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Abstract

This paper develops a theoretical model that studies the impact of quality disclosure on the

entry and exit dynamics of firms in an industry with many firms. We employ a novel dynamic

oligopoly game framework and use the oblivious equilibrium concept to solve the game. We

unravel two key forces through which quality disclosure drives market dynamics: (1) the direct

effect, which is the change in consumers’ preference for a product once they know the true

quality, and (2) the competition effect, which is the change in the competitive environment due

to quality disclosure. Depending on which force dominates, several scenarios are possible. In

some cases, quality disclosure can drive competition to such a fierce level that high-quality firms

are discouraged from entry. To test our model predictions, we use as a case study the impact

of online reviews on the market dynamics of the restaurant industry in Texas. Using a unique

dataset that tracks the entry and exit of restaurants and consumers’ online review activities, we

empirically test the effect of quality disclosure through online reviews. Results confirm the most

common predictions of our model, where the direct effect dominates the competition effect:

the penetration of online review platforms encourages the entry of high-quality independent

restaurants and speeds up the exit of young low-quality independent restaurants. No significant

impact is found for either chains or established independent restaurants.
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1 Introduction

Information on product quality plays a critical role in consumer’s purchase decisions. In the digital

age, an abundance of resources is at consumers’ fingertips to search for product information; for

example, online reviews, videos and images from social media influencers, consumer reports, etc.

Searching for quality information has become an integral part of consumers’ shopping journey.

According to statistica.com, over 90% of consumers read reviews before buying a product (van

Gelder, 2023). Given the crucial role of quality information in consumers’ decisions, policymakers

are mandating quality disclosure in various domains, such as restaurant hygiene grade, automobile

manufacturer fuel efficiency measure, and mortality rates for hospitals (Dranove and Jin, 2010).

These phenomena have intrigued academic researchers to study the impact of quality disclosure on

a number of market outcomes, including consumer learning (e.g. Fang, 2022; Luca, 2016; Wu et al.,

2015), product sales (e.g. Chevalier and Mayzlin, 2006; Zhu and Zhang, 2010; Hollenbeck, 2018),

firms’ strategic voluntary disclosure decisions (e.g. Guo and Zhao, 2009; Jin, 2005; Oh and Park,

2019a) and quality improvement (e.g. Jin and Leslie, 2003). However, none of the existing research

has systematically investigated the effect of quality disclosure on the entry and exit dynamics of

firms in an entire industry. Knowing the change in industry dynamics is important because it

helps policymakers and regulators to assess the welfare effect of quality disclosure. While existing

research primarily focuses on how quality disclosure improves matches between consumers and

products, the entry and exit dynamics of products is just as important (if not more) because it

affects consumers’ choice set.

To shed light in this understudied area, this paper develops a theoretical framework that models

how quality disclosure affects the entry and exit dynamics of firms in an industry with many firms.

This model builds on the dynamic oligopoly games under the Ericson and Pakes (EP) framework

(Ericson and Pakes, 1995a). Using the oblivious equilibrium (OE) concept proposed by Weintraub

et al. (2008), we characterize the properties of the equilibrium outcomes. Although the model does

not yield closed-form equilibrium solutions, we are able to derive analytically comparative statics

that generalize the effect of quality disclosure on equilibrium outcomes. Specifically, we highlight

two main forces behind quality disclosure: the direct effect and the competition effect. On the one

hand, quality disclosure exacerbates the gap between the perceived qualities of high- and low-quality

firms, leading to a divergence in consumers’ preferences over high- and low-quality products (the

direct effect). On the other hand, quality disclosure can change the competition faced by firms by

affecting both consumers’ perceptions over quality of competing products and competitors’ entry

and exit behaviors (the competition effect). Depending on which effect dominates, the total effect

of quality disclosure can go in different directions. For example, low-quality firms are likely to exit

more with greater quality disclosure because consumers do not like low-quality products. Greater

exits will result in fewer firms in the market and thereby weaken competition. Weaker competition

in turn encourages the entry of all firms. In which direction the net effect should be is unclear.
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The interplay between the two forces yields a number of interesting scenarios. First, although

the direct effect is certain for high- and low-quality restaurants, the competition effect is not. It may

increase or decrease. If high-quality restaurants enter more and exit less, then competition would

increase. However, if the greater exits of low-quality restaurants significantly reduce the number

of firms in the market, then competition could weaken. Second, for a given directional change in

competition, whether the direct effect dominates the competition effect yields different equilibrium

