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Abstract

In digital content consumption, social interaction becomes a vital component that drives con-
sumers’ overall experience and willingness-to-pay for digital content. Despite the ubiquitous
prevalence and growing trend of in-consumption social interaction, firms face new challenges:
the loss of direct control over consumer experience and the uncertainty of real-time social in-
teractions, potentially dampening consumer experience and hurting firms’ profitability. Hence,
managing social interaction becomes a critical problem for both firms and policymakers – who
can participate, and how will social interaction change the paywall strategy? To answer these
questions, we construct a continuous time model in which a consumer’s willingness-to-pay for the
product is dynamically shaped both by idiosyncratic shocks and social interactions with other
consumers. We find that a firm benefits from allowing social interaction, even when downward
social influence outweighs upward influence. The equilibrium price is lower, but demand is
higher compared to the no-interaction benchmark. Moreover, when downward social influence
is stronger than the upward one, the impact of social intensity on a firm’s profitability hinges
on a term we coin as “social elasticity”– the effect of a one-unit change in the intensity of social
interactions on the reduction in demand. We show that a firm’s profit can still increase with
interaction intensity so long as the social elasticity is sufficiently small. We then extend the
analysis to examine the interplay between a firm’s innate content quality and social interactions
and the case of purely interactive digital consumption.
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1 Introduction

Social interactions are essential to human life. With emerging technologies, social interactions

can take place virtually and seamlessly intertwine with digital consumption, allowing people to

mutually share real-time experiences, exchange ideas, and influence each other while consuming

digital content. This type of in-consumption social interaction can take many forms. For example,

viewers can share their real-time experiences via live comments on platforms such as YouTube’s live

streams, Twitch.tv, or via virtual forums on fan-based creator platform Patreon. On news sites such

as The Wall Street Journal (WSJ) and The New York Times, readers can exchange ideas following

news content. Online education sites like Coursera and interest-based clubs such as BookClub.com

facilitate virtual communities for an enhanced learning experience through social influence.

In digital consumption, in-consumption social interactions become vital components that drive

consumers’ overall experience. It is reported that the number of interactive live comments on

Bilibili exceeded 10 billion by 2021.1 The number of people reading and leaving comments on WSJ

increased more than 5%.2 In the context of online news consumption, readers may enjoy more

from the news content if they can encounter high-quality discussions and enjoy less if they read

low-quality comments. Although firms like WSJ can prevent spams, the extent to which readers

enjoy its content depends on the informativeness of articles as well as the comments provided by

other readers so long as it enables social interactions.

Despite the ubiquitous prevalence and growing trend, the phenomenon of in-consumption social

interactions imposes new challenges to firms: (1) Consumers’ utility and willingness to pay for digital

consumption depend not only on content quality but also on social influence among consumers,

rendering firms to lose direct control over quality of experience; (2) A priori, it is uncertain how

social interactions can shape every consumer’s experience, as real-time social interactions can be

highly random, possibly increasing or decreasing the consumer valuations.

Thus, it is not clear whether and how in-consumption social interactions can benefit firms. Firms

adopt quite diverging strategies of dealing with in-consumption social interactions. In 2019, WSJ

introduced a new comments strategy by limiting who can comment and on what articles, aiming to

drive a higher quality of debate on its site. Amid media companies that allow virtual interactions,
1https://www.forbeschina.com/business/58500
2https://digiday.com/uk/the-wall-street-journal-tightens-comments-strategy-to-stimulate-higher-quality-debate/
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others adopt an opposite approach. For example, since 2018, the Atlantic closed down comments

due to uncertainty about how interactions shape site quality.3 Netflix disallowed reviews and rating

since 2018 despite consumers’ need for live comments while streaming, which is enabled by a third-

party Chrome extension.4 In the same year, Youtube introduced paid channel membership for its

creators to encourage social interactions in the fan community. Since 2023, Twitch also offers paid

channel subscribers for exclusive chatroom.

Therefore, this research aims to fill in the knowledge gap by investigating the impact of in-

consumption social interactions on firms’ profitability. Specifically, we provide a cohesive framework

to answer the following questions: (1) How will in-consumption social interactions affect user expe-

rience and willingness-to-pay, and thereby influencing the paywall strategy of digital content? (2)

Can firms profit from social interactions even with the presence of negative social influence? How

should firms change their paywall strategy compared with the case of no social interactions? (3) To

what extent will social interactions influence firms’ profitability?

To address these questions, we develop a dynamic continuous time model to capture the real-time

nature of digital goods consumptions and a random matching model with stochastic type change

to characterize in-consumption social interactions. The market consists of one monopoly firm that

provides digital content and a continuum of consumers. In digital consumption, both idiosyncratic

and social forces can change a consumer real-time experience. During a consumption session, con-

sumers’ instantaneous utilities are probabilistically drawn from a general continuous distribution,

reflecting their own momentary needs and reactions to content variations, or probabilistically influ-

enced by the utilities of other people who also consume the digital content. Social interactions can

be either two-way (e.g., live chats, discussions) or one-way interactions (e.g. live comments) and

can lead to upward social influence (a higher type consumer elevates the experience of a lower type

consumer), downward social influence (a lower type consumer dampens the experience of a higher

type consumer), no influence. Once consumption experience is realized, consumers decide whether

to continue the experience or opt out for an outside option. Consumers maximize the discounted

sum of instantaneous utilities. A monopoly firm sets the price to maximize the total profit. We
3https://www.theatlantic.com/letters/archive/2018/02/letters-comments-on-the-end-of-comments/552392/,

https://www.theatlantic.com/technology/archive/2014/06/internet-comments-and-perceptions-of-quality/371862/
4https://www.forbes.com/sites/emmawoollacott/2018/07/06/why-netflix-wont-let-you-write-reviews-any-

more/?sh=1eb13a726570
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focus on a steady-state equilibrium in which price is time-invariant.

First, we show that social interactions shift consumer valuation distribution in terms of stochas-

tic dominance, and adds an option value in a firm’s pricing strategy. Two countervailing forces

drive a firm’s equilibrium price. If the firm sells to more consumers with lower willingness-to-pay,

a marginal consumer with lower valuation drives down the price. However, the option value of

social interactions decreases with consumers; willingness-to-pay. Compared with consumers of high

valuation, consumers with lower willingness-to-pay value more on the option value of social inter-

actions because they will be more likely to interact with high consumer types and gain more from

interactions. The option value of social interactions drives up the price. In other words, the innate

content quality and in-consumption social interactions are substitutes to each other. Combined the

two effects, demand is less elastic than the no-interaction benchmark. That is, one unit increase in

price change results in demand reduction smaller than one unit.

Second, we find that the firm can earn a higher profit by allowing social interactions, even when

downward social influence is stronger than the upward one. The firm always finds better off with

more consumers opting in. This result holds true even when downward social influence is stronger

than the upward one. Moreover, the equilibrium price with social interactions can be lower due to

the fact that the magnitude of price response is smaller than one. This result remains valid even

when upward social influence is stronger than the downward influence, where the option value of

social interactions can be much higher. This is because the positive effect of the option value on

price is offset by the opposing force on the reduction in the marginal consumer’s willingness-to-pay.

Last but not least, we explore how social interactions, both in terms of direction and intensity,

impact a firm’s profitability. Intuitively, as social interactions are more likely to positively influence

consumers’ valuations, the firm can charge a higher price and, consequently, earn a higher profit.

This result is driven by the increased option value, as a stronger upward social influence rotates the

post-interaction demand function upward. Regarding the intensity of social interactions (the relative

weight of social interactions in driving consumer utility compared to idiosyncratic experience), when

upward influence is stronger, a firm’s profitability always increases with intensity. However, when

downward influence is stronger, the firm’s profitability depends on what we term as “social elasticity”

– the effect of a one-unit change in the intensity of social interactions on the reduction in demand.

Stronger downward social influence rotates the demand distribution clockwise, reducing demand
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and negatively impacting the firm’s profitability. In this scenario, the higher the intensity, the

larger the amount by which demand reduces. Therefore, understanding the extent of demand loss

in response to a unit increase in interaction intensity is crucial. We find that the firm’s profit can

still increase with interaction intensity as long as the social elasticity is sufficiently small."

We then extend the analysis to examine the interplay between a firm’s innate content quality

and social interactions and the case of purely interactive digital consumption.

Our research contributes to the literature on the economic and social impact of social interac-

tions. Kuksov (2007) studies how social interactions influence the informativeness of brand use.

The paper shows that brand can valuable even when social interactions convey no information.

Manchanda et al. (2015) empirically analyze the economic effect of consumer social interactions

in online communities and confirm that consumers who interact more contribute higher revenue

to the firm. Zhang et al. (2020) investigates the design of social interactions on online learning

platform and assess the consequential influence of such interactions on education quality. They

show that promoting social interaction among students has a positive impact on learning outcomes.

Zhang et al. (2020) proposes a measure, moment-to-moment synchronicity (MTMS), to capture

the synchronicity between viewers’ in-consumption engagement and movie content. Their research

demonstrates that MTMS significantly predicts viewers’ post-consumption evaluation of movies.

We contribute to the understanding of this phenomenon by providing a theoretical framework that

allows to analyze different elements of social interaction on equilibrium outcomes.

