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Abstract

People sometimes enjoy the thrill of the hunt, which implies search can generate

joy in addition to costs. For example, some customers say they enjoy searching

for unique items such as vintage T-shirts or unusual flavors of a snack food, and

managers at warehouse stores, discount stores, thrift stores, and some online

selling platforms say they design their store format to produce a treasure hunt

experience. We develop a model in which customers enjoy searching for a

treasure. We derive the optimal product price and hunt difficulty level for a

company that sells treasures such as unique thrifted clothes. For products with

low intrinsic value, the seller sets price equal to product value and makes the

search process difficult enough that some customers leave the store without

finding a product to buy. Search utility then motivates customers to travel to

the store and participate in the hunt.
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1 Introduction

Throughout human history, whether in romantic pursuits, pirate adventures, or

English fox hunts, people have enjoyed the thrill of the hunt. In these examples,

hunting for treasure provides inherent joy in addition to the joy of possessing the

treasure. In the modern retail context, a large body of academic research has shown

that many customers say shopping also produces “the excitement of the hunt,” and

these customers agree with statements such as “Shopping is a thrill to me,” and “In

certain second-hand outlets, I feel rather like a treasure hunter” (Babin et al. 1994,

Arnold and Reynolds 2003, Jones et al. 2006, Guiot and Roux 2010).

For example, some customers say they visit discount stores like T.J. Maxx,

warehouse stores like Costco, and thrift stores like Goodwill and Salvation Army

partly because they enjoy the thrill of hunting unique or exciting items to purchase,

and managers of these stores explicitly say they design their retail format to produce

a treasure hunt experience (Mitchell 2018, Wahba 2024). The appendix contains

examples with images of this type of retail format that makes the search process

a fun and exciting challenge. For any given customer, the search process may be

a joy in some retail situations but a cost in others. For example, a customer who

enjoys searching for a vintage T-shirt with the name of her favorite singer may dread

time spent searching for a new power cord for her computer. From a managerial

perspective, any given retailer has some customers who enjoy search and others who

consider search costly.

An important example of treasure hunting in a retail context occurs in the used

clothing market, which is growing rapidly, with global revenues expected to increase

from $141 billion in 2021 to $230 billion in 2024 (ThreadUp 2024). Even wealthy

shoppers now visit Goodwill stores, thrift shops, and online markets to buy used

clothing, which is also known as thrifted or pre-loved fashion (Rao 2023, Bass 2024).

Thrift shopping is especially popular with Gen Z, as both male and female customers

of all income levels have made thrift shopping a frequent and important part of their
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lifestyle (Huber 2020). As a young thrift shopping fan wrote, “While it’s a common

theme to see a group of teen boys on a Friday afternoon at the mall or a park, today,

they are just as likely to be at the vintage shop, or the thrift, scouring for the best

second-hand find. The fact is, thrifting is thriving right now” (Kramer 2024).

Customers often mention the thrill of searching for a unique item as an important

motivation for thrift shopping (Hughes et al. 2024). Although customers also buy

used clothes for other reasons, such as low prices and environmental sustainability,

anecdotal and empirical evidence suggests the joy of a treasure hunt is a primary

motivation for many customers. For example, a thrift industry executive stated that

customers “like the thrill of the hunt” (Pandey 2021). A thrift shopper said in a

news interview, “Younger people find it fun, like a game. A hunt for something

unique,” (Sicurella 2021) and another shopper said, “I’ll never stop loving the rush of

adrenaline that I get when I enter a thrift store not knowing what I’m going to find

that day” (Huber 2020).

Stores sell thrifted clothing through a variety of selling formats, which differ in how

easy it is to find products. Some clothing manufacturers buy and resell the brand’s

used clothes in their own store or on their own website, making the search process

easy for customers. For example, fast fashion company H&M has a store in New York

City that sells pre-loved H&M clothes (Walk-Morris 2024). Alternatively, customers

can visit thrift shops, where clothes are hidden among a variety of brands, styles,

and sizes of clothing, so it takes significantly longer to find an item a customer wants

to buy. The marketing manager of a Goodwill store that is popular with fashion

influencers stated, “It’s always a treasure hunt. A lot of people don’t know what

they’ll find from one rack to the next” (Mitchell 2018).

Thrifting websites like Poshmark, Depop, and The Realreal, as well as general

selling platforms like eBay and Mercari, also differ in how easy the website’s search

function makes it to find the particular brand, style, and size of clothing a customer

desires (Huynh 2023). Some of these websites buy and resell used clothes themselves,

whereas others have become a popular form of social media where users search,
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browse, and comment on clothing offered by millions of other users. In addition, some

websites allow users to livestream fashion shows in which they present one article of

clothing at a time to followers who can write comments and purchase items (Braun

2023, Gu et al. 2024). A fashion journalist wrote that searching for used clothes on

these websites provides “a slot machine-style pleasure” (Snapes 2021).

In addition to thrift stores and thrifted clothing websites, other retailers also

offer a treasure hunt experience. Stores like Costco and T.J. Maxx sell a constantly

changing and unpredictable inventory of products. For example, Costo buys a limited

quantity of rare cosmetics, jewelry, food items, and other unusual products that it

stocks in random locations throughout a few stores so that customers experience the

thrill of discovering these special items, a policy that the Costco chief merchandising

officer says creates a “treasure hunt” for customers (Wahba 2024).

Consistent with this anecdotal evidence from customers, managers, and the pop-

ular press, there is also a large body of academic research showing that some people

engage in hedonic shopping, which is motivated mostly by the shopping experience

rather than by product purchases. The seminal paper on hedonic shopping by Babin

et al. (1994) in Journal of Consumer Research, entitled “Work and/or Fun: Measuring

Hedonic and Utilitarian Shopping Value,” develops a survey-based scale for measuring

the value that a shopping trip provides to customers because of their enjoyment of the

shopping experience rather than because of the products they purchase. Subsequent

research uses surveys and lab experiments to study purchase behavior of hedonic

shoppers (Jones et al. 2006, Scarpi 2012), conditions in which customers engage in

hedonic shopping (Childers et al. 2001, Scarpi 2021), and their motivations for doing

so (Arnold and Reynolds 2003). An important finding from this literature is that

hedonic shoppers enjoy the search process. In particular, hedonic shopping is strongly

correlated with positive responses to the survey items “Shopping is a thrill to me”

(Arnold and Reynolds 2003), and “During the trip, I felt the excitement of the hunt”

(Babin et al. 1994, Jones et al. 2006). Furthermore, some customers visit thrift stores

for hedonic shopping (Bardhi and Arnould 2005), and these shoppers tend to agree
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with the survey item, “In certain second-hand outlets, I feel rather like a treasure

hunter” (Guiot and Roux 2010).

This paper develops a formal model of a treasure hunt. In our model, a treasure

is a product that is unique and exciting to hunt, so customers enjoy searching for it.

At each moment during the treasure hunt, a customer decides whether to continue

searching, considering both the probability of finding treasure and also marginal

search utility, which initially is positive but decreases over time and eventually

becomes negative. If the customer finds a treasure, for example, a unique shirt that

complements her outfit well, she acquires the treasure and stops searching. We derive

the optimal stopping rule, the probability of finding a treasure before the customer

stops searching, and the total expected utility from the treasure hunt. If the treasure

is easy to find, the customer has a high probability of finding treasure quickly but low

expected utility from the joy of the search. If the treasure is more difficult to find, the

customer has higher expected utility from the joy of search but a lower probability of

finding treasure before she decides to stop searching.

