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Abstract

Digitisation is increasing the frequency at which retailers can adjust their prices, increas-
ing the importance of being able to identify who it is they are monitoring and responding
to when they make these adjustments. In this paper I develop a general approach for
solving this identification problem. The foundation of the method is a continuous-time,
discrete-game model of a retailer’s strategic decision-making. I derive from this structural
foundation a ‘reduced-form’ expression for the hazard rate of a retailer’s price adjustments
as a function of their competitors’ prices. This hazard rate takes the form of a generalised
linear model. Consequently, its estimation can be combined with l1-norm regularisa-
tion to exploit the consistent model-selection properties of the LASSO and identify the
competitors whose prices define the payoff-relevant states of the retailer. Further, in
implementing the method we can exploit the simplicity and efficiency of standard, highly-
optimised machine learning packages. I demonstrate the method by using 30 months of
minute-to-minute price data to estimate the competitive ties between gasoline stations on
the southern periphery of Sydney, Australia. I find these ties connect all the stations into
a single networked competition structure, which spans several geographical areas that
have previously been treated as separate markets by the local competition authority in its
investigations and merger authorisations.
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1 Introduction

It is becoming clear that it is not just consumers who limit their consideration when faced with
broad product assortments. In product categories with large numbers of substitutable products
or vendors, managers also restrict their attention to narrow subsets of potential competitors
(e.g, Israeli and Anderson, 2023). How then can we identify who it is that managers actually
treat as their competitors, and who thereby influence their strategic decisions?

The prevailing approach to this problem is to estimate a demand system and assume
substitutes compete. However this assumed equivalence may not hold. For one, accurately
estimating substitution patterns between a large number of products is itself a difficult mar-
keting research problem (e.g, J. Q. Li et al., 2015). And even if managers can accurately
identify the products or vendors their customers consider substitutes, they may still restrict
their attention to the closest or most threatening of these. Thus there can exist a wedge be-
tween the substitution patterns captured by a demand system and who managers are actually
considering and treating as their competitors. To the extent that such a wedge does exist, it is
the latter that influences and constrains managers’ strategic decisions.

Therefore, in this paper, I propose a method for identifying who it is managers are actually
treating as their competitors when they are making pricing decisions. The crux of the method
is to exploit information encoded in the timing of managers’ price-adjustment decisions about
the competitors to whom they are responding when they adjust their prices. The primary
advantage of the method is that – to the extent managers restrict their attention when setting
prices – it identifies who managers do treat as their competitors, not who they ought to treat as
competitors given the substitution patterns of their customers. A secondary advantage is that
the method mainly requires high-frequency price data for all potential competitors. Prices
are publicly observed and thus often more easily obtained than the sales data that would be
required for estimating a demand system, especially in online markets.

The method I propose combines methods developed in computational neuroscience for the
analogous problem of identifying connections between neurons from the timing of their firings
(e.g, S. Kim et al., 2011; Sheikhattar et al., 2018; Truccolo et al., 2005) with modern model-
selection tools from machine learning (e.g, Bühlmann and van de Geer, 2011). In addition,
I found the method in an economic model of the timing of pricing decisions to clarify the
behavioural assumptions underpinning econometric identification. This theoretical foundation
is provided by a structural model of retail competition as a discrete game in continuous time
(Arcidiacono et al., 2016; Doraszelski & Judd, 2012). In such a model, decision points for a
manager randomly arrive in continuous time, representing the occasions at which the manager
attends to the current optimality of their prices vis-à-vis their competitors. The manager then
decides whether to adjust prices at these points based upon a Markovian strategy (Ericson &
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Pakes, 1995). Such a decision process makes price adjustments a conditional Markov process,
with price adjustments timings characterised by a point process conditioning on the current
prices of competitors. The hazard rate of this point process is the objective of estimation, and
the connection to the computational neuroscience methods.

Following the computational neuroscience literature, I derive a discrete time expression for
the price-adjustment hazard rate, and show that the likelihood of observing price adjustments
in discrete intervals of time under this hazard rate is equivalent to the likelihood of a gener-
alised linear model (‘GLM’) with Bernoulli distribution and logistic link function (McCullagh &
Nelder, 1989). That is, I derive a reduced-form GLM expression for the hazard rate that can be
estimated using optimised, off-the-shelf machine learning packages. This derivation reduces
the problem of identifying the competitors whose prices are conditioning the price-adjustment
point process to a model selection problem. Consequently, by incorporating l1-norm regu-
larisation into the GLM estimation, we can exploit the consistent model selection properties
of the least absolute shrinkage and selection operator (‘LASSO’) (Meinshausen & Bühlmann,
2006; Zhao & Yu, 2006) to identify the competitors influencing a manager’s price-adjustment
decisions.

Having derived this method for identifying competitors, I demonstrate it with an applica-
tion to gasoline stations in Australia. This setting is well suited to testing the method for at
least three reasons. First, the setting is relatively simple, with vendors differentiated primarily
by their location and brand. This simplicity makes it easier to select potential competitors to
feed into the estimation, and to ‘sense check’ results. Second, this is a setting that frequently
sees antitrust reviews of proposed acquisitions and mergers, which would benefit from an ac-
curate characterisation of the competitive relationships mediating price competition. To take
an example of one such review, in 2017 the Australian Competition and Consumer Commission
(i.e, the ‘ACCC’, Australia’s antitrust regulator) blocked a major acquisition of gasoline stations
on the basis it would lessen competition by concentrating local markets, defined by a 3km
radius around acquiree stations in urban areas and 10km in rural area (ACCC, 2018b). This
characterisation of competition presupposes every station within 3km is being treated as a
competitor by the acquiree and constraining their pricing decisions, and that their pricing de-
cisions are entirely independent of any competitive constraints being imposed by the broader
network of stations beyond 3km. Such a presupposition is liable to bias conclusions about the
extent and influence competition, and thus a more accurate characterisation of the setting’s
competitive structure would be valuable.

And third, retail gasoline is a setting with several rich, publicly available pricing datasets
(e.g, Byrne et al., 2018). The data I use in this application comes from the FuelCheck price
monitoring program introduced in 2016 in the Australian state of New South Wales (‘NSW’),
which includes Sydney. The data record both the price of gasoline at the stations of all the
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competing brands in NSW, and the time to the minute at which each station adjusts its price.1
Thus the data are high-frequency enough for estimating the hazard rate of price adjustments.
I combine this retail price data with data recording the wholesale price of gasoline available
in Sydney – which provide a measure of movements in stations’ marginal costs and allows me
to separate competitive price responses from price adjustments due to cost movements – and
measures of the pairwise distance between all stations through the road network.

Applying the method to the FuelCheck price data identifies the sets of competitors whose
prices stations in NSW are monitoring and responding to when they adjust their own prices.
These identified competitor sets uncover several novel features of retail competition in gen-
eral, and gasoline station competition in particular. First, stations do indeed monitor and
respond to a narrow set of competitors – on average just eight competitors, and at most only
16.2 Particularly interesting is the finding that this heterogeneity in the numbers and iden-
tities of monitored competitors exists even for adjacent stations. Second, in addition to this
heterogeneity in the numbers of competitors, there is also asymmetry. That is, one station
monitoring and responding to the prices of another station does not imply the reverse. And
finally, partial overlaps of stations’ heterogeneous competitor sets connect all the stations into
a single market with a networked competitive structure. Moreover, this network spans a wide
geographic area, indirectly connecting stations in Sydney and stations in regional NSW into
the same market. Consequently, the competitive structure looks markedly different to the dis-
tinct local markets defined in the above antitrust example, and stations’ prices are indirectly
affected by a much broader network of competitors than just those with whom they directly
compete. Further, applying appropriate network clustering methods produces a collection of
market-like clusters that are not ex ante obvious, and very different from the ACCC’s 3km and
10km definitions would have produced.

These findings have deep implications. Most notably, they imply that a retail product or
vendor’s price is affected by a broader set of competitors than just those revealed by pairwise
measures of price monitoring, substitution or demand diversion. The networked structure of
competitive interactions revealed by these findings is qualitatively different from the charac-
terisation assumed – even if implicitly so – in most analyses of retail competition. That is,
the characterisation assuming a distinct product category or geographic market, defined by
a set of products or vendors who all directly compete with each other, and only with each

1This comprehensiveness – which allows me to study station-level price responses – provides a substantial
improvement over data used in previous studies of retail gasoline competition and price dynamics. For example,
the recent studies of Byrne (2019), Foros and Steen (2013), and Remer (2012) all use data with daily, station-level
observations, which is itself an improvement relative to earlier studies.

2This finding is consistent with earlier heuristic findings about price monitoring by gasoline stations (Atkinson
et al., 2009), and of recent findings about the price monitoring of competing products by a large online retailer
(Israeli & Anderson, 2023).
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other. Thus, this implication cautions against the accuracy of market shares or concentration
as measures of the competitiveness – or otherwise – of retail markets, and motivates the need
for formal analyses of networked markets. Further, this implication suggests the dynamics
of price competition could be much more complex – and result in more complex equilibrium
pricing patterns – than allowed for by a Bertrand-like characterisation of price competition.
More research is needed to explore these possibilities.

The rest of this paper proceeds as follows. In Section 2 I summarise related literature and
highlight the contributions made by this paper. I then introduce the empirical context and
data used in my application in Section 3, which also provides a concrete example when it
comes to modelling the timing of pricing decisions. I introduce the theoretical foundation in
Section 4 and derive from it a method for identifying the competitors retailers are monitoring
and responding to when adjusting prices. In Section 5 I apply this method to my data and
analyse the results. I conclude in Section 6.

