and wi in

N zS. The second row shows the direct substitution that runs a logit regression of yi on xi and pwi

in N zS, where the algorithm that predicts pwi is trained using the entirety of S. We see a large

over-estimate of δ, by near 50% (the true value of δ is 1). Importantly, this over-estimate persists

as n becomes larger and thus is not just a finite-sample bias.

The third and fourth rows show 2SL. Here we use a shallow neural net in the 2nd step (with

more details on implementation given later in Section 6.5). Split flipping and averaging are used.

We see that both types of 2SL show little biases in estimates of δ, for all values of n. Also note

that the RMSEs decline at roughly the rate of
?
n when n increases.

Scenario (2) follows scenario (1) except that xi,1 and xi,2 correlate with wi (so xi M wi).

Specifically, we let xi,1 “ 1.5wi ` 0.75ξi,1 and xi,2 “ ´1.5wi ` 0.75ξi,2, where ξi,1, ξi,2 „ Np0, 1q.

This results in corr(xi,1,wi) » 0.7 and corr(xi,2,wi) » ´0.7. We see that direct substitution now

under-estimates δ, so the correlations have reversed the bias. Both types of 2SL show modest biases

at n “ 2500 (s “ 500) and little biases at larger n. In general, some bias with 2SL at small s should

not be surprising because the 2nd machine learning model requires training data to perfect.

Scenario (3) illustrates a key result of this article. It follows scenario (1) except that a correlation

of about 0.5 is added between εi and a peripheral feature of the image zi (i.e., εi M zi). We give the

technical detail of this feature in Appendix B. The feature is independent of wi so the econometric

model (14) is still correctly specified. But the no-effect-by-peripheral-features assumption no longer

holds. We see that the bias by direct substitution exacerbates greatly (about 140% over estimate).

Also, 2SL type 1 exhibits a substantial bias too (about 50% over-estimate). Importantly, 2SL type

2 shows little bias.

Finally, we use scenario (4) to illustrate that it is possible for the estimate by direct substitution

to have the wrong sign (which further contrasts the attenuation bias in classical measurement

6Some accuracy rates in the literature are 70% (Malik et al. 2019), 72% to 81% (Troncoso and Luo 2021), 92%
(Liu et al. 2020), 95% (Zhang et al. 2021).

22



Table 3: Estimates of δ in Monte Carlo - Main Results

(1): xi KK zi, εi KK zi

Mean RMSE

Sample size (n): 2500 5000 10000 2500 5000 10000

Oracle 1.025 1.011 1.018 0.135 0.097 0.073
Direct Substitution 1.45 1.462 1.486 0.544 0.511 0.507
2SL - type 1 1.016 1.031 1.025 0.252 0.169 0.106
2SL - type 2 0.985 0.981 0.979 0.22 0.16 0.112

(2): xi M wi, εi KK zi

Oracle 0.991 0.995 1.011 0.186 0.144 0.113
Direct Substitution 0.687 0.803 0.808 0.433 0.328 0.252
2SL - type 1 0.951 0.994 1.017 0.258 0.199 0.144
2SL - type 2 0.96 0.992 0.985 0.336 0.184 0.151

(3): xi KK zi, εi M zi

Oracle 1.015 1.006 1.011 0.124 0.084 0.076
Direct Substitution 2.418 2.456 2.47 1.456 1.474 1.482
2SL - type 1 1.519 1.529 1.511 0.586 0.561 0.528
2SL - type 2 0.998 1.006 1.00 0.21 0.146 0.116

(4): xi M wi, εi M zi

Oracle 0.981 0.986 1.005 0.196 0.173 0.11
Direct Substitution -0.35 -0.35 -0.34 1.388 1.368 1.349
2SL - type 1 0.74 0.815 0.827 0.375 0.296 0.216
2SL - type 2 0.918 0.975 0.99 0.314 0.189 0.156

Notes: Based on estimates of δ from 100 Monte Carlo samples. True value of δ “ 1. Red color indicates bias
of magnitude ě 10%. Standard errors of means are not reported but an upper bound can be easily calculated as
RMSE{