We allow the company designing the treasure hunt to decide the price of products

and the ease of search, which is reflected in the instantaneous probability of finding

treasure. The company would like to maximize profits from selling the product,

which depends on the number of people who both visit the store to participate in the

treasure hunt and then find a treasure.

If the treasure has low value, the company sets price equal to product value and

makes the treasure difficult to find, and the thrill of search provides an incentive to

participate in the treasure hunt. If the treasure has high value, the company sets

price below product value and makes the treasure somewhat easier to find, and both

search utility and the value of the treasure itself provide an incentive to participate

in the treasure hunt.

Our paper makes two key contributions. First, we formally model customers’

intrinsic joy from treasure hunting, thus providing insight into the thrifted fashion

market that has rapidly expanded during the past decade. In particular, if the value
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of a firm’s products is relatively low and a sufficient fraction of customers enjoy

search, we show that the firm should set price high enough to extract the full value

of the product, and it should rely on search utility to attract customers to the store.

In fact, real world thrift stores have significantly increased their prices to generate

more revenues from shoppers motivated by the treasure hunt experience they offer

(Gallagher 2022, Warren 2023), and Goodwill stores now set prices for some used

clothing items that are higher than prices of similar new clothes at Walmart and

Target (Duley 2023).

Another contribution is to show how a well-designed thrift shop can benefit from

customers’ enjoyment of treasure hunts to motivate people to buy used clothes, even if

customers do not explicitly value environmental sustainability. This finding illustrates

that marketing tactics can help promote sustainability, which is an important policy

goal (Yalcin et al. 2020). For example, a recent report found that an estimated 92

million tons of textile waste arrive in landfills each year worldwide, and only about

12% of material used in clothing is currently recycled (State of Matter 2023).

Section 2 discusses related literature. Section 3 presents the main model. Section 4

presents analysis of the main model, and section 5 contains several model extensions.

Section 6 concludes. Appendix A displays examples of in-person and online thrifted

clothing sellers. Appendix B contains formal proofs of all results.

2 Related Literature

In classic search models, search is costly, and conditional on the quality and price of

the product they purchase, customers prefer to minimize time spent searching (e.g.,

Diamond 1971, Weitzman 1979). Some search models include a segment of customers

who consider search costly and another segment with zero search cost (Varian 1980,

Narasimhan 1988). In other models, search involves experimenting with an alternative

that has a lower expected payoff (Adam 2001, Ke and Villas-Boas 2019). There is

also literature on dynamic search for product information when search is costly (e.g.,
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Branco et al. 2012, Gu and Liu 2013, Ke et al. 2023). In our paper, customers enjoy

search, and the firm’s strategy accounts for customers’ search utility. In particular, we

develop a continuous time dynamic model with search utility that is initially positive.

Previous literature has also used continuous time models to study other marketing

decisions such as sales force compensation (Rubel and Prasad 2016), product posi-

tioning (Villas-Boas 2018), and influencer endorsements (Nistor et al. 2024). Using

a model with continuous time allows us to derive expected search time and search

utility as a function of the ease of finding treasure.

Previous literature has shown that competing firms may want to make price

information difficult to find in order to soften price competition (Stahl 1989, Ellison

and Ellison 2009). By contrast, in our paper, we show the firm should make it easy

for customers to find price information but somewhat difficult to find a product that

is a good fit. Furthermore, our model involves a single retailer designing its store

format to generate search utility for its customers, as opposed to competing retailers

trying to soften price competition.

Our model is related to two streams of behavioral research. One research stream

uses interviews, surveys, and simulations to understand different motivations for

shopping. Some people shop mostly for the pleasure of the shopping experience

itself, and these customers say shopping provides a sense of excitement, discovery,

and adventure (Babin et al. 1994), as well as a chance to socialize and relieve stress

(Arnold and Reynolds 2003). In such situations, people enjoy the thrill of hunting

for a product to purchase (Jones et al. 2006). However, in other situations, the

main goal of shopping is to quickly and efficiently purchase products that meet a

customer’s needs (Childers et al. 2001). In our model, customers visit a thrift store

both for the joy of the shopping experience and for the intrinsic value of products.

We also consider a model extension in which a segment of customers does not enjoy

search and shops only because of intrinsic product value.

In addition, behavioral lab experiments and surveys have shown that people savor

the anticipation of an enjoyable event, and they sometimes prefer to delay such an
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event to prolong this anticipation utility (Elster and Loewenstein 1992). For example,

people say they would prefer to wait a period of time before experiencing certain

desired events (such as a kiss from one’s favorite celebrity, or a fancy meal) rather

than experience them immediately (Loewenstein 1987). Furthermore, the emotional

experience of anticipating an event is more intense than post-event emotional expe-

riences (Van Boven and Ashworth 2007). Consumers experience the highest levels

of enjoyment with medium-length waits, which are long enough for them to enjoy

anticipation, but not so long that annoyance occurs (Chan and Mukhopadhyay 2010).

In our model, customers derive utility from searching for treasure, and an increase in

search time needed to find treasure can lead to greater utility from the shopping trip,

although the marginal utility of search declines over time as customers grow tired of

shopping.

Previous literature has developed behavioral industrial organization models (Gold-

farb et al. 2012, Heidhues and Kőszegi 2018) that incorporate effects such as context-

dependent preferences (Orhun 2009), desire for uniqueness or conformity (Amaldoss

and Jain 2005), and fairness concerns (Cui et al. 2007, Selove 2019). These papers

study different phenomena than we do, but our paper is related in that we also

incorporate findings from behavioral literature into a formal model.

There is literature on the circular economy that involves reusing or recycling

products (D’Adamo et al. 2022, Luukkonen et al. 2024). For example, Ek Styvén

and Mariani (2020) examines consumers’ incentives to buy secondhand fashion on

platforms, and Buehler et al. (2023) study product design when consumers account for

the environmental impact of product disposal. By contrast, in our paper, consumers

buy thrifted fashion not because of an altruistic motive to preserve the environment

but because of their joy of searching for a unique product.

Previous literature has studied the impact of a second-hand market on manufac-

turers’ strategic decisions and outcomes. Shulman and Coughlan (2007) shows that

a retailer-operated used-goods market for durable goods such as textbooks can lead

to a higher manufacturer profit by enhancing consumer valuations for new goods and
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also by treating used goods sales as a price discrimination tool. Yin et al. (2010)

shows that a retailer-operated used-good market allows the manufacturer to charge

a higher price for its new product and so suppresses the manufacturer’s incentive for

product upgrades, but competition from a peer-to-peer used goods market reverses

these effects. Some research also considers contexts in which a used good has a

higher value than a new product (Tan 2022, Zhao et al. 2024). Liao and Kuksov

(2023) examines the effect of speculators who buy new products in the first period

when consumers are uncertain about their valuation and resell the products in the

second period when consumer uncertainty is resolved. Whereas these studies explore

value depreciation or appreciation of a second-hand product, we study thrifted fashion

goods when consumers enjoy treasure hunting for these products.

Our study is also related to literature on fashion goods. Existing studies have

examined how a fashion product can be used to signal high social status and how

fashion cycles arise in equilibrium (e.g., Karni and Schmeidler 1990, Pesendorfer 1995,

Yoganarasimhan 2012). In contrast with these studies, we do not model fashion as a

signaling tool but rather as both a product and an experience with enjoyment from

search.

3 Model

We first describe the decisions and profit function of the firm in the model, and we

then describe the decisions and utility function of consumers.