We also provide new insights to the literature on digital content and paywall strategy. Amaldoss

et al. (2021) and Wang et al. (2024) study a digital content provider’s paywall strategy when it bal-

ances between ad and content revenue. Lambrecht and Misra (2017), Pattabhiramaiah et al. (2019)

and Chae et al. (2023) empirically investigate the impact of digital paywall on a publisher’s profit

streams. Chiou and Tucker (2013) studies the effect of paywall strategy on readership reduction.

by examining a new phenomenon of in-consumption social interactions.

The rest of the paper is organized as follows: We introduce the model in Section 2. In the

main analysis, Section 3 examines the key insights of the strategic impact of in-consumption social

interactions and Section 4 investigates how social interactions influence a firm’s profitability. Then

we extend the analysis in Section 5. We conclude and acknowledge our limitations in Section 6.
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2 Model

We construct a dynamic continuous time model to characterize digital consumption and in-consumption

social interactions. At each time t, a monopoly firm sells digital content at price pt to a unit mass of

consumers, each index by i ∈ [0, 1]. At each time t, a consumer either consumes the digital content

or takes the outside option u0.

2.1 Real-time Digital Consumption

Let θit be consumer i’s experience and thereby willingness-to-pay for digital content at time t. The

state variable θit follows a well-defined distribution F (·) on a support Θ =

θ, θ


. A standard

technical assumption on log-concavity of 1− F (·) applies throughout the paper.

Two forces can change a consumer i’s real-time experience θit. One is an idiosyncratic force, e.g.,

momentary leisure or informational need for consuming content, consumer reactions to temporal

variations in the content dynamics (Zhang et al., 2020). Moreover, with emerging technologies

that enable in-consumption social interactions, consumers’ experience can also change depending

on whom they encounter or interact with, enhancing or dampening their enjoyment as consumption

proceeds (Ramanathan and McGill, 2007, Zhang et al., 2020, Liu and Kwon, 2022). We consider

in-consumption social interaction as a second social force.

Idiosyncratic Experience

The first force comes from consumer idiosyncratic experience. During a short period [t, t+ dt),

consumer type may change with probability κdt such that a new value is drawn according to

distribution function F (·) on Θ =

θ, θ


.

With probability 1 − κdt, a consumer does not experience an idiosyncratic shock and sticks to

the last-period experience. That is, we consider the following transition probabilities:

Pr (θt+dt = ξ|θt = ξ) = 1− κdt,

Pr

θt+dt = ξ′|θt = ξ


= κf


ξ′

dt. (1)

Here, κ ∈ (0,∞) can be interpreted as intensity of idiosyncratic shocks, depending on the nature
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of digital content or consumption habits. For example, a movie with a lot of surprise and suspense

leads to a higher κ.

In-consumption Social Interactions

The second source of experience change is induced by social interactions. In digital content con-

sumption at time t, a consumer with contemporaneous experience x ∈ Θ randomly encounters

another consumer with y ∈ Θ with probability λ · mt (y) · dt, where λ represents the intensity

of social interactions and mt (y) denotes the equilibrium type distribution. Both exogenous and

endogenous reasons influence an occurrence of social interactions. For example, bandwidth limits

may constrain the display of all live comments or a stringent scrutiny technology is adopted to

moderate online conversations. These two factors can reduce the level of λ. Furthermore, whether

a consumer can encounter a particular type of consumer y is proportional to its density mt(y). This

type distribution should take into account consumers’ equilibrium behavior.

We follow the Psychology literature about “coherence” effect in social interactions such that one’s

experience move up and down together with others (Hatfield et al., 1993, Neumann and Strack, 2000,

Ramanathan and McGill, 2007). When a consumer with x encounters a consumer with y, assume

with no loss of generality that x > y. In an infinitely small period dt, one of the three possible

outcomes happens once an interaction occurs: the low-type consumer y’s experience is enhanced to

x (upward social influence), x’s experience is dampened to y (downward social influence), no social

influence takes place. These events happen with probabilities ωU , ωD, and 1−ωU−ωD, respectively.

The probabilities also capture variations in the social aspects of digital content: relative strengths of

upward and downward social influences may vary across different types of content. For example, in

news consumption, consumers are more likely to be influenced when reading experience-dampening

comments; while in entertainment consumption, consumers are more likely to immune from them,

and experience-enhancing comments are more likely to take effect.

We would like to make three notes. First, the continuous-time framework makes the model more

tractable compared with its discrete-time counterpart because the consumer type is changed either

by an idiosyncratic shock or by social interactions in an infinitely small time period.

Viewed in this way, a second advantage of adopting the stochastic continuous-time modeling

approach lies in that it flexibly accommodates both two-way and one-way interactions. In two-
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way communications (e.g., discussions, forums, communities, chats, etc.), the two counterparties

can mutually influence each other’s experience. In one-way interaction (e.g., comments without

response), one party unilaterally influences the counterparty. In this case, one can interpret ωU

(ωD) as the probability that a high-type (low-type) consumer happens to be an influencer and

succeeds in influencing the counterpart and 1− ωU − ωD as the probability that the receiver is not

influenced.

Third, our model can be extended to incorporate additional psychological values that a con-

sumer may obtain from successfully influencing others or may subtract when meeting a lower-type

consumer. Adding these values would strengthen our results. To reflect our core idea, we omit them

for the simplicity of the model.

2.2 Consumer Decision and Population Distribution

During a short period [t, t+ dt), a consumer either opts in and consumes the digital content (χit = 1)

or opts out and takes the outside option (χit = 0). Then a consumer’s instantaneous utility at time

t is given by,

(θit − pt)1 (χit = 1) + u0 · 1 (χit = 0) . (2)

If a consumer opts in, the content value θit is realized, and the consumer i enjoys a net payoff

θit − pt. If a consumer opts out, the consumer enjoys an outside option with a value of u0 ∈

θ, θ


.

Once consumers are non-users of the platform, they cannot view content nor participate in

social interactions. Their valuations for content are only driven by idiosyncratic shocks as described

in equation (1). Then they decide whether to continue staying outside or to opt in for content.

Without loss of generality, we assume that consumers choose to be users when they are indifferent

between consuming content and opting out for the outside option.

Let Θ0t and Θ1t be the set of consumers who choose to be non-buyers or buyers, respectively.

Θ0t =

θi ∈


θ, θ


|xit = 0, i ∈ [0, 1]


,

Θ1t =

θit ∈


θ, θ


|xit = 1, i ∈ [0, 1]


,

7



so that the two subsets are disjoint and the union of them is exactly the whole type space:

Θ0t ∩Θ1t = ∅,Θ0t ∪Θ1t =

θ, θ


.

Let the type population density function for all consumers be mt (·). That is, the measure of

consumers with types in interval (θ, θ + dθ) amounts to mt (θ) dθ. Since consumers of all types

should be summed up to the total population, we have

1 =



Θ1t

m (θ) dθ.

Accordingly, we can have Mt (θ) the measure of users with types no more than θ.

2.3 Firm’s Pricing Strategy

The monopoly firm sets price trajectory {pt}∞t=0 to maximize the total profit:

max
pt

Π = pt ·  {i ∈ [0, 1] |χit = 1} .

2.4 Equilibrium Definition

We focus on the steady-state equilibrium, which should be comprised of three parts:

• Given the population distribution of consumers and the content price, each individual con-

sumer decides whether or not to consume the content in order to maximize the lifetime dis-

counted sum of flow utility;

• By aggregating each consumer’s optimal decision, we obtain the population distribution.

• Given the population distribution and each consumer’s optimal decision, we obtain the profit-

maximizing price.
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3 Equilibrium Analysis

At each time t, a consumer either consumes the content or takes the outside option. A consumer’s

objective is to maximize the following discounted sum of instantaneous utility:

E
 ∞

t
e−r(τ−t) [(θiτ − p)1 (χiτ = 1) + u01 (χiτ = 0)] dτ


, (3)

We focus on the steady-state equilibrium, where the type distribution of consumers stays con-

stant over time. Given the steady-state population distribution of consumers and the price, we

derive their optimal strategy. Denote V1 and V0 as the expected discounted sum of instantaneous

utility if a consumer chooses to become a user and a non-user, respectively. The optimal strategy

comes from the comparison between the expected discounted sum of instantaneous utilities of opting

in and out of the platform, which is given by the following rule,

χ =






1, if V1 ≥ V0

0, if V1 < V0

(4)

Thus, the value function is given by

V = max {V1 , V0} . (5)

3.1 Benchmark: No Social Interaction

In this subsection, we first study a benchmark case without social interactions. Consumers wait for

exogenous type switching shock, which occurs to an individual at Poisson rate κ,

We further specify V0. A non-user receives an instantaneous utility flow at rate u0, and waits

for an exogenous shock to get the valuation changed:

V0 = βdt · u0 + (1− βdt)


κdt

 θ′=θ

θ′=θ
V

θ′

dF


θ′

+ (1− κdt)V0


, (6)

where β is the discount factor.
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In the steady state, we have d
dtV0 = 0, which can be further rearranged as follows,

V0 =
β

β + κ
· u0 +

κ

β + κ
·
 θ′=θ

θ′=θ
V

θ′

dF


θ′

≡ V0. (7)

Equation (7) shows that a non-user’s value function is a weighted average of the two components: the

flow payment from outside option weighted by β
β+κ and the option value induced by an exogenous

shock weighted by κ
β+κ . Moreover, V0 (θ) is independent of θ.