?
100.
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Table 4: Estimates of δ in Monte Carlo - Whether to Split Labeled Subsample

(1): GoogLeNet with scorecard for feature extraction

Mean RMSE

Sample size (n): 2500 5000 10000 2500 5000 10000

2SL - type 1 1.016 1.031 1.025 0.252 0.169 0.106
2SL - type 1 - no split 0.904 0.948 0.977 0.234 0.164 0.096
2SL - type 2 0.985 0.981 0.979 0.22 0.16 0.112
2SL - type 2 - no split 0.932 0.956 0.977 0.203 0.151 0.115

(2): GoogLeNet with k-NN for feature extraction

2SL - type 1 1.027 1.022 1.031 0.352 0.223 0.12
2SL - type 1 - no split 0.841 0.856 0.897 0.303 0.216 0.148
2SL - type 2 0.985 0.973 0.976 0.239 0.167 0.111
2SL - type 2 - no split 0.900 0.912 0.933 0.228 0.174 0.132

Notes: Based on estimates of δ from 100 Monte Carlo samples. True value of δ “ 1. Red color indicates bias
of magnitude ě 10%. Standard errors of means are not reported but an upper bound can be easily calculated as
RMSE{

?
100.

errors). The setting follows scenario (2) except that it adds a correlation of about -0.5 between

εi and the peripheral feature introduced in scenario (3). We see direct substitution now gives a

negative estimate of δ. 2SL type 1 has the correct sign but shows sizable biases. 2SL type 2 shows

a moderate bias at n “ 2500 and little biases at larger n.

To summarize, Monte Carlo results show that direct substitution can result in large biases in

either direction. Both types of 2SL perform well when the no-effect-by-peripheral-features assump-

tion holds. When the assumption does not hold, 2SL type 1 shows sizable biases while 2SL type 2

performs well.

6.4 Results on splitting S

An important detail of 2SL is splitting the labeled subsample S. Table 4 examines what happens

if we omit the split, that is, we use the entirety of S to train both machine learning models in 2SL.

The upper panel of the table assumes scenario (1) in Table 3. We see that the impact of splitting

is most noticeable at small s. At n “ 2500 (s “ 500), splitting leads to noticeably smaller biases

but slightly larger RMSEs. So, in this case, splitting trades off some variance for lower bias.

The degree of bias caused by not splitting S depends on the 1st-step machine learning model f .

So far, the image recognition has used scorecard algorithm (see Section 6.2), which is a relatively

global method (i.e., prediction for i pools information across all training data points instead of just

the points close to i). The lower panel of Table 4 switches from scorecard to k-NN, with everything

else following the upper panel. We see that omitting the splitting leads to larger biases. The result

here is consistent with our discussion in Section 5.3. That is, splitting is more important when the

1st-step machine learning model uses a more local than global method.
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Table 5: Estimates of δ in Monte Carlo - Choice of 2nd-Step Machine Learning Model

(1): xi KK zi, εi KK zi

Mean RMSE

Sample size (n): 2500 5000 10000 2500 5000 10000

2SL - type 1 - neural net 1.016 1.031 1.025 0.252 0.169 0.106
2SL - type 1 - logit 0.956 0.982 0.989 0.225 0.154 0.097
2SL - type 2 - neural net 0.985 0.981 0.979 0.22 0.16 0.112
2SL - type 2 - logit 1.033 1.013 1.006 0.236 0.163 0.12

(2): xi K wi, xi MK wi, εi KK zi

2SL - type 1 - neural net 0.919 0.998 1.031 0.241 0.152 0.107
2SL - type 1 - logit 0.817 0.866 0.868 0.279 0.192 0.165
2SL - type 2 - neural net 0.917 1.016 0.988 0.259 0.174 0.1
2SL - type 2 - logit 0.812 0.848 0.818 0.311 0.223 0.206

(3): xi K wi, xi MK wi, εi M zi

2SL - type 1 - neural net 1.274 1.237 1.183 0.369 0.277 0.214
2SL - type 1 - logit 1.295 1.37 1.341 0.373 0.401 0.362
2SL - type 2 - neural net 0.974 0.998 0.991 0.216 0.156 0.112
2SL - type 2 - logit 0.841 0.84 0.821 0.276 0.224 0.214

Notes: Based on estimates of δ from 100 Monte Carlo samples. True value of δ “ 1. Red color indicates bias
of magnitude ě 10%. Standard errors of means are not reported but an upper bound can be easily calculated as
RMSE{

?
100.