3.1 Firm

A store sells products that have intrinsic value V , where V > 0. The firm decides

the price p of each product and the rate µ at which a customer who visits the store

discovers a product with good fit, for example, clothes that are the correct size and

her preferred style. We refer to a product that is a good fit for a given customer as
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a “treasure.” We allow any rate of treasure discovery µ ≥ 0.1 To ensure positive

demand and profits, the firm will optimally set price such that 0 < p ≤ V .

The firm can increase the rate µ of treasure discovery, for example, by having

employees sort clothes by brand, size, and color. Sorting on all of these attributes

makes treasure easy to find, whereas leaving clothes unsorted or sorting on only

some attributes makes treasure harder to find. As another example, the firm can

ensure it maintains a consistent, predictable stock of inventory which helps make

finding treasure easy, or it can acquire whatever products are currently available to

the store at low cost, resulting in unpredictable inventory and greater difficulty of

finding treasure. In reality, making the treasure easier to find (increasing µ) can be

costly, but we allow the firm to choose any level of µ at no cost to illustrate that

it may prefer a difficult treasure hunt even if it could make the treasure easier to

discover a no cost.

The firm maximizes total profits from product sales, and we normalize the firm’s

cost to acquire and sell a product to zero.

3.2 Customers

Customers derive value V from a product with a good fit (a treasure) and zero value

from a profit with a poor fit. Given p > 0, consumers will only purchase a product

with good fit. Before visiting the store, customers observe both p and µ.2 However,

customers do not observe their fit with any given product until they travel to the

store and conduct a search, which implies all consumers have the same expected

utility from conducting a treasure hunt once they arrive at the thrift store.

We consider a unit mass of consumers, with each having unit demand for treasure.

Consumers’ transportation cost to visit the thrift store is uniformly distributed on

the interval [0, 1]. A consumer will visit the store as long as the expected benefit from

visiting exceeds the cost. Letting U denote the expected utility of the treasure hunt,

1The expected search time to find a treasure is 1
µ for all µ > 0, and as µ → ∞ search time

approaches zero. See the following section on customer search behavior for more detail.
2We later consider the case in which customers do not learn price until after they discover a

treasure.
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including both expected search utility and expected utility from buying treasure, the

number of customers who travel to the store and participate in the treasure hunt

equals U for all U ∈ [0, 1].

After traveling to the store, a customer can search for treasure over time t ∈ [0,∞).

At each moment t, the customer decides whether to continue the search to maximize

her expected utility, considering both search utility and the expected value of finding

a treasure. Note that the heterogeneous transportation cost consumers incur to visit

the store becomes a sunk cost after they arrive at the store, so this travel cost does not

affect their decisions during treasure hunting. Below we provide detailed specifications

of a representative consumer’s treasure hunting process.

The search process provides a consumer with utility that initially has positive

value α + β(V − p) per unit of time, where α > 0 and β > 0. This marginal search

utility decreases linearly over time as the customer grows tired of shopping. For

notational simplicity, we scale time units so the rate of decrease in marginal search

utility is one, and the total instantaneous search utility at time t is:

s(t) = α + β(V − p)− t (1)

The function s(t) reflects instantaneous search utility per unit of time at time t, that

is, the current joy of search the customer experiences at the time. Our setup implies

a positive instantaneous utility at t = 0 as the consumer starts the search, that is,

s(0) = α + β(V − p) > 0. Note that α represents the constant in this search utility

expression and β reflects the degree to which search utility increases with the net value

of the treasure.3 Equation (1) implies search is enjoyable while t < α + β(V − p),

that is, during the first α + β(V − p) units of time that a customer is shopping.

However, the customer grows increasingly tired of shopping, and after α + β(V − p)

units of time, her marginal utility of search becomes negative. For parsimony, in this

3We are conducting experiments to measure the functional form of search utility, and preliminary
results indicate this utility is not very sensitive to changes in net product value, that is, β is relatively
small.
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main model, we let all customers enjoy search. We later present a model extension

in which one segment of customers initially enjoys search (α > 0 and β > 0), but

another segment of customers considers search costly and prefers to find the product

as quickly as possible (α = β = 0).

The total utility of searching from time zero until a given time x, without finding

treasure during this time interval, is the integral over the instantaneous search utility:∫ x

t=0
(α+β(V −t)−t)dt = [α+β(V −t)]x− 1

2
x2. This total search utility is maximized

by setting x = α+ β(V − t), that is, by searching while search is still enjoyable, and

then stopping search when it is no longer enjoyable. Figure 1 depicts instantaneous

and total cumulative search utility as a function of time for initial search utility

α + β(V − t) = 2.

Figure 1. Instantaneous and Cumulative Search Utility (α + β(V − t) = 2)

As a customer searches, she finds a treasure, which provides utility of V − p,

according to a Poisson process with rate µ, so the probability of finding a treasure

during a small period of time of length dt is given by µdt. Once the consumer finds

a treasure, she stops the search. A larger µ makes it easier to find a product that
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fits, so in expectation consumers have a shorter search time before finding treasure.

In particular, the expected time required to find a treasure is 1
µ
for all µ > 0.

3.3 Game Sequence

To summarize, the model timing is the following:

1. The seller decides the price p and rate of finding treasure µ, and customers

observe these decisions.

2. Customers decide whether to travel to the store.

3. Customers who travel to the store decide at each time t ∈ [0,∞) whether to

continue searching for treasure.

Table 1 summarizes model notation, including some variables introduced later in

the paper. [The current draft solves the model for β = 0, and we are working on

extending the model to more general functional form of search utility.]

Table 1. Model notation

t Time

a Initial utility from search per unit of time

s(t) = a− t Instantaneous utility from search at time t

V Value of product

p Price of product

µ Rate of discovering treasure

t∗ = a+ µ(V − p) Optimal time to stop search

q = 1− e−µt∗ Equilibrium probability of finding treasure after traveling to the store

U Customer’s total expected utility from the treasure hunt
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4 Analysis

We solve the game through backward induction. We first solve the subgame with

customers’ treasure hunting decisions for a given price and treasure discovery rate.

This analysis allows us to derive a customer’s optimal search strategy and expected

utility from the treasure hunt. We then derive the store’s optimal strategy to

maximize its profits.

4.1 Consumers’ Treasure Hunting Decisions

Conditional on visiting the store, a customer decides at each time t whether to

continue searching for treasure. Once she finds a treasure, she has no further utility

from search, and she no longer desires another treasure, so she acquires the treasure

and stops searching. If the customer has not yet found a treasure, her optimal strategy

is to continue searching if the instantaneous utility from search plus the value of a

possible treasure discovery is positive, that is, if a− t+µ(V − p) ≥ 0. Given that the

utility from the search process decreases over time, once this term becomes negative

it will only continue to decrease, so there is no reason to continue searching. The

appendix formally proves the following lemma.

Lemma 1. A customer’s optimal strategy is to search either until she finds a treasure

or until time t∗ = aµϕ + µ(V − p).

The customer searches while the marginal utility from search is positive (until t = a)

and then continues searching for a period of time when the marginal utility from

search is negative (when t > a) because of the ongoing possibility of finding the

treasure. Figure 2 provides a visual depiction of this optimal search strategy for

a = 2, µ = 1, and V − p = 1, which implies it is optimal to search until t = 3.
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Figure 2. Optimal Search Strategy (a = 2; µ = 1; V − p = 1)

The probability that a customer stops search without finding treasure is the

probability of zero Poisson arrivals with rate µ over a length of time t∗, which is

given by e−µt∗ . If we let q denote the probability she finds a treasure, and we insert

the value for t∗ above, we have:

q = 1− e−µ(aµϕ+µ(V−p)) (2)

This equilibrium probability q that the customer finds a treasure increases in the

initial utility of search a, the rate of finding treasure µ, and the value of treasure

V − p.