2 Related literature & contributions

Methodologically this paper contributes to the diverse literature devising methods for esti-
mating the competitive structure of markets. In then applying the proposed method to the
retail gasoline industry and uncovering a networked competitive structure, the paper also
contributes to the much younger literature conceptualising competition in terms of networks.

2.1 Competition structure

There is a sizeable literature in marketing proposing approaches for identifying or charac-
terising market structure using data recording consumer actions like purchases and brand
switching (Erdem, 1996; Kannan & Sanchez, 1994; Novak, 1993; Novak & Stangor, 1987;
Shugan, 1987; Urban et al., 1984), click streams and search paths (J. B. Kim et al., 2011; Moe,
2006), consideration (Ringel & Skiera, 2016), or brand engagement (Hyoryung et al., 2017;
Lee & Bradlow, 2011; Netzer et al., 2012; Yang et al., 2021). My notion of competitive structure
differs from much of this literature. In general, this literature is focused on identifying substi-
tution patterns on the demand side of a market to inform brand and product managers about
which entities they should consider their competitors. This paper is focused on identifying
the entities that retailers already believe to be their competitors, and thus whose prices the
retailers are monitoring and responding to when they make strategic pricing decisions. This
set of entities retailers consider their competitors could differ from the competitors implied
by demand substitution for at least two reasons. One, retailers may not be sufficiently aware
of demand drivers to know the identities of all the entities to whom their customers might
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substitute. Indeed, this possibility motivates many of the prescriptive methods introduced in
the marketing literature on market structure. And two, retailers may not monitor and respond
to the prices of all the entities with whom their products are substitutable. Instead, they may
focus on only those entities who represent a sufficiently big threat to their customer base, or
who act as price leaders within their market, making the entity’s prices a ‘sufficient statistic’
for maintaining competitive prices. To the extent that this last reason is true, I am interested
in identifying the competitors to whom retailers respond with their pricing decisions, and thus
the competitive structure mediating the propagation of prices across a market.

The method I propose estimates the competitor sets of retailers – and thus the structure of
retail competition – by estimating the hazard rate of competitive price adjustments from high-
frequency price data and exploiting the consistent model selection properties of the LASSO.
This approach is inspired by methods proposed for the analogous problem of estimating
connections between neurons from spike train data (e.g, S. Kim et al., 2011; Sheikhattar et al.,
2018; Truccolo et al., 2005). The most similar method for estimating competitive structure
of which I am aware is that proposed by J. Li et al. (2018) for estimating price competition
between hotels from price and click-stream data. Their approach also uses model selection
methods to learn the identities of the competitors to which hotels are responding when they
adjust their rates, but differs from the approach I propose by focusing on price levels rather
than the timing of price adjustments. The demand-side data requirements of the approach in
J. Li et al., 2018 also make it difficult to apply the approach to other industry contexts, whereas
the approach I propose primarily uses high-frequency price data, which is common in many
online retail contexts.

In applying my proposed method to identify the competitive structure of a gasoline market
from price data in the absence of demand-side data, I follow the precedent of Chan et al.
(2007), though they take a substantially different approach. Using data from Singaporean
gasoline stations, they specify and estimate an entry model of stations’ locations – as decided
by a welfare maximising Singaporean policy maker – followed by a Nash-in-prices model of
gasoline brand competition.3 They are motivated in the latter of these model specifications
by the institutional fact that station prices are set by a brand-level pricing manager. Stations
prices for the major brands in my setting are also set by brand-level pricing managers (I discuss
these institutional details further in Section 3.1). However, because I observe the to-the-minute
timing of stations’ price adjustments, as compared to the three-wave repeated cross sections
collected by Chan et al. (2007), I am able to specify a model of the timing of price adjustment
decisions at the station level, rather than having to rely on a static equilibrium assumption

3The spatial competition model of gasoline brand pricing decisions is an adaptation of Thomadsen (2005),
who introduces an approach for estimating the structure of price competition between retailers from price and
location data by assuming observed prices are the result of a static equilibrium in Nash-in-prices competition.
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for identification of competitive structure. This distinction in the level at which competitive
decisions are focused also connects this paper to the semi-parametric method of Pinkse et al.
(2002) for distinguishing between global and local decisions, which is demonstrated using
data from American wholesale gasoline markets.

2.2 Networked pricing games

Finally, my application finds that retail gasoline competition has a network structure, with
directed ties between station-nodes representing competitive monitoring and responding to
pricing decisions. This finding contributes to the nascent literaturemodelling price competition
as a game played over a network. While games-on-networks are an established tool for
modelling a range of market interactions – including consumer word-of-mouth (Campbell,
2013), R&D collaborations (Goyal & Moraga-González, 2001), and B2B quantity competition
(Bimpikis et al., 2019) – their use to model price competition is relatively new. Ushchev and
Zenou (2018) introduce the first such model, though my findings are more comparable to the
model introduced in Grice (2023), which micro-founds networked price competition between
differentiated products with a heterogeneous-consideration model of consumer demand. The
current paper adds to this nascent literature by providing empirical evidence for these theorised
networked competitive pricing interactions, as well as a method for recovering this latent
network from data.

3 Institutional background and data

3.1 The NSW retail gasoline industry

To help fix ideas when modelling competitive pricing decisions, and then provide a context
in which to demonstrate my proposed method, I focus on the retail gasoline industry in the
Australian state of New South Wales (‘NSW’), of which Sydney is the capital. At 810 thousand
square-kilometres, NSW is a large area over which to supply gasoline – slightly bigger than
the combined US states of Texas and Oklahoma, and slightly smaller than the combined
European countries of Poland and Ukraine (including Crimea). However 75% of NSW’s 8
million residents live in Sydney and the surrounding extra-urban area extending north to
south between the satellite cities of Newcastle and Wollongong.

Fuel retailing Fuel is sold to NSWmotorists at roadside service stations. Most stations sell a
range of fuel types. These types generally include unleaded petroleum (‘gasoline’) of varying
octane ratings, diesel, and potentially liquid petroleum gas (‘LPG’). The octane rating of
petroleum refers to its ability to withstand compression before combusting, which can reduce
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wear and increase the potential power output of an engine. Thus petroleum is considered
more premium the higher its octane rating. The lowest octane petroleum offered by stations
has a rating of 91 (‘U91’), and the premium petroleums offered have ratings 95 and 98 (‘P95’
and ‘P98’). In addition, many stations sell a 90% petroleum - 10% ethanol blend (‘E10’), which
is considered a close substitute for U91.4 More generally, a motorist can substitute between
any of the petroleums at the point of purchase, but cannot substitute between petroleum,
diesel and LPG, which all require different engine technologies to be used as fuel.

The majority of service stations are branded under one of eight major brands operating
in NSW. These major brands are the oil majors BP and Shell, Caltex, which is a retail brand
of Chevron, the major Australian supermarkets Woolworths and Coles, the convenience store
7-Eleven, and the domestic fuel brands United and Metro. Branded stations may be owned
and operated by their brand (‘company-owned, company-operated’ or ‘COCO’ stations), or
owned and operated by a second party under a franchise or other licensing agreement with
the brand (‘dealer-owned, dealer-operated’ or ‘DODO’ stations). Whether a particular station
is a COCO or DODO is generally not observable.5 In addition, stations’ brands may differ
from that of the fuel they sell. In particular, over the period studied in this paper, Woolworths
stations sell Caltex-branded fuel and Coles stations sell Shell-branded fuels. Finally, the vast
majority of stations operate a convenience store alongside their fuel pumps, and a minority
offer other services, such as garage services. Note that these convenience offerings are distinct
to the station and its brand – Australia does not have the population density to support larger
motorway services with separately-branded fast food restaurants as are common in Europe
and North America. Figure 1 depicts a typical highway service station in NSW.

Fuel wholesaling The wholesale supply of fuel to stations in NSW is from import terminals,
which are located in Sydney and Newcastle and operated by half a dozen competing companies
(ACIL-Tasman, 2009).6 Fuel is supplied in bulk from these terminals to any certified purchaser
at a listed terminal gate price (‘TGP’), which is updated daily and closely tracks the Singapore

4The sale of E10 by service stations has been mandated in NSW since 2017. Service stations fall under the
mandate if they offer three or more types of petroleum or diesel, or if they sell a sizeable volume of either petroleum
or diesel. The mandate has applied to these stations since either January or April 2017, depending on the station’s
owner. See www.nsw.gov.au/driving-boating-and-transport/e10-fuel/e10-history. Roughly 1,400 stations in the
FuelCheck dataset sell E10.

5One prominent exception is BP’s COCO stations, which in 2017 were identified in a public filing during a
review of a proposed merger (ACCC, 2017). While the distinction between COCOs and DODOs does not feature
in this paper, it is part of a plan for future work to analyse the impact of this distinction on price setting.

6Stations located in the north of NSW may also be supplied from import terminals located across the NSW-
Queensland border in Brisbane. NSW has supplied all its gasoline demand with imports since the Clyde and
Kurnell oil refineries in Sydney were closed and converted to import terminals in 2013 and 2014, which preceded
the period covered by the FuelCheck dataset. Nationally Australia has only four refineries, which supply about
65% of the country’s gasoline demand. The remainder is supplied by imports, primarily from refineries across Asia
via Singapore.
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Figure 1: Coles Express, Wagga Wagga The Coles Express service station on Sturt Highway
in Wagga Wagga, a regional centre south-west of Sydney. The station is typical in its branding,
price display and convenience offering.