6.5 Results on 2nd-step machine learning model

Another important detail of 2SL is the choice of 2nd-step machine learning model. Table 5 com-

pares two choices: a shallow neural net and logit regression (note this logit regression is not the

econometric model in equation (14) but the 2nd step in 2SL). The shallow neural net has been

used for all the Monte Carlo results so far. It has 11 or 12 input nodes depending on the type of

2SL. There is one hidden layer with tanh activation. The number of hidden nodes P t0, 4, 16u. The

regularization factor P t0, 0.001, 0.002, 0.004, 0.008, 0.016u. Both hyperparameters are chosen via

5-fold cross validation on S1. Given a choice of hyperparameters, training minimizes cross-entropy

loss until the decrease in loss is sufficiently small.7

The upper panel of Table 5 assumes scenario (1) in Table 3, where xi KK zi and εi KK zi. In

this simplest scenario, we see that the neural net and logit perform in the same ballpark. The

middle panel of Table 5 examines a more complex scenario. It follows the upper panel except

for the specification of xi,2. We let xi,2 “ xi,1 ¨ e´0.5`wi`0.25ξi with ξi „ Np0, 1q. In this case,

corrpxi, wiq “ 0 but corrpxi,2{xi,1, wiq » 0.88. We see that the logit now results in sizable biases

in both types of 2SL. Intuitively, this is because the logit model lacks the flexibility to capture the

ratio xi,2{xi,1.

7We use the trainNetwork function in Matlab. Inputs are standardized.
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So far, Table 5 has maintained the no-effect-by-peripheral-features assumption because εi KK zi.

The bottom panel of Table 5 drops this assumption. It follows the middle panel except that it adds

a correlation between εi and a peripheral feature of zi (as we have done in scenario (3) of Table

3). We see that the 2SL type 1 shows sizable biases regardless of which 2nd-step machine learning

model is used, which is expected. For 2SL type 2, the logit shows biases while neural net works

well. Overall, the results here are consistent with our discussion in Section 5.3.

7 Empirical Application

We collect a popular Amazon review dataset and set up an empirical exercise that is simple yet

representative in research. The main result is that while both direct substitution and 2SL type

1 show sizable biases compared to the oracle, 2SL type 2 removes most of the biases. The result

highlights the third source of bias: peripheral features in unstructured data create a correlation

between the extracted focal feature and the residual in the econometric model (see Section 3.1,

particularly Figure 1).

7.1 Data and setup

We use a publicly available dataset of Amazon reviews in the fine food category (McAuley and

Leskovec 2013).8 We pick this dataset because textual analysis of product reviews is a popular

exercise in research.9 Further, two prior papers on the same topic as ours also use product reviews

in their empirical exercises. Qiao and Huang (2021) use Amazon reviews while Yang et al. (2018)

use TripAdvisor reviews. A final reason is that the dataset allows us to include an oracle as the

benchmark, as we will make clear in a moment.

The dataset includes 568,454 reviews for fine food products on Amazon. For each review, it

includes the review text, the rating (1 to 5 stars), and numbers of up votes and down votes by

other users. An upvote means an user finds the review helpful. We focus on reviews that received

at least one vote and are neither too short (bottom 5%) nor too long (top 5%). There are 281,767

reviews left, which form our Amazon review collection.