We now compute the customer’s expected utility from the shopping experience.

Her expected utility from the treasure itself is q(V − p), which is the probability of

finding the treasure times the value of the treasure. The expected utility from the joy

of search is
∫ t∗

t=0
e−µt(aµϕ − t)dt, which is found by integrating over the instantaneous

utility from search times the probability of searching until a given point in time. The
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proof of the following proposition solves this integral and computes total expected

utility from the treasure hunt.

Proposition 1. A customer’s expected utility from the treasure hunt is given by the

following equation.

U = (1− e−µt∗)(V − p) +
a

µ(1−ϕ)
(1− e−µt∗)− 1

µ2
(1− e−µt∗ − µt∗e−µt∗) (3)

The first term represents expected utility from the treasure itself, whereas the

second and third terms represent expected search utility. In order to perform

comparative statics, we need to consider the effect of each model parameter on all

three components of utility. The following corollary states comparative statics results.

Corollary 1. The expected utility from the treasure hunt increases with the value of

treasure V − p and increases with initial search utility a, but may either increase or

decrease with the ease of finding treasure µ.

An increase in the value of the treasure increases expected utility from the treasure

itself. An increase in the search utility parameter increases expected utility from

search. By contrast, an increase in the ease of finding treasure has two opposing

effects. First, an easier hunt increases the probability of finding the treasure, which

increases expected utility from the treasure itself. Second, an easier hunt makes it

more likely for the customer to find the treasure faster, which can reduce expected

utility from search. The net effect can go in either direction, and in some cases, a

more difficult hunt (lower µ) increases total expected utility from the treasure hunt.4

4These parameters also affect the optimal search time t∗. However, the envelope theorem implies
that this change in t∗ has only a second-order effect on the customer’s utility, and we can perform
comparative statics while holding t∗ constant.
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If there was no positive search utility (a = 0), the second term in (3) would equal

zero. The first and third terms of (3) are maximized by letting the treasure discovery

rate µ → ∞, so customers immediately find treasure with no search cost. In other

words, if customers did not enjoy search, the firm would want to make finding treasure

as easy as possible, so everyone who visits the store finds a treasure and customers

do not incur search costs.

However, with positive search utility (a > 0), utility from the treasure hunt is

greatest if the firm sets a finite treasure discovery rate to provide customers with joy

of search. The appendix proves that Proposition 1 has the following corollary.

Corollary 2. For any a > 0, there is a finite treasure discovery rate µ that maximizes

expected utility from the treasure hunt.

Consumers’ transportation costs are uniformly distributed on [0, 1], so the number

of customers who visit the thrift store is equal to the expected utility from the treasure

hunt. Therefore, Corollary 2 implies a firm that wishes to maximize foot traffic to the

store should make the treasure hunt at least somewhat challenging so customers who

visit the store experience the joy of search. Section 5.2 provides additional analysis

of the objective of maximizing foot traffic.

In order to maximize profits, the seller needs to consider foot traffic, the price of

treasure, and the probability that a customer finds treasure conditional on visiting the

store. In the next section, we characterize the seller’s optimal strategy to maximize

profits from selling treasures.

4.2 Firm’s Treasure Selling Strategy

The firm’s objective is to choose price p and ease of finding treasure µ to maximize

the following profit function.

π = pUq (4)
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The number of people U who visit the store is equal to the expected utility of the

treasure hunt as stated in (3), and the probability q of finding treasure is given by

(2), both of which are functions of p and µ.

The firm’s strategy must account for interactions in the effect of p and µ on profits.

If the firm lowers its price, then the value of treasure to customers (V − p) increases,

which implies that an increase in the treasure discovery rate has a larger incremental

impact on customers’ expected utility from finding treasure. However, an increase in

(V −p) also causes customers to search longer (increases t∗), which implies that setting

a higher treasure discovery rate has a smaller incremental impact on the probability

of finding treasure. As a result of these various interactions in the effect of p and

µ on U and q, a decrease in product price can either increase or decrease the firm’s

optimal treasure discovery rate (see the numerical example below).

In order to solve this multivariate optimization problem, we first focus on cases

in which the product has either low or high intrinsic value V , and we derive closed

form results for the firm’s optimal strategy in both cases. We then numerically solve

for the optimal strategy for intermediate product values.

If we hold µ constant, the partial derivative of profits with respect to p is the

following:5

∂π

∂p
= Uq + p

[
dU

dp
q +

dq

dp
U

]
(5)

If we hold p constant, the partial derivative of profits with respect to µ is the following:

∂π

∂µ
= p

[
dU

dµ
q +

dq

dµ
U

]
(6)

Motivated by the example of thrift stores such as Goodwill selling used clothes,

we now solve the firm’s profit-maximization problem for products with low value.

5We take total derivatives of U and q with respect to p to reflect that customers’ search time t∗

changes with p, and this change in t∗ has a first-order effect on q.
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Given the constraint p ≤ V , as V → 0 the second term in (5) also approaches zero.

However, even for very low product value, a customer is always willing to search at

least until time a because of search utility, so the utility U from the treasure hunt is

always at least
∫ a

t=0
e−µt(a− t)dt, and the probability of finding treasure is always at

least 1− e−µa. Therefore, the term Uq does not approach zero even for low product

value, and for small values of V , the derivative (5) is strictly positive for all p ∈ [0, V ],

which implies the profit maximizing price is p = V . The intuition is that, when the

product has low value, the firm is not able to raise the price until the point that

profits begin to decrease in price. Therefore, the optimal strategy is to set price to

extract the full value of the product, and search utility then provides the motivation

for customers to visit the store and participate in the treasure hunt. In this case, the

optimal values of p and µ to maximize profits are found by setting p = V and by

choosing the optimal µ given this value of p.

When the firm sets price equal to product value, all of the customer utility from

the treasure hunt comes from the joy of search. Therefore, customers search until they

find a treasure or until time a, that is, they search while search is still enjoyable. In

this case, an easier treasure hunt decreases expected utility from the treasure hunt by

making it more likely for a customer to find treasure quickly. However, an easier hunt

also increases the probability of a given customer finding treasure. The firm’s optimal

choice of µ balances these two effects. Formally, when the firm sets p = V , the optimal

search time is t∗ = aµ(1+ϕ), the probability of finding treasure is q = 1 − e−aµ(1+ϕ)
,

and the utility of the treasure hunt is U = a
µ(1−ϕ) − 1

µ2 (1 − e−aµ(1+ϕ)
). Therefore, the

profit function becomes:

π(µ, p = V ) = V (1− e−aµ(1+ϕ)

)

[
a

µ(1−ϕ)
− 1

µ2
(1− e−aµ(1+ϕ)

)

]
(7)
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Making the substitution g(µ) = 1−e−aµ(1+ϕ)

µ
, this profit function equals V (gaµϕ − g2),

which is maximized by setting g = aµϕ

2
so optimal profits are V a2

4
. The optimal choice

of µ solves the following equation to set g = aµϕ

2
:

1− e−aµ(1+ϕ)

=
aµ(1+ϕ)

2
(8)

This equation is solved by aµ(1+ϕ) ≈ 1.6. As the search utility parameter a increases,

the profit-maximizing seller makes the treasure hunt more difficult (reduces µ), so

the term aµ(1+ϕ) stays constant. Furthermore, if we define q∗ as the probability of a

given customer finding treasure when (8) is satisfied, we have q∗ = 1 − e−µa ≈ 0.80

and the optimal value of µ is 2q∗

a
.