MOGAS 95 petroleum price index. While some wholesale customers will purchase bulk fuel
under long-term supply contracts, regulatory analysis of transactions shows paid wholesale
prices vary very little from TGPs (AIP, 2019). Consequently, movements in TGPs provide
a good proxy for movements in stations’ marginal cost of fuel, which differs from the TGP
primarily due to the fixed cost of transporting fuel between terminals and stations.

Station price setting Service stations in NSW are free to change their price at any time.
They display their current fuel prices both at the pump and on a large roadside sign at the
station entrance.7 Conversation with industry participants reveals the major brands employ
brand price managers or pricing teams to centrally set the prices of their COCO stations. These
price managers are responsible for setting prices at all stations in the state, and in some cases
nationally. They do so for each station by reference to a real-time data feed displaying the
current prices of a set of relevant, nearby stations. They refer to these stations as markers.
Conversations with industry participants also suggests the number of markers for a station can
range from one up to roughly a dozen, with the managers for higher-priced brands tending
to monitor fewer markers. Finally, conversations with industry participants reveals one major
brand had partially automated their price setting during the period used in our application,
though not the identity of that brand.

7During the period covered by our data, Australia did not have highway price noticeboards of the sort studied
by Chintagunta and Rossi (2016, 2018).
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Price monitoring programs A notable feature of NSW’s retail gasoline industry is its price
monitoring program, FuelCheck. Launched by the NSW government in July 2016, the program
requires every station in the state to upload price changes to its website as they are made. The
program then makes these prices available to consumers in real time via a website and asso-
ciated smartphone application. Consumers are encouraged to report discrepancies between
the prices in FuelCheck and at stations, and each violation attracts a fine. This crowd-sourced
monitoring provides some guarantee of the timeliness of historical price changes in the Fu-
elCheck database, which is publicly available to researchers.8 A further and stronger guarantee
is provided by the fact that the major brands shared their prices with each other through the
third-party data aggregator Informed Sources prior to the introduction of FuelCheck, and thus
already had in place the systems to automatically upload changes in their stations’ prices.9 I
use the FuelCheck data in this research, and describe it in detail in Section 3.2. An extended
discussion of Australia’s price monitoring programs and the data they generate can be found
in Byrne et al. (2018).

2019 industry developments The NSW retail gasoline industry experienced a period of
relative stability from the introduction of FuelCheck until two major acquisitions in 2019. In
early March 2019, responsibility for setting the retail prices of fuel sold at Coles’ stations was
transferred to Viva Energy, the supplier of Shell-branded fuels to Coles’ stations. Under the
arrangement between Coles and Viva, Viva supplied, branded and priced fuel, while Coles
continues to operate the stations and manage their convenience offerings. Separately, in April
2019, Woolworths sold its stations to the Euro Garages Group, a fuel and convenience retailer
with operations across Europe and North America (ACCC, 2019b).10 It is because of these
changes in the parties responsible for price setting at a large fraction of NSW gasoline stations
that I restrict the sample period for my application in Section 5 to the period preceding March
2019.11

8See the NSW data portal at https://data.nsw.gov.au/data/dataset/fuel-check.
9This data sharing through Informed Sources in part motivated the introduction of FuelCheck. In 2014, the

Australian Competition and Consumer Commission (the ‘ACCC’) commenced legal proceedings against Informed
Sources and the major brands alleging that their sharing of price information contravened Australia’s competition
laws. The ACCC settled these proceedings in late 2015 with the agreement that the brands and Informed Sources
would not share prices unless they make the information available at the same time to consumers (for free) and
third parties (ACCC, 2015). The NSW Government then launched FuelCheck in 2016.

10This sale followed a failed attempt in 2017 to sell its stations to BP. Australia’s antitrust regulator, the
Australian Competition and Consumer Commission (the ‘ACCC’), opposed the merger on the grounds it would
substantially lessen competition in retail gasoline markets across Australia, and the brands abandoned the sale.

11The average price of gasoline at Coles stations decreased in the months following the change in price setting
responsibility, and increased at Woolworths stations (ACCC, 2019a). In future work I hope to explore the impact
of the acquisitions on station pricing suggested by these average price changes.
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3.2 Data

Price data The primary data for this project comes from the FuelCheck program. As well
as requiring stations to upload price changes as they are made, the program provides an API
via which station and pricing managers can automatically upload price changes. This facility
provides confidence the historical price data in the FueCheck database is accurate, at least
for stations managed by the major brands. In particular, it provides the pricing managers
for these brands the ability to simultaneously upload to FuelCheck the price data they were
previously sharing with a third-party data aggregator prior to July 2016.12

The historical prices in the FuelCheck database take the form of station-fuel observations
recording the time and price for every price adjustment by a NSW service station. I focus on
price adjustments for U91. Because U91 and E10 are close to perfect substitutes, I include
E10 price adjustments for those stations selling E10 but not U91.13 I use a 30 month sample
period from 1 September 2016 to 28 February 2019. This sample period is chosen to allow
for a “burn-in” period in which stations adapt to the practice of uploading prices to FuelCheck
after its launch in July 2016, and to precede the major industry changes beginning in March
2019.

Station location data The FuelCheck historical price database also includes a station’s name,
brand and street address for each price adjustment observation. However it does not include
the latitude and longitude associated with stations’ street addresses. I therefore use the
API offered by the FuelCheck program for consumer applications to retrieve the latitude and
longitude of each station’s street address. I then use these location coordinates to create
unique station IDs with which to associate all of a station’s price adjustments.The resulting
dataset contains 2,277 stations, of which 2,135 sell U91 and/or E10.14 Armed with the
coordinates of each station’s location, I am also able to calculate the distance between each
pair of them. Using the OpeRouteService API, I calculate the distance between each pair of
the 2,135 stations in terms of both the driving distance through the road network between

12In August 2014, the ‘ACCC’ commenced legal proceedings against the data aggregator Informed Sources and
five major gasoline station brands – BP, Caltex, Coles, Woolworths and 7-Eleven – alleging they had contravened
Australia’s competition laws by collecting near real-time price data from the brand’s stations and then sharing
that data amongst the brand’s pricing managers. In early December 2015, Coles settled the action by agreeing to
terminate its arrangement with Informed Sources. The action against the remaining four brands was settled by
Australia’s Federal Court later in December 2015 (ACCC, 2015). The four brands continued supplying price data
to Informed Sources, but all parties agreed to also make that data available to consumers.

13Stations selling both fuels rarely adjust the price of one without adjusting the price of the other.
14I code a station as selling a fuel if there are at least 10 recorded price adjustments for that station-fuel

combination during the sample period. I apply this filter to remove data artefacts. While the filter may miscode
some remote stations who rarely adjust prices as not selling unleaded fuels, such remote stations do not feature in
my application.
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them, and the duration of this drive.15

Cost data Finally, I obtain TGP data from the Australian Institute of Petroleum (‘AIP’) to serve
as a proxy for stations’ cost of gasoline. This data records the daily average TGP for gasoline
available at terminals in Sydney. It averages the TGPs posted by the companies managing
Sydney terminals, which are collected and collated by the AIP every weekday morning. We
match this TGP data to the station price data by date, designating 6am as the time of day at
which wholesale fuel becomes available at that day’s TGP.

3.3 Retail gasoline price cycles

An additional feature of NSW’s retail gasoline industry of relevance to my application is
gasoline price cycles. These are coordinated cycles in retail prices characterised by frequent
decreases in retail prices punctuated by substantial, city-wide increases. A handful of markets
globally exhibit gasoline price cycles, and they have been the subject of much research and
regulatory attention.16 Their relevance to my application is that they generate substantial,
endogenous variation in retail prices – as competition between stations brings prices close to
costs, a substantial increase occurs that restarts the process of competitive price adjustment.
In this section I use the FuelCheck data to present the key, relevant features of these price
cycles.

Retail vs. wholesale dynamics: An example of these price cycles is depicted in Figure 2.
The dashed black line plots the U91 price of a station in the outer Sydney suburb of Narellan.
The solid grey line plots the average TGP in Sydney. Roughly every month, when the station’s
price approaches or reaches the TGP, the station increases its price by 20 to 30 cents per litre
within a single day. This action is referred to in the industry as a ‘restoration’ of the station’s
price. Following the restoration, the station maintains its price at the higher level for up to
a week, before adjusting its price downwards every few days until the next restoration. This
longer period between the peak and trough of the cycle is referred to as the ‘discounting’ or
‘undercutting’ phase of the cycle.

15See the OpenRouteService documentation at https://openrouteservice.org/.
16In particular, gasoline price cycles have recently been noted in Australia’s five major cities and their surround-

ing satellite cities; the Canadian cities Calgary, Montreal and Quebec; the US cities Chicago and Indianapolis; and
in some locations in Norway (ACCC, 2018a). Researchers have also previously studied price cycles in Australian
cities (Byrne & de Roos, 2019; Wang, 2009), multiple cities in Canada (Atkinson, 2009; Eckert & West, 2004; Noel,
2007a, 2007b), the Midwestern states of the US (Doyle et al., 2010; Lewis, 2009; Zimmerman et al., 2013) and, in
the early 1970s, California (Castanias & Johnson, 1993), and Norway (Foros & Steen, 2013)
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Figure 2: Gasoline price cycles Six months of U91 prices from September 2017 through
February 2018 for the BP station located in Narellan, an outer-suburb of Sydney.