If the consumer opts in, the value function becomes

V1 (θ) = βdt · (θ − p) + (1− βdt)


κdt

 θ′=θ

θ′=θ
V

θ′

dF


θ′

+ (1− κdt)V1 (θ)



=
β (θ − p)

β + κ
+

κ

β + κ

 θ′=θ

θ′=θ
V

θ′

dF


θ′

. (8)

Taking difference, we find

V1 (θ)− V0 =
β

β + κ
(θ − p− u0)






≥

<
0 if θ

≥

<
(p+ u0) .

Hence,

V (θ) = max {V1 (θ) , V0 (θ)} =






V1 (θ)

V0

if θ
≥

<
(p+ u0) .

The consumer’s optimal choice is myopia in the sense that one simply compares the instantaneous

payoff from participating (which gives him θ − p) and not (which yields u0).

We characterize the equilibrium in the first lemma and relegate all proofs in the Appendix.

Lemma 1. Without social interactions, the optimal price p∗NI is determined by

p∗NI =
1− F (p∗NI + u0)

f

p∗NI + u0

 . (9)

Consumers with θ > θ∗NI opt in to consume digital content, where θ∗NI = p∗NI + u0, where subscript

“NI” stands for the case of no social interactions.

The no-interaction equilibrium corresponds to the classic monopoly pricing problem. Consumers’
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decision rule remains the same as in the myopic one-period game.

3.2 Social Interaction Equilibrium

In the proceeding section, let us examine how the introduction of social interactions impact con-

sumers’ value functions. During a short period [t, t+ dt), a consumer’s the sum of expected dis-

counted payoffs can be broken down to the present value and the future value given that the type is

changed by an exogenous shock, changed by social interaction, or unchanged after social interaction.

V1 (θ) = βdt · (θ − p)  
instantaneous consumption

+ (1− βdt)




κdt

 θ′=θ

θ′=θ
V

θ′

dF


θ′


  
idiosyncratic shock

(10)

+λdt



y∈Θ1,y≤θ
m1 (y) [ωDV (y) + ωUV1 (θ) + (1− ωU − ωD)V1 (θ)] dy

  
social interaction with a lower type

+λdt



x∈Θ1,x≥θ
m1 (x) [ωUV (x) + ωDV1 (θ) + (1− ωD − ωU )V1 (θ)] dx

  
social interaction with a higher type

+

1− κdt− λM1dt


V1 (θ)

  
type unchanged



 ,

where Θ1 ≡ {θ : χ(θ) = 1} denotes a set of paid consumers. For completeness, let us also define

Θ0 ≡ {θ : χ(θ) = 0} as a set of consumers who opt out.

The first term in equation (10) captures the instantaneous consumption flow in the current

period. The second term (terms included in the bracket) captures what takes place in the next

short period of time dt. Firstly, a consumer receives a type-switching shock. The second and third

line denote the change in a consumer’s value function due to social interactions. The second line

denotes the case where the consumer encounters another one with a lower type, say y. Then the

consumer type is driven down by the counterparty with probability ωD and ends up with a value

function V (y), or the counterparty’s type is elevated up by the consumer with probability ωU , or no

one changes the other’s type and they remain their type unchanged with probability 1− ωD − ωU .

In the last two cases, the consumer value function is still V1(θ). The third line, on the other hand,

denotes the case where a consumer encounters another one with a higher type, say x. Similarly,

11



there are three subcases then: either the consumer is affected by the counterparty so that the new

type becomes x with probability ωU and ends up with a new value function V (x), , the consumer

drives down the counterparty with probability ωD, or no one changes anyone with the remaining

probability. In the last two cases, the consumer’s value function remains unchanged. If all the

events described above have not happened, the consumer ends up with the same type as the last

minute and his value function is still V1 (θ). This is reflected in the last line.

Without social interaction, population distribution is simply the initial one F (·). Notice that

social interactions change the population distribution where consumer valuation is drawn, M1(·),

where M1 (θ) is the cumulative population size of users up to type θ with associated density function

m1 (·). We also denote the total measure of users as M1. More specifically,

M1 (θ) =



y∈Θ1,y≤θ
m1 (y) dy, (11)

M1 =



θ∈Θ1

m1 (θ) dθ. (12)

Then the population size of users whose type are above θ is given by

M1 −M1 (θ) =



x∈Θ1,x≥θ
m1 (x) dx. (13)

Then we rearrange V1 (θ) as follows,


β + κ+ λM1


V1 (θ) = β (θ − p) + κ

 θ′=θ

θ′=θ
V

θ′

dF


θ′


+λωD



y∈Θ1,y≤θ
m1 (y)V (y) dy + λ (1− ωD)V1 (θ)M1 (θ)

+λωU



x∈Θ1,x≥θ
m1 (x)V (x) dx+ λ (1− ωU )V1 (θ)


M1 −M1 (θ)


.(14)

Taking total differentiation w.r.t. θ and rearranging the result, we can have

dV1 (θ)

dθ
=

β

β + κ+ λωU
M1 − λ∆M1 (θ)

> 0. (15)

Since V0 is independent of θ and V1(θ) increases in θ, we know that the optimal consumer

decision can be characterized by a threshold strategy: There must exist a cutoff point, denoted by

12



θ∗1, such that

V1 (θ)






>

=

<






V0 whenever θ






>

=

<






θ∗1, (16)

It follows that

M1 (θ) =

 θ

θ∗1

m1 (y) dy, θ ∈

θ∗1, θ


. (17)

We construct the expressions for the value functions in the Appendix and present the formulas

as follows,

V0 (θ) = V0 = u0 +

 θ

θ∗1

κ [1− F (x)]

β + κ+ λωU
M1 − λ∆M1 (x)

dx, ∀θ ∈

θ, θ


,

V1 (θ) = V0 +

 θ

θ∗1

β

β + κ+ λωU
M1 − λ∆M1 (x)

dx, θ ∈

θ∗1, θ


.

Then we can obtain consumers’ equilibrium decision in the next lemma.

Lemma 2. Consumers opt in to consume digital content when θ ≥ θ∗1 and opt out when θ < θ∗1,

where θ∗ is implicitly determined by

p+ u0 = θ∗1 +

 θ

θ∗1

λωU


M1 −M1 (x)



β + κ+ λωU
M1 − λ∆M1 (x)

dx

  
Option Value of Social Interactions

, (18)

where ∆ ≡ ωU − ωD.

Let us provide some intuitions for equation (18). When the firm increases its price, the type of

the marginal customer should be increased as high price drives low type consumers out of the market.

If customers follow the myopic rule, as they did in the benchmark case with no social interaction,

then one unit of price increase leads to a unit of decrease in the marginal customer’s type. However,

compared with the benchmark case of no interaction, the presence of social interaction leads to

an option value of opting in. Note that this option value is evaluated at the marginal consumer’s

willingness-to-pay. To understand how a price change will affect marginal consumer’s decision, let
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us define the option value of social interactions as follows,

I (θ∗1) ≡
 θ

θ∗1

λωU


M1 −M1 (x)



β + κ+ λωU
M1 − λ∆M1 (x)

dx (19)

To understand the marginal consumer’s decision, we take the derivative of I (θ∗1) with respect

to θ∗1:
dI(θ∗1)

dθ∗1
= − 1

1 + β+κ

λωUM1

∈ (−1, 0) (20)

This result shows that when price is increased by ∆P , the marginal type is increased by an

amount smaller than one unit. In other words, demand is less elastic compared with the no-

interaction benchmark.

Next, knowing equilibrium consumer decision, we solve for the equilibrium population distri-

bution. We use m1 (θ) to denote the density of users, that is, users’ population size in the region

(θ, θ + dθ) is given by m1 (θ) dθ. Similarly, we use m0 (θ) to denote the density of non-users.

Since one must be either a user or a non-user, we should have the following identity

 θ

θ=θ
[m0 (θ) +m1 (θ)] dθ = 1. (21)

We first derive the expression for m0 (θ), which takes non-degenerate form on interval [θ, θ∗1].

Let’s focus on non-users with types ranging in interval (θ, θ + dθ) at time t, amounting to m0 (θ) dθ

in total. Consider a short time interval during (t, t+ dt).

• (i) A fraction κdt of customer (either user or non-user) experience a shock in their types, so

they flow out from this group (with total measure κdt ·m0 (θ) dθ).

• (ii) Some customers (either user or non-user) experience a shock in their types and their new

types happen to lie in this interval, so these customers flow into this group (with total measure

κdt · f (θ) dθ).

In the steady-state equilibrium, inflows must be equal to outflows so that

κdt ·m0 (θ) dθ = κdt · f (θ) dθ ⇒ m0 (θ) = f (θ) , ∀θ ∈ [θ, θ∗1] . (22)
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We can therefore obtain the measure of non-users:

M0 =

 θ∗1

θ
m0 (θ) dθ =

 θ∗1

θ
f (θ) dθ = F (θ∗1) ⇒ M0 = F (θ∗1) . (23)

We now derive the expression for m1 (θ), which takes non-degenerate form on interval

θ∗1, θ


.

Still focus on users with types in interval (θ, θ + dθ), whose total measure amounts to m1 (θ) dθ.

Consider a short time interval during (t, t+ dt).

• (i) A fraction κdt of users experience a shock in their types (with total measure κdt ·m1 (θ)).