The appendix proves the following proposition, which formalizes these results.

Proposition 2. If V is sufficiently small, the firm sets p = V and sets µ such that

(8) is satisfied, which implies µ = 2q∗

a
. The equilibrium probability that a customer

who visits the store finds treasure is q∗ ≈ 0.8.

This optimal strategy attracts visitors to the store based purely on the search

utility of treasure hunting. This strategy arises in equilibrium when products have

low value. In this case, the firm sets price equal to product value and makes the

treasure hunt difficult enough that about 80% of customers who visit the store find a

treasure. This 80% rule holds quite generally, and as long as the marginal utility of

search decreases linearly over time and the number of customers who visit the store is

proportional to expected utility from the treasure hunt, a seller of low-value products

designs its treasure hunt such that about 80% of customers who visit the store find a

treasure.6

6For example, if the unit transportation cost to visit the store is k instead of one, then the number
of customers who visit the store is U

k , so (7) becomes 1
kV (1 − e−µa)

[
a
µ − 1

µ2 (1 − e−µa)
]
, and the

profit-maximizing solution is still µa ≈ 1.6, which implies q = 1− e−µa ≈ 0.80.
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As a real world example to illustrate these findings, suppose a group of college

students spend the day thrift shopping for vintage T-shirts. Their utility from the

shopping experience may be greater than their utility from a T-shirt, and their cost

of time spent driving to the thrift store may be more significant than the price of

a T-shirt. In other words, the benefits and costs of the treasure hunt experience

are sometimes much larger than the benefit and price of the treasure itself. In such

situations, a difficult treasure hunt allows customers to spend time experiencing the

thrill of the hunt.

We now consider the case of products with high value, such as stores selling high-

end vintage items or consignment shops that are selective about which products they

accept for trade-in. As V → ∞, we show the firm sets price low enough that the

probability of finding treasure approaches one. The intuition for this result is that, as

product value and profit margins increase, the firm chooses to set price below product

value in order to attract more foot traffic to the store. As a result, V − p increases,

which causes customers to search longer. As the time customers are willing to search

grows larger, the probability of a given customer finding treasure approaches one.

In this case, the firm chooses µ to maximize customers’ expected search utility.

The firm would like to make the treasure hunt difficult enough that customers have

some expected joy of search, but not so difficult that customers are likely to need

to continue searching after search utility becomes negative. Formally, as q → 1,

expected utility from the treasure hunt approaches U = (V − p)+ a
µ
− 1

µ2 , and profits

approach π = pU . In this case, to solve for the optimal µ, we take the derivative

dU
dµ

= − a
µ2 + 2

µ3 , which equals zero for µ = 2
a
. This value of µ maximizes expected

utility from the treasure hunt and sets U = V − p+ a2

4
. Inserting this value of U into

the profit function pU , we find the optimal price is V
2
+ a2

8
.
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The appendix formally proves these results.7

Proposition 3. As V → ∞, the firm’s optimal strategy lets p → (V
2
+ a2

8
) and

µ → 2
a
. The equilibrium probability that a customer who visits the store finds treasure

approaches one.

This strategy attracts visitors to the store based on both expected utility from

search and expected surplus from purchasing treasure. This strategy arises in

equilibrium when the products have high value. Under this strategy, the optimal

treasure discovery rate satisfies µa → 2, which is a higher treasure discovery rate than

that in the low-value case (where µa ≈ 1.6). That is, for high-value products, the

firm designs an easier treasure hunt. In the low-value case, the firm makes treasure

difficult to discover, and about 20% of customers leave the store without finding

treasure. By contrast, for high-value products, the firm sets price below value, and

the value of the product itself is the primary factor that motivates people to visit

the store. Customers are willing to keep searching long after search utility becomes

negative, and almost everyone who visits the store will find a treasure. In this case,

the firm designs a treasure hunt that is challenging enough to provide some expected

search utility, but still easy enough that people are likely to discover treasure while

their search utility remains positive.

Even for high-value products, the seller does not want to make the treasure hunt

too easy. Based on the optimal treasure discovery rate µ = 2
a
, the expected search

time to find a treasure is a
2
, and a customer’s expected utility from the joy of search is

a2

4
. The seller makes the treasure hunt easy enough that almost everyone who visits

the store finds a treasure, but still difficult enough that search utility is a significant

component of the customer’s expected utility from the treasure hunt.

7This proposition states results as V → ∞. Therefore, instead of a standard Hotelling line with
a unit mass of customers, we let the firm be located at the endpoint of a ray that extends infinitely
in the other direction, which implies the number of customers who visit the store is U for all U ≥ 0.
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Propositions 2 and 3 both imply that the search utility parameter a affects the

firm’s optimal treasure hunt design. We obtain the following corollary.

Corollary 3. For both low-value and high-value products, an increase in the search

utility parameter implies the firm designs a more difficult treasure hunt. That is, the

optimal µ decreases with a for both low V and high V .

If customers enjoy searching for a seller’s products, the firm should create a

challenging treasure hunt to provide customers with search utility. For example,

some thrift shops sort clothes by type, size, and color (Brennan 2023), but other

shops create a more challenging hunt by offering “shelves upon shelves of unsorted

clothes” (Russo 2020). Thrift shops can also create a challenging treasure hunt by

accepting a wide range of donations, so shoppers need to search through a variety of

products to find treasures. For example, Goodwill stores accept donations of most

items that are in good enough condition to sell without needing repairs (Hadero 2021),

whereas other thrift sellers like Buffalo Exchange and ThreadUp create a somewhat

easier treasure hunt because they are more selective about which products they sell

(Raynor 2017).

We have derived closed-form results for the seller’s profit-maximizing strategy

given low and high values of V . To illustrate results for these values and also for

intermediate levels of product value, we now present a numerical example. We solve

for the seller’s optimal strategy for a = 1 and V ∈ [0, 1.5]. For each value of V , we

compute expected profits over a grid of possible values of µ and p and select the (µ, p)

pair that maximizes profits.
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Figure 3. Treasure discovery rate
and product price that maximize profits

Figure 3 presents the optimal µ and p as a function of V . As stated in

Proposition 2, for low values of V , the firm sets µ = 1.6 and p = V , so the utility

of the treasure hunt comes entirely from the joy of search. After V is greater than

approximately 0.31, the firm begins increasing µ and setting p < V , so the utility

of the treasure hunt comes partly from the value of the product itself. As stated in

Proposition 3, for large V , µ → 2 and p → V
2
+ 1

8
.

As V grows large enough that the firm sets price below product value, the firm

also begins increasing the treasure discovery rate. This result occurs because a higher

treasure value (V − p) implies the treasure discovery rate has a larger impact on

customers’ expected utility from finding treasure. However, for V = 0.95, the optimal

treasure discovery rate is µ = 2.2, and as V increases further, µ declines. As µ affects

both foot traffic and the probability of finding treasure, the firm sets the treasure
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discovery rate above the level that maximizes foot traffic in order to increase the

probability that a customer finds treasure. As V grows very large, the probability of

finding treasure approaches one as customers are willing to search longer because of

the value of the treasure itself. Therefore, the firm’s strategy converges to value of µ

that maximizes foot traffic, that is, µ = 2. Thus, the optimal µ first increases and

then decreases with V .