Coordination across stations: The coordination of price cycles across stations can be seen
in Figure 3. The figure plots the U91 prices of four stations – the BP station from Figure 2
and a nearby Woolworths station, and two other neighbouring BP and Woolworths stations
half an hour’s drive north in Western Sydney. All four stations have highly correlated prices
despite their dispersed locations. They frequently restore their prices on the same day, and
adjust prices downward at a similar rate during the undercutting phase. This coordination
in the timing of restorations and undercutting phases is representative of stations in Sydney,
which all restore their prices within several days of each other.

Figure 3 also shows how station prices are more closely coordinated for neighbouring
stations, even if all four stations have prices following the same cyclical trend. The BP and
Woolworths stations in Narellan – whose prices are plotted in black and dark violet – restore
their prices on the same day and to the same level in each of the plotted restorations. They
also adjust their prices at very similar times throughout the undercutting phase, and maintain
a relatively stable margin between their prices, though the Woolworths station discounts its
price more aggressively at the trough of the cycle. Compare this intra-location coordination
to the similarity of each of these two stations’ prices to their corresponding brand station in
Western Sydney. For both brands, neither the timing of price adjustments nor the stability
of the cross-station margin is as coordinated for stations within brand as for stations within
location. Thus the coordination through the undercutting phase is more likely the result of
competitive price monitoring and response than any coordinated price setting by a common
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Figure 3: Coordination of price cycles (Right) Six months of U91 prices from September 2017
through February 2018 for four stations with price cycles located in Sydney. (Left) Locations
of stations. Two stations are located in the south-western suburb of Narellan, including the
BP station from Figure 2. The other two stations are located in the Cabramatta area of West
Sydney. Both locations include a station of the BP and Woolworths brands.

price manager.

Cross-sectional variation: Not all stations’ prices cycle with the same robustness as the
prices of the stations in Figure 3. Figure 4 illustrates the variation in stations’ price dynamics
across NSW. Six months of U91 prices are plotted for four BP stations south of Sydney. The
first is the BP station in Narellan, whose cyclical prices are the focus of Figure 2. These prices
are compared to those of the BP stations 25 minutes drive south along the Old Hume Highway
in Picton, 40 minutes drive south in Bargo, and an hour drive south in Mittagong.17 The prices
in Figure 4 illustrate the primary feature by which price dynamics vary across stations: price
stickiness. While the stations in Picton and Bargo adjust their prices downwards during the
undercutting phase of the price cycle, they do not do so with the frequency of the station in
Narellan. As result, they do not discount their prices to as thin a margin at the trough of the
cycle before the next restoration.

The BP station in Mittagong displays the sticky-price extreme of cost-based or constant-
markup pricing. It rarely adjusts its price –on average three times every two months. However,
when it does, it often raises its price at the same time as a restoration by the cycling stations.
This coordination implies its pricing is not entirely independent of that of the other stations.
Further support for this implication can also be seen in the Mittagong station raising its price
during a restoration to the level to which the other stations are restoring their prices, as in

17The inner regional towns of Picton and Bargo, with populations in 2016 of 4.8 and 4.4 thousand people, are
part of a cluster of towns in the MacArthur region south-west of Sydney. Mittagong, with a 2016 population of
six thousand, is located in the Southern Highlands region of NSW in Australia’s Great Dividing Range. All four of
these stations are included in the sample of stations used in my application in Section 5.
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Figure 4: Variability in price dynamics (Right) Six months of U91 prices from September
2017 through February 2018 for four BP stations located south of Sydney. (Left) Locations
of stations, from the BP station from Figure 2 in the outer-Sydney suburb of Narellan, down
through the inner regional towns of Picton and Bargo on the Old Hume Highway, to the Inner
regional town of Mittagong in the Southern Highlands.

December 2017, and in the Bargo and Picton stations temporarily increasing their prices to
the level of the Mittagong station in February 2018.

Figure 4 also illustrates how price stickiness increases with the distance of stations from
central Sydney. The prices of the BP station in Bargo, which is marginally more regional than
Picton, exhibit slightly more stickiness throughout the price cycle than the prices of the Picton
station. And the prices of the Mittagong station – which is connected to Sydney by only the
Hume Motorway seen in Figure 4 and indirectly via the Macquarie Pass from the southern
satellite city of Wollongong to the east – exhibit substantially more stickiness. The progressive
increase in price stickiness exhibited by these four BP stations for the southern periphery of
Sydney is representative of the variation we observe across stations on Sydney’s western and
northern peripheries.

4 A method for learning the identities of competitors

The goal of this section is to derive a method for recovering the set of competitors a retailer is
monitoring and responding to when adjusting their prices. The institutional details on station
price setting summarised in Section 3 imply that this goal is equivalent to recovering the sets
of “markers” whose prices brand price managers monitor and use when adjusting their own
station’s prices. Therefore, my approach is to treat stations’ marker sets as latent objects upon
which the pricing decisions generating my data depend. Thus, just as demand models recover
consumer preferences from purchase data (e.g, Guadagni and Little, 1983), and models of
market entry recover firms’ profit expectations from store opening data (e.g, Vitorino, 2012),
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the method I derive will recover marker sets from the timing of price adjustments in the
FuelCheck data.

I derive the method from a structural model of retail pricing decisions. The purpose and
benefit of this structural foundation is to make explicit the assumptions on behaviour implicit
in subsequent statistical assumptions and results. Because there is little economic theory
characterising the decision of when to change prices to guide this modelling, I follow the
structural dynamic games literature by modelling the pricing problem of a pricing manager
as a strategic decision to be made at decision points arriving stochastically in continuous time
(Arcidiacono et al., 2016; Doraszelski & Judd, 2012). These decision points model the reality
that a pricing manager cannot continuously monitor the market conditions for all products
or retail locations (e.g, stations) in their portfolio, but at any point in time must necessarily
attend to one at the exclusion of others.

From this structural model of pricing, I derive the hazard rate characterising the times
at which a station chooses to adjust its price. This reduced-form expression combines the
arrival rate of the station’s decision points with the pricing rule by which it decides whether
its price needs adjusting. Thus the expression characterises the functional dependence of the
probability a manager adjusts their price at a point in time on the observed market conditions
of the retailer at that time – including the prices of its competitors, as well as costs and demand
conditions.

I next derive a discrete time analogue for this continuous time hazard rate. This analogue
defines a likelihood of observing price-adjustment timings in discrete periods of time that is
equivalent to the likelihood of those observations under a generalised linear model (‘GLM’).
As a result, estimating the mapping from a retailer’s market conditions to the timings of its
observed price adjustments can exploit existingmethods and optimised software for estimating
GLMs.

However, while I have data recording station prices, and proxies for costs and demand, I
do not know which stations are the markers whose prices enter into a manager’s pricing rule,
nor the form of the pricing rule mapping the prices of those markers into a price adjustment
decision. I address this challenge with two additional elements. First, I exploit the fact a
manager’s pricing rule is a mapping from a partition of current market conditions into a 0-1
decision about whether to adjust prices to propose a linear expansion of market conditions
forming possible boundaries for this partition. That is, I show we can construct a (potentially
large) set of binary variables describing possible combinations of markers and pricing rules,
which will contain within it variables capturing the true markers and pricing rule used to
respond to their prices. This construction transforms the problem of identifying the set of
markers into a model selection problem – the highest-likelihood GLM will be that which
includes on the right-hand side the true variables.
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To efficiently search through the combinatorial space of possible GLM specifications for
the one containing the true marker-pricing rule variables, I propose using consistent model
selection methods for high-dimensional data from machine learning. Specifically, I exploit the
consistent model selection properties of the least absolute shrinkage and selection operator
(‘LASSO’) to learn the boundaries of the pricing-rule partition, and identify as markers those
stations whose prices define the partition boundaries.

The rest of this section proceeds as follows. In Section 4.1 I lay out the structural model
of retail pricing decisions. I derive the reduced form expression for the hazard rate of price
adjustments in Section 4.2, and show its discrete time analogue has the same likelihood as a
GLM. Then, in Section 4.3, I define the class of possible partition boundaries and summarise
the consistent model selection results allowing us to recover the identities of markers by
estimating the GML over this class with LASSO regularisation. I use the language of my retail
gasoline application throughout this section, but the method could be just as readily applied
to identify competitors in other retail contexts.

4.1 A continuous-time model of price competition between gasoline stations

There is a retail gasoline market with N stations, indexed by i = 1, ..., N and collectively
denoted by the set N . The market evolves in continuous time, with the current time indexed
by t ∈ (0, T]. The profits flowing to a station i at any point in time t are a function of a set of
random variables common to all stations, which account for common movements in wholesale
gasoline prices and demand conditions, and the current prices of a subset of all stations. This
subset, denoted by Ni ⊆ N and indexed by j = 1, ..., Ni , is the set of direct competitors or
‘markers’ whose gasoline is considered substitutable for that of station i by its customers. It is
the identity of the stations in Ni , for every i, that we wish to learn.

States and payoffs The price X i(t) of station i, which at any time t is the current state of
i, takes values ki ∈ Xi , where Xi is a finite state space space with Ki elements. This state
evolves according to the following decision process. At points in time arriving according to
a Poisson process with rate parameter λi , which we will call ‘decision points’, the pricing
manager of station i evaluates the optimality of X i(t) and chooses a price pi ∈ Xi . Thus at
every decision point the station’s action space is equal to Xi , which implies its manager has
a (costless) continuation action of not adjusting its price, pi = X i(t), and that every action
pi ∈ Xi leads to a distinct continuation state X i(t+) = pi .