• (ii) Such a user meets another user with type y < θ with prob. λm1 (y) dt. After meeting, his

type becomes y with prob. ωD and thus flow out from this interval, or his counterparty’s type

becomes θ with prob. ωU and thus a new individual flows into this interval, or both remains

their type with prob. (1− ωU − ωD) and no change in this situation.

• (iii) Such a user meets another user with type x > θ with prob. λm1 (x, t) dt. After meeting,

his type becomes x with prob. ωU and thus flow out from this interval, or his counterparty’s

type becomes θ with prob. ωD and thus a new individual flows into this interval, or both

remains their type with prob. (1− ωU − ωD).

Hence,

m1 (θ) dθ = (1− κdt)m1 (θ) dθ + κdt · f (θ) dθ + λdt ·m1 (θ) dθ (−ωD + ωU )



y∈Θ1,y≤θ
m1 (y) dy

+λdt ·m1 (θ) dθ (−ωU + ωD)



x∈Θ1,x≥θ
m1 (x) dx.

which can be simplified to the following equation:

κm1 (θ) = κf (θ) + λ∆m1 (θ)M1 (θ)− λ∆m1 (θ)

M1 −M1 (θ)


. (24)

We can solve for the type distribution of users as follows
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M1 (θ) =






1
2


M1 +

κ
λ∆


− 1

2


M1 +

κ
λ∆

2
− 4 κ

λ∆ [F (θ)− F (θ∗1)], if ∆ > 0

F (θ)− F (θ∗1) , if ∆ = 0

1
2


M1 +

κ
λ∆


+ 1

2


M1 +

κ
λ∆

2
− 4 κ

λ∆ [F (θ)− F (θ∗1)], if ∆ < 0

, ∀θ ∈

θ∗1, θ


.

(25)

Obviously, M1 (θ) is strictly increasing in θ.

To obtain M1 (the total measure of users), the following equation should hold:

0 = −

λ∆M1 + κ


M1


θ

+ κ [1− F (θ∗1)] + λ∆


M1


θ
2

= −

λ∆M1 + κ


M1 + κ [1− F (θ∗1)] + λ∆


M1

2
= −κM1 + κ [1− F (θ∗1)]

⇒ M1 = 1− F (θ∗1) . (26)

The last equation, together with (23), confirm the identity (21).

The density of users is given by

m1 (θ) =
f (θ)

λ∆M1 + κ
2

− 4κλ∆ [F (θ)− F (θ∗1)]

. (27)

After we obtain equilibrium population distributions, characterized in equations (25)-(27), we

can then examine how social influence shapes population distribution.

Lemma 3. Conditional on Θ1, the equilibrium population distribution with social interaction M1(θ)

and the truncated population distribution without social interaction F (θ) can be ranked in terms of

stochastic dominance:

M1 (θ)

M1






<

=

>






F (θ)− F (θ∗1)

1− F (θ∗1)
, if ∆






>

=

<






0

stronger upward influence

neutral influence

stronger downward influence

. (28)

The probability density functions m1(θ) and f(θ) can be ranked in terms of monotone likelihood
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ratio:

d

dθ

m1 (θ)

f (θ)






>

=

<






0, if ∆






>

=

<






0. (29)

When ∆ > 0 such that the upward social influence is stronger than the downward influence

(ωU > ωD), m1(θ)
f(θ) increases over the interval


θ∗1, θ


. When ∆ < 0 such that the downward social

influence more likely to take place (ωD > ωU ), m1(θ)
f(θ) decreases over the interval


θ∗1, θ


.

Moreover, it is well known that MLRP leads to the first-order stochastic dominance. Hence,

when ∆ > 0, M1(θ)
M1

first-order stochastically dominates F (θ)−F(θ∗1)
1−F(θ∗1)

: 1− M1(θ)
M1

> 1− F (θ)−F(θ∗1)
1−F(θ∗1)

. Up-

ward communication allocates more types to the upper tail relative to the underlying distribution

F (θ). When ∆ < 0, the reverse holds: M1(θ)
M1

is first-order stochastically dominated by F (θ)−F(θ∗1)
1−F(θ∗1)

.

Given the equilibrium consumer behavior and the subsequent population distribution, we then

solve for the firm’s profit-maximizing problem:

max
p

Π = p · M1 = p (1− F (θ∗1)) (30)

It is worth noting that the demand M1 does not depend on M1(θ) but the cutoff θ∗1. The impact

of the new population distribution with social influence enters through the participation cutoff θ∗1,

which is given by equation (18) in Lemma 2. Recall that equation, equivalently, we can rewrite the

firm’s profit-maximizing problem in terms of θ∗1 as follows,

max
θ∗1

Π = (θ∗1 − u0 + I(θ∗1)) (1− F (θ∗1)) (31)

We characterize the social interaction equilibrium in the following proposition.

Proposition 1. The steady-state equilibrium consists of the cutoff θ∗1, the distributions m1(θ) and

m0(θ), and the price p∗, which should satisfy:

•
1+

dI(θ∗1)

dθ∗1
θ∗1−u0+I(θ∗1)

=
1−F (θ∗1)
f(θ∗1)

, where I(θ∗1) =
 θ
θ∗1

λωU [M1−M1(x)]
β+κ+λωU

M1−λ∆M1(x)
dx;

• p∗ = θ∗1 − u0 + I(θ∗1);
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• m1 (θ) =
f(θ)

(λ∆M1+κ)
2
−4κλ∆[F (θ)−F(θ∗1)]

, m0(θ) = f(θ), and
 θ
θ=θ [m0 (θ) +m1 (θ)] dθ = 1.

Equilibrium Pricing

Different from classic monopoly pricing problem, there are two countervailing forces drive the opti-

mal pricing. To see this, we have

dp∗(θ∗1)

dθ∗1
= 1 +

dI(θ∗1)

dθ∗1
=

1

1 + λωU
β+κ

M1

∈ (0, 1) (32)

Similar to the classic monopoly pricing without social interaction, as θ∗1 decreases, consumers’

valuation for the content decreases, resulting in a lower price. Nonetheless, with social interaction,

as θ∗1 decreases, the option value I(θ∗1) increases. That is, as consumers’ valuation for the product

becomes lower, they expect that they will gain more from interactions with more high-type con-

sumers. In a sense, product and social interaction are substitutes to each other. Combined the two

above countervailing forces together, the price best response p (θ∗1) to marginal change in demand

is positive but smaller than one.

Compare with the no-interaction benchmark

To understand the impact of social interactions on the equilibrium outcomes, let us compare the

social interaction equilibrium with the no interaction benchmark. We first describe the result below.

Proposition 2. Compared with the no-interaction benchmark, social interaction always results in

more consumers θ∗1 < θNI , a lower price p∗ < pNI , and a higher profit Π∗ > ΠNI

To gain an intuition, let us rearrange the first-order condition of equation (31) such that θ∗1 is

determined by:



1− F (θ∗1)− (θ∗1 − u0)f(θ
∗
1)  

no-interaction benchmark



+




dI(θ∗1)

dθ∗1  
<0

(1− F (θ∗1))− f(θ∗1)I(θ
∗
1)




= 0 (33)

The first bracket represents the condition of θNI . As shown earlier, dI(θ∗1)
dθ∗1

< 0, we must have

θ∗1 < θNI . That is, the platform always finds better off to welcome more consumers to opt in. And
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this result holds true even when downward social influence is stronger than the upward influence

(∆ < 0). This is because the marginal consumer θ∗1 is the lowest type in social interactions, which

will not be driven even lower.

Moreover, the equilibrium price with social interaction should be lower due to the fact that the

magnitude of price response is smaller than one. This result holds true even when upward social

influence is stronger than the downward influence (∆ > 0) where the option value of social interac-

tions can be much higher. This is because the positive effect on price is offset by the countervailing

force on the reduction in θ∗1.

Combined the demand and price effect together, we find that the platform can earn a higher

profit by allowing for social interactions even when downward social influence is stronger than the

upward one. This result is counterintuitive. One might think when negative social influence drives

the user experience, the firm is better off disallowing social interactions, which is consistent with

practices of the Atlantic and Netflix. Nonetheless, this layman intuition holds true when the firm

allows social interactions while fixing the price at the level of no social interactions.

4 Comparative Statics

In this section, we will examine how social interactions will impact the equilibrium profit: direction

and intensity of social interactions.

4.1 Direction of Social Influence

As shown in Lemma 3, the direction of social interactions ∆ qualitatively shapes distribution of

post-interaction consumer valuations. In the next result, we examine how the direction of social

influence will impact the equilibrium profit and pricing strategy.

Proposition 3. The equilibrium profit and price increase in ∆.

Intuitively, as social interactions are more likely to positively influence consumers’ valuations,

the firm can charge a higher price and earn a higher profit. The mechanism that drives the result is

through the increased option value as a stronger upward social influence rotates the post-interaction

demand function upward.
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4.2 Intensity of Social Influence

For notational simplicity, let us denote z ≡ λ
β+κ > 0, which measures the relative weight of social

influence in driving consumer type change to that of idiosyncratic experience. The larger z, the

higher weight social influence plays in changing consumer experience. Recall the optimal profit in

equation (31). Let us perform the comparative statics over z:

∂Π∗

∂z
=

∂I(θ∗1, z)

∂z
(1− F (θ∗1)) ∝

∂

∂z




 θ

θ∗1


M1 −M1 (x)



1/z + ωD
M1 +∆


M1 −M1 (x)

dx



 (34)

Notice that the effect depends on the strength of upward or downward social influence. We

further break down into the following two cases.