5 Model Extensions

5.1 Customer Search for Price Information

Our main model allows customers to observe price before they decide whether to

travel to the store. For example, the firm may advertise its prices, or customers may

have learned the price of each type of good based on previous visits to the store.

Therefore, the firm can set price below value to help provide an incentive to travel to

the store.

We now extend the model to study the case in which customers learn the price of

a product only after they search and observe the price tag on a particular item. In

this case, customers rationally expect the firm to set price to extract the full value of

the product. We continue to allow customers to observe the treasure discovery rate

before they visit the store, for example, based on online reviews or store reputation.

The appendix formally proves this result.

Proposition 4. If customers observe µ before visiting the store but observe p only

after inspecting a given product, the firm sets p = V and µ = 2q∗

a
for all values of V .

As an intermediate case, if customers learn price after traveling to the store but

before searching for treasure, the firm sets price equal to value for larger product
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values than in the main model, but still sets price below value for sufficiently high

product value to provide an incentive to search longer. Among these possible timing

set-ups, profits are weakly greater if customers learn price before visiting the store

than for the other possible set-ups, as the firm can then commit to a low price to

provide an incentive to visit the store.

Our results imply profits are maximized if the store informs customers about

prices before they travel to the store. Thus, the store creates a treasure hunt that

allows customers to search for a product with good fit, but the store does not want to

require customers to search for price information. In practice, many thrift shops have

signs announcing the price of each type of product they sell (see the appendix for an

example). However, some of the basic insights of our model still hold if customers

learn price only after they find treasure, in which case customers visit the thrift shop

for the thrill of the hunt.

5.2 Maximizing Foot Traffic

We now consider the alternative objective of designing a treasure hunt to maximize

foot traffic to the store.

In our model, the number of customers who visit the store is equal to the expected

utility from the treasure hunt. Therefore, a seller may want to maximize customers’

expected utility if its goal is to build foot traffic to its store to cross-sell other products.

For example, Costco selects some products as treasure hunt items, which are hidden

throughout the store, in order to attract customers who then buy other items (Wahba

2024). The results in this section illustrate that a difficult treasure hunt can help

accomplish the goal of maximizing foot traffic.

If the firm wants to maximize customers’ utility from the treasure hunt, it should

set price to the minimum acceptable level, for example, equal to the marginal cost
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of the product. In this extension, we take price as given and focus on the optimal

treasure discovery rate. For a given price, the firm makes treasure more difficult to

find if its goal is to maximize expected utility rather than profits. Formally, profits

are given by pUq, and the probability q of finding treasure increases with µ. A firm

that maximizes profits considers the effect of µ on both U and q, whereas a firm that

maximizes utility considers on the effect on U .

The appendix formally proves this result.

Proposition 5. For a given product price, the firm makes treasure harder to find

(sets a lower µ) if its goal is to maximize foot traffic rather than profits from selling

treasure.

We now present numerical examples to illustrate how the ease of finding treasure

affects expected utility. We compare results for treasures with low versus high value,

with the search utility parameter set to α = 1.

Figure 4 presents results for a treasure with relatively low value (V − p = 0.2).

As the treasure becomes easier to find (µ increases), the expected utility from the

joy of search decreases because the customer expects to find the treasure faster and

therefore derives less total pleasure from the search process. However, an increase in

µ increases the equilibrium probability of finding the treasure, so the expected utility

from finding the treasure increases. For this low-value treasure, the effect of µ on

search utility is more significant than its effect on the utility from finding treasure,

and the total expected utility from the treasure hunt is greatest if the treasure is

difficult to find, that is, if µ is low.

In particular, for the example in Figure 4, the expected utility from the treasure

hunt is maximized when µ = 0.49. For this value of µ, the customer’s equilibrium

probability of finding the treasure is q = 1 − e−0.49(1+0.49∗0.2) = 0.42. For this low-

value treasure, the expected total utility the customer derives from the treasure hunt
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is greatest when the treasure is difficult to find so she only has a 42% chance of finding

the treasure before she stops searching. This challenging treasure hunt provides the

customer with high expected utility from search.

Figure 5 presents results for a treasure with higher value (V − p = 0.5). For this

high-value treasure, the total expected utility from the treasure hunt is greatest if

the treasure is easier to find, that is, if µ is high. In particular, for this example,

the expected utility from the treasure hunt is maximized when µ = 1.74. For this

value of µ, the customer’s equilibrium probability of finding the treasure is q =

1− e−1.74(1+1.74∗0.5) = 0.96. The expected total utility the customer derives from the

treasure hunt is greatest if the treasure is easy enough to find so she has a 96% chance

of finding the treasure before she stops searching. This easier treasure hunt provides

the customer with some expected utility from search, but the main source of utility

is from finding the treasure itself.

For a Poisson process with arrival rate µ, the expected time until the first arrival

is 1
µ
. If the time units are hours, for the numerical example in Figure 4, expected

utility from the treasure hunt is greatest if it would take an average of 1
0.49

= 2.04

hours or about 122 minutes to find a treasure. For such a difficult treasure hunt,

the customer has a high probability of stopping search before she finds treasure. By

contrast, for the example in Figure 5, expected utility is greatest if it would take an

average of 1
1.74

= 0.57 hours or about 34 minutes to find a treasure, and the customer

is very likely to find treasure before she stops searching.
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Figure 4. Utility from hunting for low-value treasure (V − p = 0.2; a = 1)

Figure 5. Utility from hunting for high-value treasure (V − p = 0.5; a = 1)
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5.3 Customers Who Do Not Enjoy Search

Babin et al. (1994) find that some customers participate in hedonic shopping and

enjoy long shopping trips, whereas other customers prefer to find a product that

meets their needs as quickly as possible. We now extend the main model to allow for

a segment of customers who do not enjoy search.

A fraction γ of customers have the same instantaneous search utility as in the

main model, that is, s(t) = a − t. The remaining fraction (1 − γ) have no positive

search utility and experience only search costs, so their instantaneous search utility

is ŝ (t) = −t. Both customer types are uniformly distributed along the Hotelling line,

and we let 0 < γ < 1.

For small V , customers who do not enjoy search have little reason to visit the

store because they derive no utility from search and low utility from the product even

if its price approaches zero. In this case, the firm’s optimal strategy is to serve only

customers who do enjoy search and set the same price and treasure discover rate as

in the main model, that is, p = V and µ = 2q∗

a
.

For large V , both customer types visit the store in equilibrium, motivated by the

value of the product itself. The firm’s optimal strategy balances the preferences of

these two customer segments. Customers who enjoy search prefer a somewhat difficult

treasure hunt so they derive search utility, whereas customers who do not enjoy search

prefer an easy treasure hunt so they avoid search costs. We show that the optimal

treasure discover rate is µ = 2
γa
. The firm makes treasure more difficult to find if

there is a large fraction γ of customers who enjoy search and if these customers have

high initial utility a from search.

The following proposition states these results formally.

Proposition 6. If V is sufficiently small, the firm sets p = V and µ = 2q∗

a
, and it

serves only customers who enjoy search. As V → ∞, the firm serves both customer
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types, and sets p →
[
V
2
+ (γa)2

8

]
and µ → 2

γa
.

For low-value products, the firm sets price equal to product value and serves only

customers who enjoy search. Consistent with this theoretical finding, real world thrift

stores appeal to Gen Z, who have free time for shopping and high utility from search

(Huber 2020, Pandey 2021, Sicurella 2021).