Stations’ payoff relevant states at time t also include the values of the random variables
common to all stations. These common random variables X0(t), which we will call ‘nature’
and index by i = 0, take values k0 ∈ X0, where X0 is a finite state space with K0 elements.
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The state of nature evolves over time according to a homogeneous Markov process onX0 with
a K0 × K0 intensity matrix Q0. The off-diagonal elements of Q0, qk0k′0

for k0 ̸= k′0, are the
hazard rates for transitions from state k0 to state k′0:

qk0k′0
≡ lim
∆→0

P
�

X0(t +∆) = k′0 | X0(t) = k0

�

∆
∈ (0,∞). (1)

The leading diagonal elements qk0k0
are then the negative overall rate with which nature

leaves the state k0:
qk0k0

= −qk0
= −

∑

k′0 ̸=k0

qk0k′0

where:
qk0
≡ lim
∆→0

P (X0(t +∆) ̸= k0 | X0(t) = k0)
∆

∈ (0,∞). (2)

Therefore, conditional on leaving state k0, the probability of transitioning to state k′0 is
qk0k′0

/qk0
. Finally, transitions by nature out of state k0 follow an exponential distribution

with rate parameter −qk0
(or, equivalently, nature stays in state k0 for a period of time that is

exponentially distributed with parameter qk0
). For additional details on Markov processes I

recommend Siegrist (1997).
The optimality of station i’s current price X i(t) is assessed by reference to the current and

discounted expected future flow profits resulting from X i(t). All stations discount the future
at the common rate ρ ∈ (0,1). The flow profits of a station i at time t are a function of its
payoff-relevant state, which comprise the state of nature X0(t), its own current price X i(t),
and the current prices of its markers, X j(t) for j ∈ Ni . Let us denote this state by X−i , where
the payoff-relevant state space is:

X−i ≡ ×
j∈{0,i}∪Ni

X j . (3)

The function mapping from X−i to station i’s flow profits is then:

πi :X−i −→ R. (4)

Information and beliefs To characterise a station’s expectations over future flow profits
we must specify the information available to the station at time t and the beliefs it forms
conditional on that information. Consistent with the institutional knowledge summarised in
Section 3, we will assume station i continuously collects information on the payoff relevant
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state X−i . Thus station i at time t has the information set:

Ii(t)≡ {X−i(τ) | τ ∈ (0, t]}. (5)

Based on this information set, station i forms beliefs about the actions p j ∈ X j that its
markers j ∈ Ni will take in any given state. However, an implication of the assumption on
the information collected by station i is that it can – and most likely will – have incomplete
information about the payoff relevant states of its markers. For any marker j ∈ Ni for which
Ni ̸= N j , station i will not fully observe the payoff relevant state X− j informing j’s actions.
Thus even if i knows the decision rule used by its markers, it can have only probabilistic beliefs
– based on the state X−i that it observes – about the actions that its markers will take in any
observed state. Let us denote these beliefs by:

ζi(k
′
j | k−i)≡ Pi

�

p j = k′j | X−i = k−i

�

(6)

for every k−i ∈ X−i , and every k′j ∈ X j for every j ∈ Ni , where the subscript i explicitly
denotes the subjective nature of these probabilities.

Decision objective and strategies We can now define the objective against which a station i

assesses the optimality of its current price X i(t) given a decision point at t. By Bellman’s prin-
ciple of optimality, the value function for station i in state X−i(t) = k−i is defined recursively
as:

Vi(k−i) =
�

πi(k−i) +
∑

k′0 ̸=k−i,0

qk−i,0k′0
V (k−i ∪ k′0)

+
Ni
∑

j=1

λ j

∑

k′j∈X j

ζi(k
′
j | k−i)V (k−i ∪ k′j) +λi max

pi∈Xi
V (k−i ∪ pi)

�

À �

ρ + qk−i,0
+

Ni
∑

j=1

λ j +λi

�

(7)

where k−i ∪k j is equal to k−i except with the jth element swapped for k j , and k−i,0 is equal to
the 0th element of k−i . The denominator of this expression is the discount factor plus the sum
of the rates of state changes by nature and moves by station i and its markers.18 The values
in the numerator can be understood by looking at each term separately. The first term is the
flow profits station i earns each instant the payoff relevant state remains k−i . The second term

18Note that we are assuming each station i is aware of the rates at which its markers make moves, λ j for every
Ni .
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is the sum over states reached by changes in the state of nature of the value of those states,
weighted by the hazard rates for those state transitions. The third term is the sum over states
reached by the actions of a marker of the value of those states, weighted by i’s beliefs about
the probability of those actions, and summed over markers, with each marker weighted by the
arrival rate of its decision points. The last term is the value of the state reached by i choosing
an optimal action, weighted by the arrival rate of i’s decision points.

A pricing rule by which station i chooses prices at decision points to maximise Vi is a
strategy. Following the dynamic games literature (e.g, Arcidiacono et al., 2016; Ericson and
Pakes, 1995; Fershtman and Pakes, 2012), we focus on pure Markov strategies. A Markov
strategy for player i is a mapping assigning a price action pi ∈ Xi for every payoff relevant
state k−i ∈ X−i . By the Markov property, the choice of action only conditions on the state at
time t, not the state at any time prior to t. Given beliefs ζi , station i’s pricing rule δi will a
best response if:

δi(k−i) = pi ⇔ V (k−i ∪ pi)≥ V (k−i ∪ p′i) (8)

for every p′i ∈ Xi . We will assume a best response pricing rule is being used by each station to
set prices, and denote these by δ∗i for every i ∈ N .

The Markov nature of a station’s pricing rule, combined with the Poisson arrival process
of its decision points, implies the station’s prices evolve as a conditional Markov process. That
is, X i(t) is a non-homogeneous Markov process with hazard rates for state transitions on Xi

that vary with time, but not as a direct function of time (Nodelman et al., 2002). Instead the
hazard rates are a function of the current payoff relevant state of the station. Therefore, the
Ki × Ki conditional intensity matrix QX i |X−i

describing this process by which station i’s prices
evolve is:

QX i |X−i
≡













−q1(X−i) q12(X−i) · · · q1Ki
(X−i)

q21(X−i) −q2(X−i) · · · q2Ki
(X−i)

... ... . . . ...
qKi1(X−i) qKi2(X−i) · · · qKi Ki

(X−i)













(9)

where:
qki k

′
i
(X−i) = λi1{X−i,i=ki}P

�

δ∗i (X−i) = k′i
�

(10)

and:
qki
(X−i) =

∑

k′i ̸=ki

qki k
′
i
(X−i). (11)

This conditional intensity matrix can be equivalently understood as a set of intensity matrices,
one for each state in station i’s payoff relevant state space, k−i ∈ X−i .
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Stationarity and market equilibrium To be able to learn Ni from data generated by X i(t),
we require both X i(t) and the payoff relevant process X−i(t) upon which it is conditioned to
be stable across time. We again follow the dynamic games literature to obtain this stability
by assuming the beliefs ζi and pricing rules δ∗i of all stations i ∈ N constitute a dynamic
equilibrium in the market’s pricing game. Specifically, for the market state space:

X ≡
N

×
i=0
Xi (12)

we will assume there exists an Experience-Based Equilibrium (‘EBE’; Fershtman and Pakes,
2012) consisting of a subspace Y ⊆ X , and equilibrium beliefs ζ∗i (k′j | k−i) and pricing rules
δ∗i (k−i) for every k′j ∈ X j , for every j ∈ Ni , for every k−i that is a component of a state Y ∈ Y ,
and for every station i ∈ N .

The market being in an EBE implies:

1. Y is a recurrent class – With probability 1, the Markov process on X generated by
X0(t) and {λi , δ

∗
i }i∈N and starting from any state Y ∈ Y will remain forever in Y ,

visiting each state in Y infinitely often.

2. Pricing rules δ∗i are optimal onY – For every station i ∈ N , given beliefs ζ∗i , the pricing
rule δ∗i (k−i) is a best response for every payoff relevant state k−i that is a component of
a state Y ∈ Y .

3. Beliefs ζ∗i are consistent on Y – For every station i ∈ N , given the pricing rule δ∗i , the
beliefs ζ∗i satisfy the condition:

ζ∗i (k
′
j | k−i) =

∑

k− j∈X− j
1{k− j,Ni∩N j

=k−i,Ni∩N j
}1{δ∗j (k− j)=k′j}

∑

k− j∈X− j
1{k− j,Ni∩N j

=k−i,Ni∩N j
}

(13)

for every k′j ∈ X j , for every j ∈ Ni , and for every payoff relevant state k−i that is a
component of a state Y ∈ Y , where k−i,Ni∩N j

is the sub-vector of k−i containing the
elements of k−i for those stations that are markers of both i and j.

Thus the EBE requires only that stations’ pricing rules are optimal conditional on the beliefs
they hold about their markers’ actions, and that their beliefs are consistent with their markers’
actual actions for only those states of the market entering their information sets. For market
states that have not previously been observed, and thus about which the stations have no
historical information – “off equilibrium path” states – an EBE allows stations to hold any
beliefs whatsoever. Therefore, assuming EBE ensures stability of the data generating process
while making minimal assumptions on the information collection and processing abilities of
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station price managers. This is preferable to the informational assumptions of Markov Perfect
Equilibrium (Maskin & Tirole, 1988, 2001), which would require each station to know both
the marker set and the pricing rule of every other station.