Stronger Upward Social Influence

Proposition 4. When upward social influence is stronger than the negative one, as the intensity of

social interactions z increases, the equilibrium profit Π∗(∆ > 0) increases, the marginal consumer

θ∗1 lowers, the equilibrium price first drops then increases.

So long as the social influence is positive, a more interactive digital consumption benefits the firm.

Moreover, the firm should welcome more lower-valued consumers as θ∗1 decreases in z. Nonetheless,

the impact of z on the equilibrium price is non-monotonic. To see this, let us further decompose

the price effect:
∂P (θ∗1, z)

∂z
=


1 +

∂I(θ∗1, z)

∂θ∗1



  
>0

· ∂θ
∗
1

∂z
<0

+
∂I(θ∗1, z)

∂z  
>0

(35)

There are two opposite forces driving the equilibrium price. First, as social influence becomes

more predominant, the firm is more likely to welcome more consumers with lower valuation to

opt in, driving down the price. However, as z increases, the option value becomes higher. Hence,

the equilibrium price is convex in z. The firm can charge a relatively higher price when digital

consumption is either predominantly driven by idiosyncratic experience of by social interactions.
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Stronger Downward Social Influence

When downward social influence is stronger, though the firm can be better off with social interactions

than without, it is not clear how interactive digital consumption should be. The answer to this

question becomes vital if we consider that the firm is able to moderate social interactions. We first

present the result in the following proposition then explain the intuition.

Proposition 5. When downward social interaction is stronger than the positive one, whether the

equilibrium profit increases or decreases with the intensity of social interactions z depends on “social

elasticity,” i.e., ∂Π∗

∂z ≷ 0 if εSI ≡ −∂ ln[M1−M1(x)]
∂ ln z ≶ 1

1+zωD
M1

.

Our analysis hinges on the notion we coin as “social elasticity”, that is, the effect of one unit

change in intensity of social interactions on the reduction in demand. Recall from Lemma 3, stronger

downward social influence rotates the demand distribution downward, which reduces demand and

hurts firm’s profitability. And in this situation, the higher the intensity of social interactions, the

larger amount the demand will reduce. Hence, it is key to understand the extent of demand loss

in response to a unit increase in interaction intensity. Therefore, we define the concept of social

elasticity, εSI ≡ −∂ ln[M1−M1(x)]
∂ ln z and find that the firm’s profit can still increase with interaction

intensity so long as the social elasticity is sufficiently small.

5 Extension

5.1 Firm’s Product Quality

It becomes a strategic decision for the firm to design digital experience with the availability of social

interactions. In this extension, we investigate the interplay between social interactions and firm’s

innate product quality.

Proposition 6. Consider two underlying taste p.d.f f and g on the support

θ, θ


, which are ranked

by monotone likelihood ratio:f(θ)g(θ) decreases in θ, we find that Π∗
F ≤ Π∗

G.

Only the upper tail of the underlying taste distribution (i.e., PrF (θ ≥ x) = 1 − F (x)) affects

the price function P (θ∗1, z). Hence, it is intuitive to see that a distribution with more weight on

its upper tail should be more welcome by the platform and delivers a higher level of profit to the
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platform. We formalize this comparative result in the above proposition. Here, the distribution g

puts more weight on its upper tail (right tail) than the distribution f .

5.2 Purely Interactive Digital Consumption

With the burgeoning trend in live streaming on entertainment and gaming platforms such as Tiktok

and Twitch, the firm is adapting to a more interactive community. In this extension, we examine

the equilibrium paywall strategy when digital consumption becomes purely interactive.

Proposition 7. When digital consumption is purely driven by social interactions, i.e., z → ∞,

• When upward social influence is stronger than downward influence, θ∗1 = θ, and p∗ = θ;

• When upward social influence is equivalent to downward influence, θ∗1 = u0, and p∗ = E[θ ≥

0]− u0;

• When downward social influence is stronger than upward influence, θ∗1 = θNI , and p∗ = pNI .

The equilibrium paywall with purely interactive digital experience depends on the direction of

social interactions. When the upward social influence is stronger, the firm should be as inclusive as

possible. When the downward social influence is stronger, the firm’s strategy reverts back to the

no-interaction benchmark.

6 Conclusion

Social interactions play a crucial role in shaping consumers’ digital content consumption experience

and influencing their willingness to pay. Despite the prevalent and growing trend of in-consumption

social interactions, firms confront novel challenges, including the loss of direct control over consumer

experience and the uncertainty surrounding real-time interactions. Navigating these challenges be-

comes a critical concern, prompting questions about participation dynamics and the impact on

paywall strategies. Our continuous-time model, incorporating idiosyncratic shocks and endogenous

social interactions, reveals that firms benefit from allowing social interactions, even when downward

influence outweighs upward influence. While the equilibrium price is lower, demand is higher com-

pared to a no-interaction scenario. Importantly, in situations where downward social influence is
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stronger, the influence of social intensity on a firm’s profitability hinges on the concept of “social

elasticity.” We demonstrate that a firm’s profit can still rise with interaction intensity, provided the

social elasticity remains sufficiently small. Our model framework and results can also be applied

to the context of physical goods and provide managerial insights to firms that consider building

interactive online customer communities.

Our research has a few limitations that we invite future researchers to address. Firstly, we do

not consider social interactions between paid users and non-paid users. While social interactions

are often provided for paid users in many contexts, future research can explore this possibility.

Secondly, our work assumes that consumers always participate in social interactions. Nonetheless,

their incentive can be further investigated, as we often observe consumer lurking.
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Appendix

Proof of Lemma 1

Proof. We first calculate the integral:

 θ′=θ

θ′=θ
V

θ′

dF


θ′


=

 θ′=p+u0

θ′=θ
V0dF


θ′

+

 θ′=θ

θ′=p+u0


V0 +

β

β + κ
(θ − p− u0)


dF


θ′


= V0 +
β

β + κ

 θ′=θ

θ′=p+u0

(θ − p− u0) dF

θ′


= V0 +
β

β + κ

 θ=θ

θ=p+u0

[1− F (θ)] dθ.

Plugging back into the expression of V0, we obtain

V0 = u0 +
κ

β + κ

 θ=θ

θ=p+u0

[1− F (θ)] dθ,

and

V1 (θ) =
β (θ − p)

β + κ
+

κ

β + κ
u0 +

κ

β + κ

 θ=θ

θ=p+u0

[1− F (θ)] dθ.

The type density function is given by f (θ). Since only those agents with θ ≥ p+u0 participate,

the total demand amounts to 1− F (p+ u0). Hence, the profit is given by p [1− F (p+ u0)].

The price does not include option value but simply balance the instantaneous payoff from par-

ticipating or not:

θNI = pNI + u0.

It is direct to see that the LHS is strictly increasing and the RHS is strictly decreasing in p due

to the log-concavity of [1− F (θ)]. Due to the following fact

LHS (p = 0) = 0 <
1− F (u0)

f (u0)
= RHS (p = 0) ,

LHS

p = θ − u0


= θ − u0 > 0 = RHS


p = θ − u0


,

we conclude that equation (9) implies a unique solution.
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Proof of Lemma 2

Proof. Noticing the fact V1 (θ
∗
1) = V0, we obtain

V1 (θ) = V0 +

 θ

x=θ∗1

β

β + κ+ λωU
M1 − λ∆M1 (x)

dx. (36)

Now,

 θ

x=θ
V (x) dF (x) =

 θ∗1

x=θ
V0dF (x) +

 θ

x=θ∗1

V1 (x) dF (x)

= V0 +

 θ

x=θ∗1

[V1 (x)− V0] dF (x)

= V0 −
 θ

x=θ∗1

[V1 (x)− V0] d [1− F (x)]

= V0 − {[V1 (x)− V0] [1− F (x)]}|x=θ
x=θ∗1

+

 θ

x=θ∗1

[1− F (x)]
dV1 (x)

dx
dx

= V0 +

 θ

x=θ∗1

β [1− F (x)]

β + κ+ λωU
M1 − λ∆M1 (x)

dx,

where we have used integral by parts.

Inserting this term into (7) yields

(β + κ)V0 = βu0 + κ

 θ′=θ

θ′=θ
V

θ′

dF


θ′

= βu0 + κV0 + κ

 θ

x=θ∗1

β [1− F (x)]

β + κ+ λωU
M1 − λ∆M1 (x)

dx

⇒ V0 = u0 +

 θ

x=θ∗1

κ [1− F (x)]

β + κ+ λωU
M1 − λ∆M1 (x)

dx. (37)

Besides, (14) can be simplified to


β + κ+ λM1


V1 (θ) = β (θ − p) + κ

 θ′=θ

θ′=θ
V

θ′

dF


θ′


+λωD

 y=θ

y=θ∗1

m1 (y)V1 (y) dy + λ (1− ωD)V1 (θ)M1 (θ)

+λωU

 x=θ

x=θ
m1 (x)V1 (x) dx+ λ (1− ωU )V1 (θ)


M1 −M1 (θ)


.
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Setting θ = θ∗1 in the above equation and noticing M1 (θ
∗
1) = 0 and V1 (θ

∗
1) = V0, we obtain


β + κ+ λωU

M1


V0 = β (θ∗1 − p) + κ

 θ′=θ

θ′=θ
V

θ′

dF


θ′

+ λωU

 x=θ

x=θ∗1

m1 (x)V1 (x) dx.