Although the exact data differ, our econometric setup roughly follows that of Qiao and Huang

(2021).10 We consider a researcher who wishes to study how the helpfulness of a review relates to

the review sentiment. The helpfulness yi is defined as 1 if all votes received by review i are upvotes

and 0 otherwise. The sentiment wi is defined as 1 if the review rating has at least four stars and

0 otherwise. Thus, the sentiment is known for all reviews. But we will pretend not so and try

8https://www.kaggle.com/datasets/snap/amazon-fine-food-reviews. Last accessed in May 2023.
9See, e.g., Liu et al. 2019, Timoshenko and Hauser 2019, Shi et al. 2021, Puranam et al. 2021, Chakraborty et

al. 2022.
10Both their and our papers study Amazon review data, but the product category and sample period most likely

differ. In terms of econometric setup, there is one difference that we define yi “ 1 if all votes are upvotes while they
require only 1 upvote. We do so because there are more upvotes than downvotes in our data. The original definition
would lead to a substantial skew in our data, with 89% of yi being 1. However, our main results still hold if the
original definition is used.
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Table 6: Descriptive Statistics of Amazon Review Data

mean s.d. min Q1 Q2 Q3 max

yi Helpfulness 0.620 0.485 0.0 0.0 1.0 1.0 1.0
wi Sentiment 0.717 0.450 0.0 0.0 1.0 1.0 1.0
xi,1 Log number of votes 0.865 0.896 0.0 0.0 0.693 1.386 6.828
xi,2 Log number of words 4.228 0.682 3.044 3.689 4.190 4.718 5.979

extracting sentiment from review text, which we will give the details for in a moment. We consider

the logit model:

yi “

$

&

%

1, if β0 ` β1xi,1 ` β2xi,2 ` δwi ` εi ą 0

0, otherwise.
(15)

The explanatory variable xi,1 is the log number of votes received by review i and xi,2 is the log

number of words in review i. Coefficient δ is our main interest.

We consider a researcher who has a sample of n reviews drawn from our Amazon review collec-

tion (281,767 reviews). The sample size n will be far smaller than the collection size, so that we may

repeat the sampling many times to examine the distribution of δ’s estimate. The researcher observes

wi for a subsample of s reviews and do not observe wi for the rest n´s reviews. We compare how dif-

ferent approaches utilize the n´s reviews to estimate δ. We examine n P t2500, 5000, 10000, 20000u

while fixing s “ n{5. The fact that we actually know wi for all reviews allows us to include an

oracle for comparison.

Table 6 provides summary statistics for the 281,767 reviews.

7.2 Feature extraction

We describe the machine learning model for sentiment extraction from review text (i.e., predicting

wi). There are two common ways of text representation in machine learning. The first way is

one-hot encoding, where a dummy variable is created for each unique word. This representation is

practical only for very large training data. The other way is to use pre-trained embeddings. We use

Google’s pre-trained word2vec embeddings. We average the embeddings of all words in a review.

As Google’s word2vec embeddings are 300-dimensional vectors, the average embedding of a review

is a 300 by 1 vector.

To project the average embedding into sentiment, we study two common machine learning

models: k-nearest neighbors (k-NN) and logistic regression. In k-NN the hyperparameter is tuned

using 5-fold cross validation. The logistic regression has no hyperparameter. For both models,

the extracted sentiment pwi is a probability between 0 and 1. It is important to note that the

logistic regression here is different from the logistic model in equation (15). The former is a part

of the sentiment extraction algorithm. The latter is the econometric model to describe the relation

between review helpfulness and review sentiment.

Table 7 shows the out-of-sample accuracy. The k-NN performs better with smaller training
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Table 7: Out-of-sample Accuracy for Sentiment Extraction

Accuracy (%)

Training sample size (s) 500 1000 2000 4000

k-NN 72.2 72.8 73.4 74.0
Logistic regression 71.7 72.6 74.8 77.1

data, whereas the logistic regression performs better with larger training data. Overall, the two

models are on par of each other.

7.3 Estimates of δ

The main results from our empirical application are given in Table 8. As described before, we

consider a researcher who has a sample of n reviews drawn from our Amazon review collection,

where s “ n{5 reviews have labeled sentiment. Columns of the table correspond to different sample

sizes. The upper panel uses logit with word2vec to extract sentiment, while the lower panel uses

k-NN with word2vec (see Section 7.2). Reported are estimates of δ averaged across 100 samples.