4.2 The hazard rate of a station’s price adjustments

Having ensured stability of the market’s price dynamics, let us return to the pricing decisions
of a single station to derive the process characterising the timing of price adjustments. Be-
cause these adjustments are events occurring at random points in time, their timings will be
characterised by a point process. Therefore, we will begin by describing the essential structure
of point processes in general before deriving the process defined by the evolution of a station’s
prices X i(t) over time.

Point processes A point process is a set of discrete stochastic events occurring in continuous
time. That is, for an observation interval (0, T], the sequence of M times at which events are
observed to occur:

0< τ1 < ...< τm < ...< τM ≤ T (14)

is a point process. Let M(t) denote the number of events in the interval (0, t] for any t ∈ (0, T].
The stochastic structure of a point process is fully characterised by its conditional intensity
function (‘CIF’):

λ(t | I (t))≡ lim
∆→0

P (M(t +∆)−M(t) = 1 | I (t))
∆

(15)

where I (t) is a set of information upon which the CIF depends at time t. For small ∆, the
CIF gives the approximate probability of an event occurring at time t, with the approximation
being better the smaller is ∆. Thus the CIF can be understood as the hazard rate of the
process. It can also be understood as the generalisation of the rate parameter of a Poisson
process to the event arrival probability of a process that is dependent on an information set
I (t), and only obtains the ‘memoryless’ property of the Poisson process after conditioning on
this information. For additional details on point processes I recommend Daley and Vere-Jones
(2003, 2008).

The point process characterising the times at which a station i adjusts its price is a compo-
nent of the conditional Markov process X i(t). A Markov process can be equivalently defined
by a point process characterising the arrival of transitions out of the current state, and an
embedded Markov chain characterising the state to which the process next transitions con-
ditional on it transitioning out of the current state (Daley & Vere-Jones, 2008). The rate at
which the point process produces transition events is the overall rate at which the Markov
process leaves the current state, the negative of which populates the leading diagonal of the
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Markov process’s intensity matrix. Therefore, the CIF for the point process characterising the
transition times of the conditional Markov process X i(t) is:

λ∗i (t | X−i) = qX−i,i(t) (X−i(t))

= λiP
�

δ∗i (X−i(t)) ̸= X−i,i(t)
�

. (16)

where X−i,i is the ith element of X−i . The information set upon which this point process de-
pends at time t is equal to X−i(t) due to the Markov nature of δ∗i . Therefore, the instantaneous
probability of station i adjusting its price at time t is the product of the instantaneous proba-
bility of i’s pricing manager evaluating the optimality of its current price, and the probability
that i’s current price is not a best response to its current payoff relevant state.

Discrete time The CIF for the price-adjustment times produced by X i(t) can be used to
define the likelihood of observing a price adjustment in the interval (t, t +∆] as a function
of X−i(t). This likelihood enables estimation of the relationship between a station’s payoff
relevant state and the times at which it adjusts its prices, which in turn enables learning of
Ni with model selection methods. However, applying these model selection methods requires
data recorded in discrete time. Consequently, we require a discrete time representation of the
data likelihood and thus of the CIF.

To obtain a discrete time representation, we will choose an integer H and partition the
observation interval (0, T] into H subintervals (th−1, th]Hh=1 of length∆= T/H. The chosen H

must be sufficiently large to ensure there is at most one price adjustment event per subinterval.
Denote the discrete time analogues of the continuous time variables as Mi,h = Mi(th) and
X−i,h = X−i(th−1). By choosing H sufficiently large, the differences ∂Mi,h = Mi,h − Mi,h−1

for h = 1, ..., H define a timeseries of zero-one indicators of price adjustment events. Lastly,
denote the discrete time CIF by λ∗i (th | X−i,h;θi), where the parameter vector θi parameterises
the functional relationship between X−i,h and the probability of an event in the subinterval
(th−1, th].

Likelihood Denote a sequence of Mi price adjustment events for station i over the partitioned
observation window (t0, tH] by:

Mi,1:H ≡
�

t0 < τ1 < ...< τmi
< ...< τMi

≤ tH ∩ Mi,H = Mi

	

. (17)

By construction of the partition, it must be that:

τmi
∈ (thmi

−1, thmi
] ∀mi = 1, ..., Mi (18)
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for a subset of Mi subintervals satisfying h1 < ...< hmi
< ...< hMi

, with the remaining H −Mi

subintervals containing no events. Therefore the probability of Mi,1:H is the probability of
exactly Mi events occurring, and of those events falling in the intervals (thmi

−1, thmi
]mi=Mi

mi=1 .
This probability is given by:

P(Mi,1:H) = P
�

Mi,H = Mi ∩ τmi
∈ (thmi

−1, thmi
] ∀mi = 1, ..., Mi

�

=
H
∏

h=1

P(Ai,h)
∂Mi,hP(A c

i,h)
1−∂Mi,h (19)

where
Ai,h ≡

�

∃mi s.t τmi
∈ (th−1, th] | X−i,h

	

(20)

andA c
i,h is the compliment ofAi,h.

The form of the probability in (19) reveals the equivalence between a sequence of price
change events and a sequence of H independent Bernoulli trials – independent conditional on
the information X−i,h – with the ‘success probability’ for an event in the hth subinterval trial
given by P(Ai,h). By the definition of the CIF in (15) and (16), the probability of an event
in a subinterval (th−1, th] is constant if the payoff relevant state remains X−i(th). Thus, by
choosing H sufficiently large that ∆ is small relative to the expected transition time of Xi(t),
the success and failure probabilities for the hth trial can be equivalently expressed as:

P(Ai,h) = λ
∗
i (th | X−i,h;θi)∆+ o(∆) (21)

P(A c
i,h) = 1−λ∗i (th | X−i,h;θi)∆+ o(∆). (22)

Substituting these Bernoulli trial probabilities into (19) yields the following joint probability
mass function (‘PMF’) for the sequence Mi,1:H conditional on the parameterisation θi:

P(Mi,1:H | θi) =
H
∏

h=1

�

λ∗i (th | X−i,h;θi)∆
�∂Mi,h

�

1−λ∗i (th | X−i,h;θi)∆
�1−∂Mi,h + o(∆Mi ). (23)

This joint PMF is a discrete time analogue of the joint probability density function of the
continuous time point process (Truccolo et al., 2005). This joint PMF is also the likelihood
Li(θi) of observing the sequence of price change events Mi,1:H under the probability model
characterised by λ∗i (th | X−i,h;θi) and parameterised by θi .

Generalised Linear Model In addition, the joint PMF in (23) is equivalent to the likelihood
of independently distributed data yi = {yi,h}Hh=1, where yi,h ∈ {0,1} for h = 1, ..., H, under
a generalised linear model (‘GLM’) with Bernoulli distribution and logistic link function (Mc-
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Cullagh & Nelder, 1989), also commonly known as a logistic regression model.19 That is, the
joint PMF in (23) is equivalent to the likelihood of data yi , with yi,h ≡ ∂Mi,h, under to a model
in which:

1. The observations yi,h are assumed to be independently Bernoulli distributed conditional
on Q general functions of X−i,h:

yi,h |
�

g1(X−i,h), ..., gQ(X−i,h)
	

∼ Bernoulli
�

λ∗i (th | X−i,h;θi)∆
�

(24)

implying:
E
�

yi,h |
�

g1(X−i,h), ..., gQ(X−i,h)
	�

= λ∗i (th | X−i,h;θi)∆. (25)

2. The expected value of yi,h is conditioned on a linear combination of the general functions
�

g1(X−i,h), ..., gQ(X−i,h)
	

:

λ∗i (th | X−i,h;θi)∆= f −1

 

Q
∑

q=1

θi,q gq(X−i,h)

!

(26)

via a logistic ‘link’ function:

f
�

λ∗i (th | X−i,h;θi)∆
�

= ln

�

λ∗i (th | X−i,h;θi)∆

1−λ∗i (th | X−i,h;θi)∆

�

. (27)

This equivalence implies we can use logistic regression to estimate the relationship between
the probability of a price adjustment by station i during the interval (t, t +∆] and i’s payoff
relevant state X i(t) at time t.

4.3 Consistent estimation of competitors via model selection

The remaining challenge is that we do not know the identities of the markers whose prices
enter the payoff relevant state of station i. We address this challenge using the model selection
properties of the LASSO. However, we must first define the variables to which we apply LASSO
regularisation when estimating the logistic regression model of a station’s price adjustments.
Therefore, suppose for the time being that we know the identities of the markers Ni whose
prices define the space of payoff relevant states X−i .

State space partition The pricing rule δ∗i by which station i decides at decision points
whether to adjust its price defines a decision boundary partitioningX−i into two regions. The

19For further details on this equivalence see Truccolo et al. (2005), who show there is also an equivalence to
the likelihood of a GLM with Poisson distribution and logarithmic link function if H is chosen large enough.
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region on one side of this boundary contains all the states in which i will choose to adjust its
price:

X 1
−i ≡ {k−i ∈ X−i|δ∗i (k−i) ̸= k−i,i}. (28)

The region on the other side contains the states in which i will choose to not adjust its price
and instead continue in its current state:

X 0
−i ≡ {k−i ∈ X−i|δ∗i (k−i) = k−i,i}. (29)

Consequently, the CIF defined in (16) will equal zero for all the states k−i ∈ X 0
−i . Further, the

CIF can be decomposed into a linear combination of functions indicating whether the state at
time t falls into the region X 1

−i .