Then we can have

λωU
M1V0 = β (θ∗1 − p− u0) + λωU

 θ

θ∗1

m1 (x)V1 (x) dx. (38)

We calculate the last integral as follows:

 θ

θ∗1

m1 (x)V1 (x) dx = −
 θ

θ∗1

V1 (x) d

M1 −M1 (x)



= −


V1 (x)


M1 −M1 (x)

x=θ

x=θ∗1
+

 θ

θ∗1


M1 −M1 (x)

 dV1 (x)

dx
dx

= V0
M1 +

 θ

θ∗1

β

M1 −M1 (x)



β + κ+ λωU
M1 − λ∆M1 (x)

dx.

Inserting back into (38) and rearranging,

λωU
M1V0 = β (θ∗1 − p− u0) + λωU



V0
M1 +

 θ

θ∗1

β

M1 −M1 (x)



β + κ+ λωU
M1 − λ∆M1 (x)

dx



 ,

we finally obtain an equation that associate θ∗1 with p:

p+ u0 = θ∗1 +

 θ

θ∗1

λωU


M1 −M1 (x)



β + κ+ λωU
M1 − λ∆M1 (x)

dx, (39)

which is exactly (18).

Verification. We want to show that the expression of V1 (θ) and V0 so far obtained satisfy the

defining equation of (14). To see this, we first rearrange this equation as


β + κ+ λωU

M1 − λ∆M1 (θ)

V1 (θ) = β (θ − p) + κ

 θ′=θ

θ′=θ
V

θ′

dF


θ′


+λωD



y∈Θ1,y≤θ
m1 (y)V (y) dy + λωU



x∈Θ1,x≥θ
m1 (x)V (x) dx.(40)
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We first calculate the integrals on the second line:



y∈Θ1,y≤θ
m1 (y)V (y) dy =

 θ

θ∗1

m1 (y)V1 (y) dy =

 θ

θ∗1

V1 (y) dM1 (y) = V1 (θ)M1 (θ)−
 θ

θ∗1

M1 (y)
dV1 (y)

dy
dy

= V1 (θ)M1 (θ)−
 θ

θ∗1

βM1 (y)

β + κ+ λωU
M1 − λ∆M1 (y)

dy,



x∈Θ1,x≥θ
m1 (x)V (x) dx =

 θ

θ
m1 (x)V1 (x) dx = −

 θ

θ
V1 (x) d


M1 −M1 (x)



= V1 (θ)

M1 −M1 (θ)


+

 θ

θ


M1 −M1 (x)

 dV1 (x)

dx
dx

= V1 (θ)

M1 −M1 (θ)


+

 θ

θ

β

M1 −M1 (x)



β + κ+ λωU
M1 − λ∆M1 (x)

dx.

Inserting all these terms into the RHS yields

β (θ − p) + κV0 +

 θ

x=θ∗1

κβ [1− F (x)]

β + κ+ λωU
M1 − λ∆M1 (x)

dx+ λ

ωU

M1 −∆M1 (θ)

V1 (θ)

−
 θ

θ∗1

λωDβM1 (y)

β + κ+ λωU
M1 − λ∆M1 (y)

dy +

 θ

θ

λωUβ

M1 −M1 (x)



β + κ+ λωU
M1 − λ∆M1 (x)

dx.

If the above is equal to the LHS of (40), we must have

(β + κ)V1 (θ) = β (θ − p) + κV0 +

 θ

x=θ∗1

κβ [1− F (x)]

β + κ+ λωU
M1 − λ∆M1 (x)

dx

−
 θ

θ∗1

λωDβM1 (y)

β + κ+ λωU
M1 − λ∆M1 (y)

dy +

 θ

θ

λωUβ

M1 −M1 (x)



β + κ+ λωU
M1 − λ∆M1 (x)

dx.

After substituting V1 (θ) given in (36) into the LHS and the expression of p given in (39) into the

RHS, we will obtain the expression of V0 as given in (37).

Proof of Proposition 2

Proof. We can rewrite the platform’s profit as follows:

[θ∗1 − u0 + I(θ∗1, z)] [1− F (θ∗1)]
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The F.O.C. condition w.r.t. θ∗1 gives

θ∗1 − u0 −
1− F (θ∗1)

f (θ∗1)
= −I(θ∗1, z) +

dI(θ∗1, z)

dθ∗1

1− F (θ∗1)

f (θ∗1)
.

Recall that θNI , the marginal type of costumer in the benchmark case with no social interaction is

implied by:

θNI − u0 −
1− F (θNI)

f (θNI)
= 0.

We have shown that dI(θ∗1 ,z)
dθ∗1

< 0 and of course the option value is positive, so

θ∗1 − u0 −
1− F (θ∗1)

f (θ∗1)
< 0 = θNI − u0 −

1− F (θNI)

f (θNI)
.

Since x− 1−F (x)
f(x) is strictly increasing in x, we know

θNI > θ∗1.

Knowing that dp(θ∗1)
dθ∗1

∈ (0, 1) and θ∗1 < θNI , we have the following to hold true:

p(θ∗1) < p(θNI) < θNI = pNI .

We first compare the two integrands. According to (28), we know

λωU


M1 −M1 (x)



β + κ+ λωU
M1 − λ∆M1 (x)






>

=

<






λωU [1− F (x)]

β + κ+ λωU
M1

if ∆






>

=

<






0.

If we take θ∗1 as given, then the total measure of participants, M1 = 1−F (θ∗1), is also fixed and

we must have

P (θ∗1,∆)






>

=

<






P (θ∗1, 0) if ∆






>

=

<






0. (41)
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The platform’s profit can be written as

Π (θ∗1,∆) = P (θ∗1,∆) [1− F (θ∗1)] .

Denote by θ∗1 (∆) the optimal cutoff point for a general ∆, that is,

θ∗1 (∆) = argmax
θ∗1

Π (θ∗1,∆) .

When ∆ > 0, we know

Π (θ∗1 (∆) ,∆) ≥ Π (θ∗1 (0) ,∆) = P (θ∗1 (0) ,∆) [1− F (θ∗1 (0))]

> P (θ∗1 (0) , 0) [1− F (θ∗1 (0))] = Π (θ∗1 (0) , 0) ,

where the first inequality is because θ∗1 (∆) maximizes Π (θ∗1,∆) and the second inequality is due to

P (θ∗1 (0) ,∆) > P (θ∗1 (0) , 0) for ∆ > 0 given in (41).

The second part of the claim can be shown as follows,

Π∗(∆) = max
θ∗1

P (θ∗1,∆) [1− F (θ∗1)] ≥ P (θNI ,∆) [1− F (θNI)]

> pNI [1− F (θNI)] = ΠNI

When ∆ < 0, we know

Π (θ∗1 (∆) ,∆) = P (θ∗1 (∆) ,∆) [1− F (θ∗1 (∆))] < P (θ∗1 (∆) , 0) [1− F (θ∗1 (∆))] = Π (θ∗1 (∆) , 0) ≤ Π (θ∗1 (0) , 0)

= P (θ∗1 (0) , 0) [1− F (θ∗1 (0))] .

where the first inequality is due to P (θ∗1 (∆) ,∆) < P (θ∗1 (∆) , 0) for ∆ < 0 given in (41) and the

second inequality is because θ∗1 (0) maximizes Π (θ∗1, 0).
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Proof of Proposition 4

Proof. We rewrite the price function as

P (θ∗1,λ) = θ∗1 − u0 +

 θ

θ∗1

ωU

β+κ

λ[M1−M1(x)]
+ ωD

M1
M1−M1(x)

+∆
dx.

The denominator of the integrand is strictly decreasing in λ, so the integrand as a whole is strictly

increasing in λ. We have
∂P (θ∗1,λ)

∂λ
> 0.

Secondly,
∂P (θ∗1,λ)

∂θ∗1
= 1− ωU

β+κ

λM1
+ ωD +∆

=
β + κ

β + κ+ ωUλM1

,

so ∂P(θ∗1)
∂θ∗1

is decreasing in λ:

∂2P (θ∗1,λ)

∂θ∗1∂λ
= − β + κ


β + κ+ ωUλM1

2ωU
M1 < 0.

The FOC is given by

∂P (θ∗1,λ)

∂θ∗1
[1− F (θ∗1)]− f (θ∗1)P (θ∗1,λ) = 0.

Taking total differentiation wrt λ on both sides:

∂FOC

∂λ
+

∂FOC

∂θ∗1

dθ∗1
dλ

= 0,

where
∂FOC

∂θ∗1
=

∂2P (θ∗1,λ)

∂ (θ∗1)
2 [1− F (θ∗1)]− 2

∂P (θ∗1,λ)

∂θ∗1
f (θ∗1)− f ′ (θ∗1)P (θ∗1,λ) ≤ 0,

and
∂FOC

∂λ
=

∂2P (θ∗1,λ)

∂θ∗1∂λ
[1− F (θ∗1)]− f (θ∗1)

∂P (θ∗1,λ)

∂λ
< 0.
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We have
dθ∗1
dλ

= −
∂FOC
∂λ

∂FOC
∂θ∗1

= −(−)

(−)
< 0.