The rows of Table 8 correspond to the oracle, direct substitution, and two types of 2SL. The

oracle directly runs a logit regression of yi on pxi, wiq across the n ´ s reviews. Direct substitution

replaces wi with pwi in the logit regression. 2SL follows Section 5, and the second machine learning

model is the same shallow neural net used in Section 6. We use red color to mark bias of magnitude

ě 10% compared to the oracle.

Compared to the oracle, both direct substitution and 2SL type 1 have sizable upward biases.

In other word, both approaches exaggerate the association between sentiment and helpfulness. For

direct substitution, the extent of bias ranges from 40% (“ 2.444{1.745´1) to 228% (“ 5.732{1.745´

1). For 2SL type 1, the extent of bias tends to be smaller but still substantial, ranging from 19%

(“ 2.076{1.740´ 1) to 41% (“ 2.457{1.745´ 1). In contrast, 2SL type 2 shows much smaller biases

(ď 3%).

For a graphical illustration, Figure 3 plots the histograms of the estimates of δ at n “ 20000.

For reference, we use a red vertical line to represent the oracle’s mean estimate. We see 2SL type 2

has virtually no bias, while direct substitution and 2SL type 1 show clear biases. We also see that

2SL type 2 has a smaller variance than the other two estimators.

7.4 Sources of Bias

Results so far indicate sizable biases for direct substitution. Below we investigate sources of bias.

Following the discussion in Section 3, here we focus on the out-of-sample properties of the machine-

extracted sentiment pwi to find clues why the biases arise. Recall that in direct substitution, the

machine learning model for sentiment extraction is trained using the s reviews. So we examine

properties of pwi among the n ´ s reviews (thus out-of-sample).

Figure 4 shows the results. From top to bottom, the three rows examine three statistics of pwi:

(i) prediction RMSE, (ii) correlation with extraction error pvi ” wi ´ pwi, and (iii) correlation with
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Table 8: Estimates of δ in Amazon Review Application

(1) logit with word2vec to extract sentiment

Mean Estimate of δ

Sample size (n) 2500 5000 10,000 20,000

Oracle 1.745 (.01) 1.741 (.01) 1.739 (.00) 1.740 (.00)
Direct Substitution 5.732 (.10) 4.487 (.05) 3.630 (.03) 3.045 (.02)
2SL type 1 2.192 (.04) 2.103 (.03) 2.105 (.02) 2.076 (.01)
2SL type 2 1.768 (.02) 1.747 (.02) 1.747 (.01) 1.742 (.01)

(2) k-NN with word2vec to extract sentiment

Oracle 1.745 (.01) 1.741 (.01) 1.739 (.00) 1.740 (.00)
Direct Substitution 2.444 (.08) 2.447 (.05) 2.585 (.05) 2.611 (.04)
2SL type 1 2.457 (.14) 2.222 (.05) 2.194 (.03) 2.192 (.02)
2SL type 2 1.790 (.02) 1.760 (.02) 1.750 (.01) 1.751 (.01)

Notes: Reported are the mean estimates of δ across 100 samples from Amazon review collection. Numbers in
parentheses are standard errors. Red color indicates bias of magnitude ě 10% (compared to oracle).

Notes: The setting is same as in Table 8, upper panel, last column.

Figure 3: Distribution of Estimates for δ in Amazon Review Application
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the residual εi in the econometric model. The two plots in each row differ in how they extract

sentiment: the left plot uses logit and word2vec while the right plot uses k-NN and word2vec. In

each plot, the curve shows how the statistic changes with sample size n. Each reported value is

averaged across 100 samples (drawn from our Amazon review collection). Vertical bars represent

standard deviations across the 100 samples (so standard errors are 1/10 the bar lengths).

We start with the top row of Figure 4 that shows the prediction performance of pwi. We see that

the RMSE decreases as the number training examples increases. This result is expected. It shows

that machine learning models strive for prediction accuracy and do better so with more training

data.