Model selection The problem now becomes identifying which of the Q variables are argu-
ments into the station’s actual pricing rule. In principle, we could do this by estimating the
logistic regression model with every combination of variables and using a model selection
criteria like the Bayesian Information Criterion (‘BIC’) to select the one with the best fit. In
practice this is not possible – there are 2Q such combinations, which for even moderately sized
Q is infeasibly many models to estimate. Instead, we will take the approach of estimating the
logistic regression model with the Least Absolute Shrinkage and Selection Operator (‘LASSO’)
to exploit the LASSO’s consistent model selection properties.

The LASSO estimator adds a penalty to the log-likelihood of a model that decreases the
log-likelihood for every coefficient estimated to have a non-zero value:

LLASSO(θ , C)≡ logL (θ )−
1
C

Q
∑

q=1

|θq| (30)

where C is the ‘hyperparameter’ parameterising the amount by which the likelihood is pe-
nalised for each non-zero coefficient.20 Consequently, the LASSO estimated coefficients:

bθLASSO(C)≡ argmax
θ

LLASSO(θ , C) (31)

will include fewer non-zero coefficients than the coefficients estimated bymaximum likelihood:

bθ ≡ argmax
θ

logL (θ ). (32)

20It is more conventional to write the hyperparameter with the notation λ = 1/C . However, given I have
already used λi to denote the Poisson arrival rate of decision points for station i, and λi(t|It) to denote the CIF
of a point process, I follow the scikit-learn documentation in using C to denote the inverse of the LASSO
hyperparameter. Note that this implies the log-likelihood is penalised more by a smaller hyperparameter C .
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The variables for which the LASSO estimates non-zero coefficients are said to be ‘selected’ by
the LASSO.21 Denote the set of these selected variables by:

bS(C)≡ {q | bθq,LASSO(C) ̸= 0, q = 1, ...,Q}. (33)

If we define by S∗ the variables entering the true model:

S∗ ≡ {q | θ ∗q ̸= 0, q = 1, ...,Q}, (34)

where θ ∗q are the values of the parameters in the true model, then consistent model selection
entails:

P
�

bS(C) = S∗
�

→ 1, as n→∞. (35)

Note that this is not the same as – nor necessarily achieved by – consistent parameter estima-
tion, which involves:

bθ n
q − θ

∗
q

p
−→ 0, as n→∞ (36)

where bθ n
q is the value of the parameter θq estimated from an n-observation data set.

Consistent model selection as defined in Equation (35) requires that the parameters in the
truemodel be sufficiently large, and that theQ variables included in the estimatedmodel satisfy
a neighbourhood stability condition known as the “irrepresentable conditon” (Meinshausen
& Bühlmann, 2006; Zhao & Yu, 2006). How large is sufficiently large depends on n. The
parameters θ ∗q for q ∈ S∗ are sufficiently large if they satisfy the “beta-min condition”, which
given our notation we will refer to as the “theta-min condition”:

|θ ∗q | ≫
Æ

q∗ log(Q)/n (37)

for every q ∈ S∗, where q∗ ≡ |S∗|. Therefore, the bigger is the data set used in estimation the
smaller the true parameters can be and still get consistently selected by the LASSO estimator.

In order to state the irrepresentable condition, let us assume without loss of generality
that our Q variables are ordered such that the variables entering the true model come first:
S∗ = {1, ..., q∗}. Then we can split the n×Q matrix of our data Gn into the n× q∗ matrix Gn

1

containing data for the ‘true variables’ and the n× (Q− q∗) matrix Gn
2 containing data for the

‘false variables’. The irrepresentable condition requires that:
�

�

�

�Gn⊤
2 Gn

1

�

Gn⊤
1 Gn

1

�−1 sign(θ ∗1 , ...,θ ∗q∗)
⊤
�

�

�

�

∞ < 1 (38)
21Note that if the optimisation problem in Equation (31) has multiple solutions (for a given C), the variables

that have zero coefficients in one solution will have zero coefficients in all solutions.
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where ||g||∞ ≡ maxq |gq|. This requirement is essentially the requirement that all the co-
efficients estimated by regressing the one of the false variables on the true variables have
magnitude less than one. That is, it requires the false variables to not be closely approximated
by any linear combination of the true variables.

The irrepresentable condition is a strong condition to satisfy. It will be easier to satisfy the
smaller are the periods ∆ into which we discretise time, because in the limit as ∆→ 0, the
number of periods in which any two stations’ prices differ will grow to infinity. Nonetheless,
any empirical specification has a chance of not meeting the condition. In that case, the
specification may still satisfy the conditions required for the more conservative goal of variable
screening.

Variable screening differs from model selection in that while the latter has the goal of
selecting all the true variables, variable screening has the less ambitious goal of selecting all
true variables with parameters of a certain magnitude. Let us define the set of ‘substantial
true variables’ by:

Srelevant(θ n) ≡ {q | |θ ∗q | ≥ θ
n, q = 1, ...,Q}, (39)

for a threshold magnitude θ n that depends on the number of observations n. Then, for certain
technical ‘compatibility conditions’ on the smallest eigenvalue of the datamatrixGn (Bühlmann
& van de Geer, 2011), if the regularisation hyperparameter Cn is in the order of

p

log(Q)/n,
for any θ n > O

�

q∗
p

log(Q)/n
�

it will the case that bS(Cn) contains Srelevant(θ n) with high
probability for all n. And if in addition the theta-min condition is satisfied, Srelevant(θ n) = S∗.

Variable screening essentially says that the LASSO will be a conservative estimator of
which variables enter the true model, in the sense that the set of variables selected by LASSO
will contain all the substantial variables with a high probability, but possibly also some false
positives.

5 Identifying the competitors of NSW gasoline stations

In this section I demonstrate the method proposed in Section 4 by applying it to the FuelCheck
data to estimate the competitors of gasoline stations in Sydney. Even though the computational
efficiency of the method is greatly enhanced by the logistic regression implementation derived
in Section 4.2, estimation is still computationally costly. Therefore I apply the method to a
sample of 86 stations in the corridor leading south out of Sydney towards Melbourne. Figure
5 shows the locations of these stations, which includes the stations whose cycling prices are
shown in Figure 4 in Section 3.3. I choose this corridor because it spans and connects urban
stations in Sydney’s southern suburbs and regional stations in the Southern Highlands area
of NSW, and is geographically bounded on the east and west by uninhabited wilderness.
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Consequently, this subset provides an ideal setting for assessing whether urban and regional
stations inhabit distinct geographic markets, or together form a single, interconnected market.

Figure 5: Stations entering marker estimation Map of the corridor leading south out of
Sydney’s southern suburbs into the Southern Highlands of NSW. Locations of 86 stations for
which competitors were estimated are marked by purple diamonds, while black circles mark
the locations of additional stations in the depicted area.

5.1 Empirical specification

To implement the method I must specify both the duration∆ of intervals into which we discre-
tise continuous time, and the possible state-space partitioning pricing rules gq(·) being used
to set prices. These specification choices are guided by my understanding of the institutional
context, summarised in Section 3.1, and the station pricing behaviour I observe in the data. I
describe these choices below.

Discretising continuous time The duration ∆ of the intervals into which continuous time
is discretised must strike a balance between two contrasting effects on the estimation. On the
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one hand, the Poisson assumption underpinning our estimation method requires that there be
no more than one price adjustment event in any interval. Satisfying this condition requires
a sufficiently short interval.22 On the other hand, shorter intervals result in more rows of
data, which increases the computational cost of estimation. Thus interval lengths should be
no shorter than necessary.

I discretise my sample period into 5-minute intervals. I am satisfied this interval length
strikes the correct balance between minimising the computational cost of estimation and
reducing the incidence of multiple price adjustments by a station within any interval. The
average time between price adjustments by a station is in no case shorter than 10 hours. This
average is dragged up in instances by a long right tail. However, for the majority of station
whose minimum inter-adjustment interval is less than 5 minutes, it is also less than 30 seconds.
Therefore, given the vast majority of stations change prices less than once a day, I am are not
concerned that there is systematic competitive behaviour happening at a temporal resolution
finer than five minutes.

Having chosen the interval length, I construct the binary variable indicating the event of a
price adjustment by a station within the interval:

yih = 1{pi,h+1 ̸=pih} = 1{pi th+∆
̸=pi th

}

for every station i and every interval h= 1, ..., H.

Partitioning the state space The core of the method is model selection via LASSO regular-
isation to identify the markers whose prices are arguments to a station’s pricing rule, which
partitions the station’s state space into a region of states in which the station decides to adjust
its price and a region of states in which it decides to maintain its current price. Therefore,
implementing the method requires a set of variables defining possible boundaries between
these two decision regions. I am guided in constructing these variables by the institutional
knowledge summarised in Section 3.1 – particularly the knowledge that there will be roughly
a dozen markers (at most) for each station – and extensive visualisations of the price time-
series of nearby stations, like those in Figures 2 and 4, which show stations adjusting their
prices to maintain a brand-specific differential with respect to other nearby stations during
the undercutting phase of cycles.