Proof of Proposition 5

Proof. Following equation (34), we first show that

∂

∂λ
Π (θ∗1,λ) ∝

∂

∂λ





λ

M1 −M1 (x)



β + κ+ λωD
M1 +∆λ


M1 −M1 (x)








As shown earlier that the denominator is positive, we only need to show ∂
∂λ


λ

M1 −M1 (θ)


>

0. Note that the following equation holds:

λ

M1 −M1 (θ)


=

1

2


λM1 −

κ

∆


− 1

2


λM1 +

κ

∆

2
− 4λ

κ

∆
[F (θ)− F (θ∗1)],

Therefore, we have

∂

∂λ


λ

M1 −M1 (θ)


=

1

2
M1 −

1

2


λM1 +

κ
∆


M1 − 2 κ

∆ [F (θ)− F (θ∗1)]


λM1 +
κ
∆

2
− 4λ κ

∆ [F (θ)− F (θ∗1)]

=
1

2



M1 −


λM1 +

κ
∆


M1 − 2 κ

∆ [F (θ)− F (θ∗1)]


λM1 +
κ
∆

2
− 4λ κ

∆ [F (θ)− F (θ∗1)]



 > 0 ⇔


λM1 +

κ

∆

2
− 4λ

κ

∆
[F (θ)− F (θ∗1)] >


λM1 +

κ

∆


− 2

κ

∆M1

[F (θ)− F (θ∗1)] .

If the RHS is negative, then the inequality already holds. Otherwise, when the RHS is positive, we

take square on both sides and obtain


λM1 +

κ

∆

2
− 4λ

κ

∆
[F (θ)− F (θ∗1)] >


λM1 +

κ

∆

2
+ 4


κ

∆M1

2

[F (θ)− F (θ∗1)]
2

−4
κ

∆M1

[F (θ)− F (θ∗1)]

λM1 +

κ

∆


⇔ M1 > F (θ)− F (θ∗1) ,
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which is already true.

P (θ∗1,λ) = θ∗1 − u0 +

 θ

θ∗1

λ

M1 −M1 (x)


ωU

β + κ+ λωD
M1 +∆λ


M1 −M1 (x)

dx.

We have shown

Y ≡ ∂

∂λ


λ

M1 −M1 (x)


=


M1 −M1 (x)


+ λ

∂

∂λ


M1 −M1 (x)


> 0.

Hence, it follows that

∂

∂λ
Π (θ∗1,λ) ∝ ∂

∂λ





λ

M1 −M1 (x)



β + κ+ λωD
M1 +∆λ


M1 −M1 (x)








∝

β + κ+ λωD

M1 +∆λ

M1 −M1 (x)


Y − λ


M1 −M1 (x)

 
ωD

M1 +∆Y


=

β + κ+ λωD

M1


Y − λωD

M1


M1 −M1 (x)



= (β + κ)Y + λωD
M1


Y −


M1 −M1 (x)



= (β + κ)Y + λ2ωD
M1

∂

∂λ


M1 −M1 (x)



= (β + κ)

M1 −M1 (x)


+ λ


β + κ+ λωD

M1

 ∂

∂λ


M1 −M1 (x)


.

That is,

∂

∂λ
Π (θ∗1,λ)






>

=

<






0 iff −
∂ ln


M1 −M1 (x)



∂ lnλ
<

β + κ

β + κ+ λωD
M1

.

Proof of Proposition 6

Proof. When the cutoff value θ∗1 is fixed, we have PF (θ∗1) ≤ PG (θ∗1) (where PF (θ∗1) is the price

function under distribution F and PG (θ∗1) is defined in a similar way). Fixing the cutoff value θ∗1,

the price function associated with G is higher than that associated with F .
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As for the profit comparision, we let Π∗
F be the optimized profit under distribution F :

Π∗
F = max

θ∗1
PF (θ∗1) [1− F (θ∗1)] ,

and Π∗
G is defined in a similar fashion:

Π∗
G = max

θ∗1
PG (θ∗1) [1−G (θ∗1)] .

MLRP leads to several implications (all from Stochastic Orders and Their Applications by

Shaked and Shanthikumar, 1994): (i) f(θ)
1−F (θ) ≤

g(θ)
1−G(θ) (ranked by hazard rate order, c.f. Theorem

1.C.1); (ii) 1 − F (θ) ≤ 1 − G (θ) (hazard rate order implies first-order stochastic dominance, c.f.

Theorem 1.B.1).

Let’s define

QF (θ∗1) =

 θ
θ∗1
[1− F (x)] dx

1− F (θ∗1)
=

 θ

θ∗1

xf (x)

1− F (θ∗1)
dx− θ∗1 = E [x|x ≥ θ∗1]− θ∗1,

then

QF (θ∗1) ≤ QG (θ∗1) .

Rewriting

PF (θ∗1) = θ∗1 − u0 +
QF (θ∗1)
z

1−F(θ∗1)
+ 1

,

we have

PF (θ∗1) ≤ PG (θ∗1) .

(This is because z
1−F(θ∗1)

≥ z
1−G(θ∗1)

and QF (θ∗1) ≤ QG (θ∗1).) Fixing the cutoff value θ∗1, the price

function associated with G is higher than that associated with F : the distribution with more weight

on the upper tail corresponds to a higher level of price.

Furthermore, let θ∗F be the optimal cutoff value under taste distribution F :

θ∗F = argmax
θ∗1

PF (θ∗1) [1− F (θ∗1)] .
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Define θ∗G in a similar fashion. Define the associated profit for the platform as Π∗
F = PF (θ∗F ) [1− F (θ∗F )].

Then we have the following chain of inequalities:

Π∗
F = PF (θ∗F ) [1− F (θ∗F )]

(a)

≤ PG (θ∗F ) [1− F (θ∗F )]
(b)

≤ PG (θ∗F ) [1−G (θ∗F )]
(c)

≤ PG (θ∗G) [1−G (θ∗G)] = Π∗
G,

where (a) is because PF (θ∗F ) ≤ PG (θ∗F ), (b) is because 1− F (θ∗F ) ≤ 1−G (θ∗F ) and (c) is because

θ∗G optimizes the profit function.

Proof of Proposition 7

Proof. We first derive θ∞1 = limλ→∞ θ∗1. We first take λ → ∞ in (19):

P (θ∗1, 0) = θ∗1 − u0 +

 θ
θ∗1
[1− F (x)] dx

1− F (θ∗1)
.

Then the seller’s objective function becomes

(θ∗1 − u0) [1− F (θ∗1)] +

 θ

θ∗1

[1− F (x)] dx

= (θ∗1 − u0) [1− F (θ∗1)]− θ∗1 [1− F (θ∗1)] +

 θ

θ∗1

xdF (x)

= −u0 [1− F (θ∗1)] +

 θ

θ∗1

xdF (x) =

 θ

θ∗1

(x− u0) dF (x) .

FOC yields the desired result. It is direct to check that the SOC is also satisfied.

For sufficiently large λ, we conduct approximation as follows

1− F (θ∗1) = 1− F (u0)−
f (u0) θ

∗
2

λ
+ o (1/λ) ,

 θ

u0+
θ∗2
λ

[1− F (x)] dx =

 θ

u0

[1− F (x)] dx−
 u0+

θ∗2
λ

u0

[1− F (x)] dx

=

 θ

u0

[1− F (x)] dx− θ∗2
λ

[1− F (u0)] + o (1/λ) ,
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and the price

p = θ∗1 − u0 +
1

β+κ
λω + 1− F (θ∗1)

 θ

θ∗1

[1− F (x)] dx

=

 θ
u0

[1− F (x)] dx

1− F (u0)


1− 1

λ

β+κ
ω − f (u0) θ

∗
2

1− F (u0)


+ o (1/λ)

We therefore obtain

dp

dθ∗1
=

β+κ
λω

β+κ
λω + 1− F (θ∗1)

+
f (θ∗1)

β+κ
λω + 1− F (θ∗1)

2

 θ

θ∗1

[1− F (x)] dx

=
1

λ

β + κ

ω [1− F (u0)]
+

f (u0) +
f ′(u0)θ∗2

λ

[1− F (u0)]
2


1− 1

λ

2β+κ
ω − 2f (u0) θ

∗
2

1− F (u0)

 θ

u0

[1− F (x)] dx− θ∗2
λ

[1− F (u0)]



=
f (u0)

 θ
u0

[1− F (x)] dx

[1− F (u0)]
2 +

A1

λ
+ o


1

λ


,

where

A1 =
β + κ

ω [1− F (u0)]
+
f (u0)

 θ
u0

[1− F (x)] dx

[1− F (u0)]
2



f ′ (u0) θ
∗
2

f (u0)
−

2

β+κ
ω − f (u0) θ

∗
2



1− F (u0)
− θ∗2 [1− F (u0)]

 θ
u0

[1− F (x)] dx



 .

(42)

Inserting all the above into the FOC (??) and matching the coefficients of terms of order 1/λ on

both sides, we have

[1− F (u0)]
2

f (u0)
 θ
u0

[1− F (x)] dx
A1 −

f (u0) θ
∗
2

[1− F (u0)]
=

θ∗2f
′ (u0)

f (u0)
−

β+κ
ω − f (u0) θ

∗
2

1− F (u0)
.