For high-value products, the firm serves both customer types. In this case, given

that some customers do not enjoy search, the firm to set a higher treasure discovery

rate and a lower price than in the main model.

6 Conclusion

We develop a model in which customers enjoy searching for a product to purchase, and

this search utility declines over time during the search process. A profit-maximizing

seller decides its price and treasure discovery rate and intentionally makes products

somewhat difficult to find so that customers derive joy from search. For a low-value

product, the firm sets its price equal to product value and makes the treasure hunt

difficult enough that some customers leave the store without finding treasure. The joy

of search motivates customers to visit the store and participate in the treasure hunt.

For a high-value product, the firm sets price below product value, and customers visit

the store partly for the joy of search and partly for the value of the product itself. We

also study the objective of maximizing utility from the treasure hunt, and we extend

the model to allow for competition between a thrift store and a traditional retailer

and to allow for a segment of customers who do not enjoy search.

Our model helps explain why some high-income customers make frequent visits

to thrift stores and spend hours searching for used clothing items to purchase. These

customers enjoy the search process and consider it a valuable form of entertainment.
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Thrift stores design their retail experience to generate high search utility and ensure

customers spend significant time in the store hunting through clothes that are

unsorted on attributes like brand, size, and style. These stores have raised prices to

capture some of the value of the treasure hunt experience they offer, and customers

visit the thrift stores because they derive particularly high search utility from hunting

for an unexpected treasure among racks of used clothes.

Future research could extend our model in several ways. If customers derive

more search utility or more value if the product is rare, then making treasure

difficult to discover further enhances the utility customers derive from a treasure

hunt by reducing the number of people who discover treasure. Future research

could explicitly incorporate this effect of product uniqueness into the model. It

would also be interesting to study how search utility in the used clothing market

affects the incentives of makers of new clothes, including their decisions about the

quality and quantity of clothes to produce, and to explore the effects of new and used

clothing sales on environmental sustainability. Future research could also incorporate

positive search utility into traditional search models in which customers visit multiple

stores while searching for a product, and could explore how the joy of search affects

equilibrium outcomes in these models.
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Appendix A: Treasure Hunt Examples

Thrift Store Tables with Unsorted Clothes

Retrieved July 13, 2024, https://www.yelp.com/biz/the-collection-by-casa-teresa-orange-2
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Thrift Store with Posted Prices, and Partially Sorted Clothes

Photos taken June 19, 2024, Salvation Army in Orange, CA
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Weekly Treasure Hunt Items at Costco

Retrieved August 11, 2024

https://www.reddit.com/r/Costco/comments/ye4kea/costco_opening_in_my_country_tomorrow_can_someone/

https://emailtuna.com/costco.com/44109
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Thrifted Clothing Online Platform

Retrieved July 13, 2024, https://blog.poshmark.com/wp-content/uploads/2013/10/feed-poshmark.png
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Appendix B: Proofs

Proof of Lemma 1

We first show it cannot be optimal to stop search at time t̂ if treasure has not yet

been discovered, where t̂ < t∗ = a+ µ(V − p). We show that at such time t̂ it would

be optimal to continue searching for an additional length of time ϵ. As ϵ → 0, the

search utility of this continued search converges to (a − t̂)ϵ and the probability of

discovering treasure during this additional search period converges to µϵ. Therefore,

continued search generates positive expected utility if a − t̂ + µ(V − p) > 0, which

is true for any t̂ < t∗. Similarly, it cannot be optimal to continue search until any

stopping time t̂ that is greater than t∗. For such a t̂, the customer could increase

expected utility by stopping search sooner at time t̂− ϵ. Thus, the optimal stopping

time cannot be less than or greater than t∗. QED

Proof of Proposition 1

For stopping time t∗, the probability of discovering treasure is 1−e−µt∗ , so a customer’s

expected utility from discovering and buying treasure is (1− e−µt∗)(V − p).

For all t ∈ [0, t∗], the probability that the customer continues searching until

time t is e−µt, and instantaneous search utility is a − t. Therefore, expected search

utility from the treasure hunt is
∫ t∗

t=0
e−µt(a− t)dt. We first compute the search utility

component
∫ t∗

t=0
ae−µtdt, which is − a

µ
(e−µt∗ − e0) = a

µ
(1− e−µt∗).

Next, note the antiderivative of −te−µt is t
µ
e−µt + 1

µ2 e
−µt + C. Therefore, we can

compute the search cost component
∫ t∗

t=0
−te−µtdt, which is t∗

µ
e−µt∗ + 1

µ2 e
−µt∗ − 1

µ2 .

Adding all three components, we have the total expected utility of the treasure

hunt: (1− e−µt∗)(V − p) + a
µ
(1− e−µt∗)− 1

µ2 (1− e−µt∗ − µt∗e−µt∗). QED
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Proof of Corollary 1

The derivative of U with respect to V − p is 1− e−µt∗ , and the derivative of U with

respect to a is 1
µ
(1−e−µt∗). Both of these derivatives are strictly positive, so expected

utility increases with V−p and a. The numerical examples in section 5.2 illustrate that

U can either increase or decrease with µ. Furthermore, customers choose stopping

time t∗ to maximize expected utility U . Therefore, the envelope theorem implies we

can perform comparative statics of U on model parameters while holding t∗ constant,

as the effect of each parameter on the optimal t∗ has only a second order effect on U .

QED

Proof of Corollary 2

Differentiating (3), we find the derivative of utility with respect to the treasure

discovery rate:

dU

dµ
= t∗e−µt∗

(
V − p+

a

µ
− 2

µ2
− t∗

µ

)
+ (1− e−µt∗)

(
−a

µ2
+

2

µ3

)
(9)

As µ → ∞, the entire first expression has order e−µt∗ , whereas the terms in the

second expression have order 1
µ2 and 1

µ3 , respectively. Therefore, (9) converges to

−a
µ2 , which is negative. Thus, for large µ, we have dU

dµ
< 0, which implies U must be

maximized by a finite value of µ. In particular, the only possible optimal solutions

are either µ = 0 or a value of µ that solves the first-order-condition by setting (9)

equal to zero. QED

Proof of Proposition 2

We first solve for the optimal µ given p = V , and we then show it is in fact optimal

to set p = V if product value is sufficiently low.
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For p = V , we have t∗ = a, and expected utility is:

U =
a

µ
(1− e−µa)− 1

µ2
(1− e−µa − µae−µa) =

a

µ
− 1

µ2
(1− e−µa) (10)

The profit function is:

π = pUq = V

[
a

µ
− 1

µ2
(1− e−µa)

]
(1− e−µa) (11)

Making the substitution g(µ) = 1−e−µa

µ
, this profit function becomes V (ag − g2),

which is maximized by setting g = a
2
, which implies π = V a2

4
. We will show this

equation has a unique solution that maximizes profits. As µ → 0, the numerator and

denominator of g both approach zero. Furthermore, the derivative of the numerator

with respect to µ approaches a and the derivative of the denominator approaches one.

Therefore, as µ → 0, we have g → a, which implies π → 0. Furthermore, as µ → ∞,

we have g → 0, which also implies π → 0.

To see that a unique value of µ maximizes profits, note the condition g = a
2
implies

1 − e−µa − µa
2

= 0. Setting µ = 0 solves this equation, but as noted above, µ = 0

cannot be the profit-maximizing solution. Furthermore, d2

dµ2 (1−e−µa− µa
2
) = −a2e−µa,

so this function is strictly concave and can have at most one other zero, which must

be the optimal solution. We find numerically that this solution is µa ≈ 1.6.