Therefore, I construct the following variables to define potential partitions of a station’s
payoff relevant state spaces:

22A smaller interval also increases the probability that the variables entering the estimation satisfy the irrep-
resentable condition necessary for consistent model selection by the LASSO. That is, shorter intervals reduce the
chance of the price adjustment times of any two stations always falling in the same interval of time, and thus that
their discretised price timeseries are highly correlated.
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Dummies for the event that the station’s price differential with respect to another station
j is greater than a threshold m, for a range of thresholds and a set of other stations:

1{pih−p jh≥m}

for m= −10, 9, ..., 10 and j ∈ Si .

Interactions of these dummies for every pair of other stations:

1{pih−p jh≥m} × 1{pih−p j′h≥m′}

for m, m′ = −10, 9, ..., 10 and j, j′ ∈ Si such that j ̸= j′.

Dummies for the event that the station’s price margin is greater than a threshold m, for
a range of thresholds:

1{pih−T GPh≥m}

for m ∈ {−2, 0,2, 5,10, 15}.

Interactions for these price margin dummies with both the price differential dummies
and the interactions between price differential dummies:

1{pih−T GPh≥m} × 1{pih−p j′h≥m′}

and
1{pih−T GPh≥m} × 1{pih−p j′h≥m′} × 1{pih−p j′′h≥m′′}

for m ∈ {−2, 0,2, 5,10, 15}, m′, m′′ = −10,9, ..., 10 and j′, j′′ ∈ Si such that j′ ̸= j′′.

Dummies for the hour-of-day and day-of-week to proxy for systematic fluctuations in
demand:

1{hour(th)=l}

and
1{da y(th)=d}

for l = 1, ..., 24 and d = 1, ..., 7, where da y(t) and hour(t) are functions extracting the
day and hour of t.

The first of these four categories of variables captures the essential feature of station pricing
rules – visible in their resulting price dynamics – that they define bands of price differentials
with respect to the prices of markers, such that stations do not adjust prices until their markers’
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prices fall below the lower bound of this band. The range of thresholds allows for the possibility
that the lower bound of this band may be above the station’s price, as is likely in the case of
a station being mass-market brand and its marker being a premium brand with less price-
sensitive customers. The second category of variables allows for the possibility that a single
marker lowering its price outside of a station’s price differential band is not a sufficiently large
competitive threat to induce the station to respond, and that rather stations adjust their price
only once a combination of their markers have undercut them. The third category of variables
allows for cost-based pricing rules, and allows for the observed behaviour leading up to a
market-wide restoration when stations’ prices have been discounted down to their own price
margin floor. The final category of variables accounts for the possibility of pricing rules that
respond to systematic fluctuations in demand, which in this market are likely created by hour-
and day-based phenomena like rush hour and weekend travel.

5.2 Estimated competitor sets & competition structure

The stations are monitoring and responding to the prices of very heterogeneous sets of com-
petitors, in terms of both size and composition. I estimate the stations are marking between
two and 16 competitors, with markedly different compositions in the stations they mark. I
visualise these relationships with an adjacency matrix in Figure 6a. For each row station, the
coloured cells mark the column stations they are treating as their competitors. The darker
purple colouring indicates the treatment is reciprocated, while the lighter pink colouring in-
dicates asymmetry in the relationship – the row station is monitoring and responding to the
prices of the column station, but not vice versa. The stations are roughly ordered in the indices
from north at the top / on the left, to south at the bottom / to the right. The column stations
to the right of the vertical line are those being treated as a competitor by some station in my
sample, but are not themselves a part of my sample. These are stations at the northern and
southern of the corridor, depicted by black dots in Figure 5.

Even though stations’ competitor sets are very heterogeneous, they overlap to connect all
stations in the sample into a single networked competitive structure. I visualise this network
with a standard spring layout in Figure 6b. Unfortunately the network cannot be coherently
visualised on top of a map like that in Figure 5, but the layout of nodes in Figure 6b roughly
corresponds to a 90-degree clockwise rotation of the layout of stations in Figure 5. Nodes
with black edges are stations for whom I have estimated competitors, and the nodes without
edges are those stations who are a marker of one of the stations in the sample, but are not
themselves in the sample.

This networked competitive structure differs substantially from the concept of distinct
geographic markets that is commonly used to model and analyse competition, particularly
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Figure 6: Estimated competitive relationships Estimated price monitoring and response
relationships of 86 stations in sample.

(a) Adjacency matrix

(b) Network
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in this industry. If we demarcated distinct markets in this corridor – say using the 3km and
10km radii used by the ACCC in its 2017 merger review (ACCC, 2018b) – not only would we
be ignoring the heterogeneity and asymmetry in the competitor sets of neighbouring stations,
but we would be ignoring competitive influences on the stations stemming from the broader
competitive network.

Market-like clusters However, there are dense groupings of competing stations visible in
Figures 6a and 6b, might approximate distinct markets closely enough to support an accurate
analysis of competition if these clusters of stations were treated as disjoint markets. I there-
fore detect clusters of stations within the network using the label propagation algorithm of
Raghavan et al. (2007), which resembles competitive price matching by stations. The algo-
rithm is initialised by giving every station a unique label. The algorithm then cycles through
the stations, updating their labels as it goes to match the most common label amongst their
monitored competitors. The algorithm iterates this process until convergence, resulting in
densely-connected clusters of stations who all share a common label. Therefore, the algorithm
resembles the process of stations updating their prices to match their monitored competitors,
and the clusters it finds are those for whom this process of competitive price matching would
result in uniform prices.

I find six distinct clusters of stations in the network formed from their competitive moni-
toring. These clusters are depicted by node colourings in the network in Figure 7b and blocks
in the adjacency matrix in Figure 7a. The latter visualisation highlights the degree to which
the networked competitive structure connecting stations resembles the outcome of a stochastic
block model (Holland et al., 1983). That is, the competitive structure of this market resembles
that which would be generated if stations chose to mark stations in their own cluster with a
probability pH , and stations in other clusters with a lower probability pL < pH .

The six clusters are easier to interpret when compared to the geographic location of their
respective stations. In Figure 8 I colour the points marking station locations on the map of
the corridor south of Sydney to show the stations’ cluster membership. This visualisation
reveals the six clusters are geographically contiguous. It also suggests some of the partitions
between clusters can be explained by features of the road network that would create barriers
for motorists wanting to substitute between stations in different clusters. For example, stations
in the second cluster are separated from those to their south in the fifth cluster by a drive
of at least 20 minutes, and they are separated from those to their east in the first, third and
fourth clusters by both the Hume Motorway and Campbelltown railway. However, inspection
of the road network does not as easily explain why the stations in the first, third and fourth
clusters form three separate clusters, rather than being joined together into one common
cluster. Therefore, while the cluster results suggest there could be some uniformity of prices
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Figure 7: Estimated clusters of stations Six station clusters detected by the (asynchronous)
label propagation algorithm.

(a) Adjacency matrix

(b) Network
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with geographically-distinct, market-like clusters of stations, it is not clear ex ante where those
clusters should lie.
Figure 8: Locations of station clusters Map of stations in the corridor leading south out of
Sydney, with station’s membership in six clusters depicted by colour.

6 Conclusion

In this paper I introduced a method for identifying who retail firm managers are considering
and treating as their competitors when they adjust prices. The method exploits the idea that
managers choose to adjust their prices when they notice their price position vis-à-vis their
competitors has become unfavourable, and thus that there is information about the identities
of those competitors contained in the relation between the timing of price adjustments and
relative prices at the times of price adjustments. The method I propose exploiting this idea
is derived from a structural model of price competition, but consists of estimating a reduced-
form GLM expression with model selection via LASSO regularisation. Thus while the method
has both a theoretical foundation and econometric consistency, its implementation involves
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no more than LASSO-regularised GLM regression on feature-engineered data, meaning the
method can be implemented by industry analysts and data scientists using modern, highly-
optimised machine learning toolkits.23

I also demonstrated the method with an application to the retail gasoline industry in New
South Wales, Australia. Using 30 months of high-frequency, publicly, available price data
from the FuelCheck price-monitoring program, I estimated the competitor sets of 86 stations
located in a corridor south of Sydney. Collectively these competitor sets revealed three novel
insights about the competitive structure of a retail market: (1) the size and composition
of stations’ competitor sets were heterogeneous, even for closely neighbouring stations; (2)
pairwise competition between stations was asymmetric, in the sense that one station could be
monitoring and responding to the prices of another without the reverse being true; and, (3)
overlaps in stations’ competitor sets connected them all together into a networked competition
structure.

These insights have deep implications for the way we think about and characterise compe-
tition structure, which can be seen by comparing these insights to the competition structure the
ACCC used to analyse gasoline station competition in its 2017 merger review (ACCC, 2018b).
In that review, the ACCC assumed that the market in which each acquiree station competes
constituted the stations within a 3km or 10km radius. And further, by using the concentration
of that market as a sufficient measure of the competitive constraint on the acquiree station’s
pricing power, the ACCC implicitly assumed all the stations in that market competed with each
other and only each other. This assumed competition structure is markedly different from the
one revealed by my application, which not only suggests competition between the stations in
this defined market would be sparse, and would include stations beyond the border of this
market, but that concentration in this market would say little about the constraints being
imposed on the acquiree station’s pricing by competition. Therefore, the insights from my ap-
plication imply a need to broaden our characterisations of competition structure to capture the
networked nature of retail competition and study the impact of networked competition struc-
tures on the propagation of price adjustments and the ability for information about movements
in costs and demand to be efficiently impounded into market prices.

23For example, the method can be efficiently implemented using the scikit-learn module in python, or
the GLMnet package in R.
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