The middle row of Figure 4 shows the correlation between pwi and its extraction error pvi. From

discussion in Section 3.1, we know that in general this correlation is a source of bias. For the

Amazon application here, we see corrp pwi, pviq ą 0 in most of the samples we have drawn. In other

words, the correlation is systematically positive, which explains the positive bias in δ. We note that

the magnitude of correlations in the right plot appears small (around 0.05), but the mapping from

correlation to bias is not simple and such small correlations can still manifest as sizable biases in

the estimate of δ.11

The bottom row of Figure 4 examines the correlation between pwi and residual εi in the econo-

metric model. From discussion in Section 3.1, we know that in general this correlation is an

important source of bias. A technical issue here is that we do not know εi. Unlike in linear regres-

sion, εi in a logit regression cannot be exactly backed out. As a proxy, we use its expected value

pεi ” Epεi|xi, yi,β, δq.12 We see from Figure 4 that corrp pwi, pεiq ą 0 in most of the samples we have

drawn. In other words, the correlation is systematically positive, which explains the positive bias

in δ. We note the magnitude of correlations is small (around 0.03 - 0.04). However, as explained

above, such small correlations can still manifest as sizable biases in the estimate of δ.

Overall, Figure 4 shows that while machine learning models strive for prediction accuracy, they

are not designed to provide desired properties for econometric estimation. The purpose of 2SL is

to account for possible undesired properties. Both types of 2SL account for corrp pwi, pviq ‰ 0. But

2SL type 1 does not account for corrp pwi, εiq ‰ 0. Given that both correlations are present in this

Amazon review application (as shown in Figure 4), 2SL type 1 can only partially correct the bias

in δ. This is consistent with what we have seen in Table 8.

11The relation between the correlation and bias has a closed-form expression if we were to consider a simple
linear regression: yi “ β ` δwi ` εi. With direct substitution, we have yi “ β ` δ pwi ` δpvi ` εi. The bias in δ is
covp pwi, δpvi `εiq{σ2

p pwiq. So, the impact of corrp pwi, pviq on the bias scales with σppviq{σp pwiq. In our application, σp pwiq

is much smaller than 1.
12The conditional expectation has a closed-form expression. Let ti ” β0 ` β1xi,1 ` β2xi,2 ` δwi. Then yi “ 1

iff ti ` εi ą 0. One can show Epεi|xi, yi “ 1,β, δq “ p1 ` e´tiq ¨ logp1 ` etiq ´ ti and Epεi|xi, yi “ 0,β, δq “

´p1 ` etiq ¨ logp1 ` e´tiq ´ ti. Here, we take the values of β and δ from a logit regression of equation (15) using all
the 281,767 reviews in our Amazon review collection.

30



Notes: The plots examine properties of the extracted sentiment to find the sources of bias in the estimate of δ. Each
reported value is averaged across 100 samples. Vertical bars show standard deviations across the 100 samples (so
standard errors are 1/10 of the bar lengths).

Figure 4: Sources of Bias in Amazon Review Application
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8 Conclusion

This article examines an emerging theme in research that combines machine learning and econo-

metric models to study features of unstructured data. We unpack potential econometric bias that

arises from the extraction errors by machine learning algorithms. A key emphasis of our exploration

is the distinction between extraction errors and measurement errors. We pay special attention to

“peripheral” features of unstructured data that fall outside the focus of the econometric model,

yet can be easily picked up by the machine learning model. The exploration highlights the fact

machine learning methods were developed without econometric exercises in mind, and therefore,

simply“stacking”machine learning and econometric models together can lead to considerably biased

estimates. One should carefully adapt the two to each other in order to draw correct insights.

We propose an approach to mitigate the bias. The approach does not modify or restrict the

machine learning algorithm used to extract features, which gives researchers flexibility in choosing

the algorithm suitable for their unstructured data (and accommodates cases where researchers have

little control over the algorithm, such as when using pre-trained models). Given this premise, our

approach focuses on accounting for the extraction errors when estimating econometric models. It

extends previous works in this area (Qiao and Huang 2021, Fong and Tyler 2020, Yang et al. 2018)

by being applicable to general econometric models as well as removing the restrictive assumption

that excludes potential effects of peripheral features.