We now show that the firm sets p = V if V is sufficiently small. The partial

derivative of profits with respect to price is Uq + p[dU
dp
q+ dq

dp
U ]. Taking derivatives of

the terms in brackets, we have dU
dp

= −(1 − e−µt∗) = −q and dq
dp

= −µ2e−µt∗ , which

implies:

∂π

∂p
= Uq − p

[
q2 + µ2e−µt∗U

]
(12)

We now derive a lower bound on (12), which we use to derive a sufficient condition
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for this derivative to be positive for all p ∈ [0, V ]. We have shown above that, for

p = V , the firm can choose µ such that Uq = a2

4
. Reducing p increases both U and q,

so for all p ≤ V the firm’s optimal choice of µ implies Uq ≥ a2

4
. To derive bounds on

the other terms, note p ≤ V and q2 ≤ 1. Furthermore, the term µ2e−µt∗ ≤ µ2e−µa,

and the latter expression is maximized by setting µ = 2
a
, so an upper bound on

this expression is 4
a2
e−2. The expected utility is bounded by U ≤ V + a2

2
, which is

the utility the customer would derive from buying the treasure at price zero after

searching exactly until time a. Inserting these bounds into (12), we have:

∂π

∂p
≥ a2

4
− V

[
1 +

4

a2
e−2V + 2e−2

]
(13)

If V is small enough to make (13) positive, the derivative of profits with respect

to price is positive for all p ∈ [0, V ], so the firm sets p = V to maximize profits. For

a = 1, (13) is positive if V ≤ 0.18. Note this condition is sufficient to guarantee

p = V in equilibrium but stronger than necessary. A necessary condition is that (12)

is positive at the equilibrium value of all variables, that is, Uq = a2

4
, p = V , q = q∗,

t∗ = a, and µ = 2q∗

a
. Inserting these values into (12) and simplifying the resulting

expression, we find a necessary condition for the firm to set p = V in equilibrium is

a2

4
− V q∗ ≥ 0. For a = 1, this condition holds if V ≤ 0.31. QED

Proof of Proposition 3

We first show that, as V → ∞, the firm’s optimal price must satisfy (V − p) → ∞.

Based on this result, we then compute the optimal µ, which we use to compute the

optimal p.

The derivative of profits with respect to price given by (12) can be written as:

∂π

∂p
= U(q − pµ2e−µ(a+µ(V−p)))− pq2 (14)
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In equilibrium, this derivative cannot be negative, or the firm could increase profits

by reducing its price. Furthermore, as p → ∞, this derivative is negative unless the

term µ2e−µ(a+µ(V−p)) approaches zero. One possible solution would be to let (V − p)

stay bounded and let µ → 0, which also implies q → 0. However, we will show

that this proposed strategy cannot be optimal. Taking the derivative of profits with

respect to µ, we have:

∂π

∂µ
= p

[
dU

dµ
q +

dq

dµ
U

]
(15)

As µ → 0, the first term in brackets approaches zero, and the second term approaches

aU . The derivative is positive, and µ → 0 cannot be optimal because the firm could

increase profits by raising µ. Furthermore, letting (V − p) stay bounded and µ → ∞

cannot be the optimal strategy, as that would imply the second term in (14) diverges

to negative infinity while the first term stays bounded, and in any case letting µ → ∞

cannot be optimal as (15) becomes negative for sufficiently large µ. Thus, the only

possible solution is setting price such that (V − p) → ∞, which implies U → ∞ and

the term µ2e−µ(a+µ(V−p)) approaches zero.

We now compute the optimal µ based on (15). We first compute the derivative of

q with respect to µ:

dq

dµ
= (a+ 2µ(V − p))e−µ(a+µ(V−p)) (16)

Because U has order V , the negative exponential term implies as (V − p) → ∞, we

have dq
dµ
U → 0. Taking the derivative of each term in (3) shows that, as (V −p) → ∞,

we have dU
dµ
q → −a

µ2 + 2
µ3 . Thus, the optimal µ satisfies µ → 2

a
, which maximizes Uq.

We now compute the optimal price. As V → ∞, (V −p) → ∞, and µ → 2
a
, profits

approach p(V − p + a2

4
). This profit function is maximized by letting p → V

2
+ a2

8
.

QED
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Proof of Corollary 3

Proposition 2 states that µ = 2q∗
a

for products with low value, and Proposition 3

states that µ → 2
a
for products with high value. In both cases, an increase in a leads

to a proportional decrease in µ, so that µa stays constant. QED

Proof of Proposition 4

After discovering treasure, a customer’s willingness to pay for the treasure is V .

Because customers do not observe price until after they discover the treasure, the

actual price cannot affect their decisions to travel to the store or search, and these

decisions are based on price expectations rather than the actual price. Furthermore, in

equilibrium, expectations must equal the actual price that the firm optimally chooses.

For any given search behavior, the firm’s optimal price is to set p = V to extract the

full value of the product, and customers rationally expect this price. The derivation

of the optimal µ is the same as in the main model for the case of p = V . QED

Proof of Proposition 5

For a given price, Corollary 2 states that utility is maximized by a finite µ. We show

that the firm sets a strictly greater µ if its objective is to maximize profits. We allow

any price that satisfies 0 < p ≤ V , which implies profits are positive.

Let µ∗ denote the largest value of µ that maximizes utility. If there are multiple

optimal solutions, that is, multiple values of µ that maximize utility, then µ∗ generates

the greatest profits among these values and greater profits than any smaller µ because

q increases with µ. Suppose µ∗ is zero. For this treasure discovery rate, q is zero and

profits are zero. Therefore, profits are increased by setting a higher value of µ. If

µ∗ solves the first-order condition for utility-maximization, then for µ = µ∗, we have

dπ
dµ

= p
(
q dU
dµ
+U dq

dµ

)
= p

(
U dq

dµ

)
> 0. The derivative is positive, which implies profits are
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increased by setting a higher value of µ. In both cases, any value of µ that maximizes

profits must be strictly greater than µ∗. QED

Proof of Proposition 6

As in the main model, the utility U for customers who enjoy search is given by (3).

Let Û denote the expected utility from the treasure hunt for customers who do not

enjoy search, which is given by (3) with a = 0. Similarly, the probability q of finding

treasure for customers who enjoy search is given by (2), and the probability of finding

treasure for customers who do not enjoy search is q̂ = 1− e−µ2(V−p).

The firm’s objective is to choose p and µ to maximize π = p[γUq + (1− γ)Û q̂ ].

As V → 0, we have Û → 0 and q̂ → 0, but U and q do not approach zero because

of positive search utility for the segment of customers who enjoy search. Therefore,

the profit function approaches γpUq, which is a constant times the profit function in

the main model, so the optimization problem for this extension is equivalent to the

main model and has the same solution as in Proposition 2 for sufficiently small V .

This solution sets p = V , which implies only customers who enjoy search visit the

store.

As V grows large, the same logic as in the proof of Proposition 3 implies the

firm sets price such that (V − p) → ∞, and we have q → 1 and q̂ → 1. The

number of units of treasure sold then approaches γU +(1− γ)Û = (V − p)+ γa
µ
− 1

µ2 .

Differentiating with respect to µ and solving the first-order condition, we find this

function is maximized by setting µ = 2
γa
. Inserting this value of µ into the profit

function, we have π = p
(
V − p+ (γa)2

4

)
, which is maximized by setting p = V

2
+ (γa)2

8
.

QED
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