Plugging the expression of A1 given in (42) and rearranging, we obtain the the expression of θ∗2.

We discuss the case for ∆ ∕= 0 when λ → ∞. Since the support of M1 (θ) is

θ∗1, θ


and

M1 = 1− F (θ∗1), we have to study limλ→∞ θ∗1 ≡ θ∞1 . Rewriting the price function as follows:

P (θ∗1) = θ∗1 − u0 +

 θ

θ∗1

ωU


M1 −M1 (x)



β+κ
λ + ωD

M1 +∆

M1 −M1 (x)

dx,
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where

M1 −M1 (θ) =






1
2


M1 − κ

λ∆


+ 1

2


M1 +

κ
λ∆

2
− 4 κ

λ∆ [F (θ)− F (θ∗1)], if ∆ > 0

1
2


M1 − κ

λ∆


− 1

2


M1 +

κ
λ∆

2
− 4 κ

λ∆ [F (θ)− F (θ∗1)], if ∆ < 0

.

When ∆ < 0, we have

M1 = M1 −M1 (θ
∗
1) =

1

2


M1 −

κ

λ∆


− 1

2


M1 +

κ

λ∆

2

=
1

2


M1 −

κ

λ∆


− 1

2

M1 +
κ

λ∆



=






1
2


M1 − κ

λ∆


− 1

2


M1 +

κ
λ∆


= − κ

λ∆ , if M1 +
κ
λ∆ > 0

1
2


M1 − κ

λ∆


+ 1

2


M1 +

κ
λ∆


= M1, if M1 +

κ
λ∆ < 0

.

Hence, it has to be the case that M1 +
κ
λ∆ < 0 when ∆ < 0.

When ∆ > 0, we have

0 = M1 −M1


θ

=

1

2


M1 −

κ

λ∆


+

1

2


M1 +

κ

λ∆

2
− 4

κ

λ∆
[1− F (θ∗1)]

=
1

2


M1 −

κ

λ∆


+

1

2


M1 −

κ

λ∆

2
=

1

2


M1 −

κ

λ∆


+

1

2

M1 −
κ

λ∆



=






M1 − κ
λ∆ , if M1 >

κ
λ∆

0, if M1 <
κ
λ∆

.

Hence, it has to be the case that M1 <
κ
λ∆ when ∆ > 0.

If θ∞1 < θ, then limλ→∞ M1 = M∞
1 > 0 and therefore

lim
λ→∞


M1 −M1 (θ)


=






M∞
1 , if ∆ > 0

0, if ∆ < 0
.

This means that M1 (θ) has a mass at θ = θ when ∆ > 0 and has a mass at θ = when ∆ < 0. The
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price function under limit λ → ∞ becomes

lim
λ→∞

P (θ∗1) =






θ∞1 − u0 +
 θ
θ∞1

ωU
M∞
1

ωD
M∞
1 +∆ M∞

1

dx = θ, if ∆ > 0

θ∞1 − u0, if ∆ < 0

Hence, the profit optimization problem becomes

max
θ∞1 <θ

P (θ∞1 ) [1− F (θ∞1 )] =






θ [1− F (θ∞1 )] , if ∆ > 0

(θ∞1 − u0) [1− F (θ∞1 )] , if ∆ < 0
.

For ∆ > 0, the profit function is decreasing in θ∞1 , so it attains its maximum at θ∞1 = θ. and the

platform should welcome all participants: M1 = 1. When λ is sufficiently large, θ∗1 already arrives

at θ such that M1 = 1 and

1−M1 (θ) =
1

2


1− κ

λ∆


+

1

2


1 +

κ

λ∆

2
− 4

κ

λ∆
F (θ), θ ∈


θ, θ


.

We find

∂

∂λ
[1−M1 (θ)] =

1

2

κ

λ2∆
+

1

4

−2

1 + κ

λ∆


κ

λ2∆
+ 4 κ

λ2∆
F (θ)


1 + κ

λ∆

2 − 4 κ
λ∆F (θ)

=
κ

2λ2∆



1 +
−

1 + κ

λ∆


+ 2F (θ)


1 + κ

λ∆

2 − 4 κ
λ∆F (θ)



 > 0 ⇔


1 +

κ

λ∆

2
− 4

κ

λ∆
F (θ) > −


1 +

κ

λ∆


+ 2F (θ) .

If the RHS is negative, we already obtain the result. Otherwise, if the RHS is positive, we can take

square on both sides and obtain


1 +

κ

λ∆

2
− 4

κ

λ∆
F (θ) >


1 +

κ

λ∆

2
+ 4 [F (θ)]2 − 4


1 +

κ

λ∆


F (θ) ⇔

1 > F (θ) ,

which already holds.
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For λ sufficiently large, the price is given by

Pλ (θ) = θ − u0 +

 θ

θ

ωU


M1 −M1 (x)



β+κ
λ + ωD

M1 +∆

M1 −M1 (x)

dx.

Hence, ∂Pλ(θ)
∂λ > 0:

∂Pλ (θ)

∂λ
=

 θ

θ

∂

∂λ

ωU [1−M1 (x)]
β+κ
λ + ωD +∆ [1−M1 (x)]

dx,

because
∂

∂λ

ωU [1−M1 (x)]
β+κ
λ + ωD +∆ [1−M1 (x)]

=
∂

∂λ

ωU

β+κ
λ[1−M1(x)]

+ ωD
1−M1(x)

+∆
> 0.

Consequently, the profit is also increasing in λ because now the demand, fixed at 1, is irresponsive

to λ and λ affects the profit only through ∂Pλ(θ)
∂λ > 0.

For ∆ < 0, the profit function is a product of price function (which is increasing in θ∞1 ) and

total demand (which is decreasing in θ∞1 ). The FOC yields

1− F (θ∞1 )

f (θ∞1 )
− θ∞1 + u0 = 0.

Since 1−F (x)
f(x) is decreasing in x, the LHS is strictly decreasing in θ∞1 . The above equation implies

a unique solution if and only if

1

f (θ)
− θ + u0 > 0,

−θ + u0 < 0.

The two inequalities are already held as we have assumed that u0 ∈

θ, θ


. Obviously, we must have

θ∞1 > u0.

Next, we show that the FOC implies the global optimization. For this, we first notice the

following
d

dx
P (x) [1− F (x)] = f (x)


1− F (x)

f (x)
− (x− u0)


.

Hence,

sgn


d

dx
P (x) [1− F (x)]


= sgn


1− F (x)

f (x)
− (x− u0)


.
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Since

1− F (x)

f (x)
− (x− u0)






> 0, if x < θ∞1

< 0, if x > θ∞1

,

it immediately follows that

d

dx
P (x) [1− F (x)]






> 0, if x < θ∞1

< 0, if x > θ∞1

,

which implies that the profit function attains its global maximum at θ∞1 .

Finally, we are interested in the asymptotic analysis for the case of ∆ < 0.

For sufficiently large λ, the optimal cutoff can be expanded up to order as follows

θ∗1 = θ∞1 − θ∞2
f (θ∞1 )λ

+ o (1/λ) . (43)

We use (43) to conduct approximation as follows

P (θ∗1) = θ∗1 − u0 +
κ

−λ∆

ωU

ωD [1− F (θ∞1 )]2

 θ

θ∗1

[1− F (x)] dx,

M1 = 1− F


θ∞1 − θ∞2

f (θ∞1 )λ


= 1− F (θ∞1 ) +

θ∞2
λ

+ o (1/λ) ,

M1 −M1 (θ) =
1

2


1− F (θ∞1 ) +

1

λ


θ∞2 − κ

∆


− 1

2


1− F (θ∞1 ) +

1

λ


θ∞2 +

κ

∆

2
− 4

κ

λ∆
[F (θ)− F (θ∗1)]

=
1

2


1− F (θ∞1 ) + 1

λ


θ∞2 − κ

∆

2 −

1− F (θ∞1 ) + 1

λ


θ∞2 + κ

∆

2
+ 4 κ

λ∆ [F (θ)− F (θ∗1)]

1− F (θ∞1 ) + 1

λ


θ∞2 − κ

∆


+


1− F (θ∞1 ) + 1

λ


θ∞2 + κ

∆

2 − 4 κ
λ∆ [F (θ)− F (θ∗1)]

+ o (1/λ)

=
κ

−λ∆

1− F (θ)

1− F (θ∞1 )
+ o (1/λ) ,

and the price

P (θ∗1) = θ∞1 − θ∞2
f (θ∞1 )λ

− u0 −
ωU

ωD [1− F (θ∞1 )]2
κ

λ∆

 θ

θ∞1 − θ∞2
f(θ∞1 )λ

[1− F (x)] dx

= θ∞1 − u0 −
1

λ


ωU

ωD [1− F (θ∞1 )]2
κ

∆

 θ

θ∞1

[1− F (x)] dx+
θ∞2

f (θ∞1 )


+ o (1/λ) .
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The profit function is given by

Π (λ) = (θ∞1 − u0) [1− F (θ∞1 )]− 1

λ

ωU

ωD [1− F (θ∞1 )]

κ

∆

 θ

θ∞1

[1− F (x)] dx+ o (1/λ) , ∆ < 0

which is independent of θ∞2 up to the terms of orders no higher than 1/λ.
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