Although the proposed approach has made important extensions, it is still important to be

aware of its boundaries. First, the studies so far, including ours, aim to bring our estimate close to

that of an oracle who directly observes the feature of interest in unstructured data. Put differently,

the benchmark is the oracle’s estimate. However, the oracle’s estimate may have its own bias if

the econometric model is mis-specified (e.g., due to unaccounted endogeneity). We do not attempt

to correct this bias. Second, the studies so far have assumed that manual labeling can correctly

classify the feature of interest from unstructured data. This assumption is reasonable in many

applications. However, in some applications there can be sizable errors in manual labels. One way

to mitigate the labeling errors is to use multiple labelers, but it also increases costs. Accounting

for possible errors in manual labeling is a very important topic for future research.
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Appendix

A: Details for the IV Example

We provide additional details for readers who wish to replicate the Monte Carlo example in Section

3.2. Recall that the IV setup requires: corrpwi, εiq ‰ 0, corrpwi, tiq ‰ 0, and corrpti, εiq “ 0. A

standard method to achieve these conditions is to generate wi as a function of ti and εi. However,

this method is precluded by our setup where wi is taken from CIFAR-10. So, we use a different

method where we use re-ordering to have both ti and εi correlated with wi, and yet keep ti and εi

uncorrelated with each other.

Specifically, we first define a rank function. For any given ξ ” pξ1, ..., ξnq1, let rankpi, ξq denote

the ranking of ξi in ξ under an ascending sort, with ties broken randomly. For a toy example, let ξ “

p6, 4, 1, 1, 5q1, then rankp1, ξq “ 5 and rankp2, ξq “ 3. Next, we generate t˚
i from uniform Bernoulli

distribution, generate ε˚
i „ Np0, 1q, and also generate ιi „ Np0, 1q. Let ci “ ρ1 ¨ t˚

i ` ρ2 ¨ ε˚
i ` ιi

for some ρ1, ρ2 ą 0. Finally, for each i, let ti “ t˚
j and εi “ ε˚

j where j satisfies rankpj, cq =

rankpi,wq. Note corrpti, εiq “ corrpt˚
i , ε

˚
i q “ 0. We set ρ1 “ 1 and ρ2 “ 0.3, which results in

corrpwi, tiq » 0.35 and corrpwi, εiq » 0.2.

B: Peripheral feature in Monte Carlo studies

We provide technical details on the peripheral feature in Section 6, for readers who wish to replicate

our Monte Carlo results. Below we denote this peripheral feature as ui. The feature ui was first

introduced in Table 3: scenario (3), where ui enters the logistic residual εi. The Monte Carlo setup

requires ui KK wi so that εi KK wi and the logistic equation (14) remains correctly specified for the

oracle. (If ui MK wi, 2SL will still reduce the bias of our estimate as compared to the oracle’s, but

the oracle’s estimate will have a bias itself.)

We construct ui from the prominence of yellow color in an image. Specifically, under the RGB

color coding, an image is characterized by three channels: red, green, and blue. In CIFAR-10, each

image has 32 ˆ 32 pixels. So each channel is represented by a 32 ˆ 32 matrix. For each image i,

we calculate the yellow prominence as the sum of two non-blue channels divided by the sum of all

three channels. Next, we normalize the yellow prominence so that it follows Np0, 1q conditional on

wi P t0, 1u. Specifically, for each image i we let ri be the percentile rank of i’s yellow prominence

among tj : wj “ wiu. Then, let ui “ Φ´1priq, where Φ is the standard normal cdf. Note that

ui|wi „ Np0, 1q and thus ui KK wi. Finally, we let ui enter the logistic residual εi as follows. Let

L be the logistic cdf and ιi „ Np0, 1q. We let εi “ L´1 ˝ Φpρ ¨ ui `
a

1 ´ ρ2 ¨ ιiq. Here, parameter

ρ P p0, 1q calibrates the correlation between ui and εi.
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