scenarios. For example, for high-quality firms, if competition increases and the competition effect

dominates, then despite the benefit of higher perceived quality, these firms would not want to enter

the market. This mechanism can generate the counter-intuitive outcome that quality disclosure

reduces the entry of high-quality firms. Similarly, for low-quality firms, if competition declines

and the competition effect dominates, then they would want to enter the market, which is another

counter-intuitive result. Evidently if the direct effect dominates the competition effect, regardless

of how competition changes, high-quality firms will be more likely to enter and less likely to exit,

and the reverse would hold for low-quality firms. We characterize the various scenarios through a

number of propositions and corollaries. To present these model predictions intuitively, we conduct

numerical simulations to compute the equilibrium outcomes of the model for a wide range of

parameters, and plot the difference in the outcomes with and without quality disclosure. We find

that the parameter region with the direct effect being dominant is larger than those where the

competition effect dominates. In addition, these simulations also illustrate how market factors

such as entry cost or quality difference between high- and low-quality firms affects equilibrium

outcomes.

A few other features of our model are worth noting. First, although our model focuses on the

entry and exit dynamics, the profit function from product competition has a micro foundation in

the form of the logit demand. Second, we include firms that are affiliated with chains, such that

consumers’ perception of their quality does not change with quality disclosure. Including these

firms makes the model more realistic and helps the model generate empirically testable predictions.

Last but not the least, even though our model’s setting is the restaurant industry, it is general

enough to apply to all retail industries with many firms.

To test our model predictions empirically, we use as a case study the effect of online reviews

on the market dynamics of the restaurant industry in Texas. The restaurants industry is an

excellent context for the empirical application because it features many differentiated firms in the

market. We collected a unique dataset with a full record of the entry and exit timing of full-service

restaurants in Texas from 1995 to 2016. To gauge consumers’ usage of online reviews, we also

gathered review information from three major platforms, including Google, Yelp and TripAdvisor.

These online review platforms penetrated different regions in Texas during various periods of time.

This variation allows us to tease out the effect of online review platforms on the entry and exit of

restaurants. The empirical results confirm the most common scenario from the model predictions,

where the direct effect dominates the competition effect. For entry, the penetration of online review
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platforms increases the entry of high-quality independent restaurants but has the opposite effect

on low-quality restaurants. In terms of exit, the effect depends on a restaurant’s quality, chain

affiliation as well as age: young high-quality independent restaurants stay in the market longer,

whereas young low-quality independent restaurants exit more quickly. No statistically significant

effect is detected for either chain or established independent restaurants.

In this context, this paper makes several contributions to the literature. First, we develop a

novel framework that models the effect of quality disclosure on the entry and exit dynamics of

firms in an industry with many firms. We provide a complete picture of the effect by unravelling

the interplay between the direct effect and the competition effect of quality disclosure. To the best

of our knowledge, this paper is the first that studies these effects theoretically and systematically.

Second, our paper generalizes the model predictions by providing analytical comparative statics

in a dynamic oligopoly game. Dynamic oligopoly games under the EP framework is well known

for lacking analytical close-form solutions. As a result, comparative statics are usually obtained

through numerical simulations for a range of parameters (e.g. Besanko et al., 2014; Borkovsky

et al., 2012). Our comparative statics, on the other hand, is derived analytically and thereby has

the advantage of being able to characterize the model predictions in the entire parameter space,

providing more generalized insights. Third, our model implements the solution concept of the

oblivious equilibrium (OE) proposed by Weintraub et al. (2008). This equilibrium concept greatly

simplifies the equilibrium solutions. Our application demonstrates the value of adopting the OE

concept in solving games that may suffer from the curse of dimensionality. Finally, our empirical

study provides support to our theoretical model, and it documents a number of new empirical

facts. In particular, the effect of online reviews on firm entry has not been examined in the existing

literature.

Our research has important implications for both firms and policymakers. It provides guidance

to firms on how to choose markets with various degrees of mandatory quality disclosure. Mandatory

disclosure is not always good for high-quality firms because it can greatly intensify competition.

Therefore, high-quality firms may want to avoid some markets with mandatory disclosure. To

policymakers, our study sheds light on when to mandate quality disclosure. As discussed ear-

lier, mandatory disclosure policies have been implemented in many industries such as automobile,

airlines, healthcare, etc. The main argument for these policies is that quality disclosure reduces

information frictions, promotes market competition, and weeds out low-quality firms, all of which

would improve consumer welfare. However, as shown by our model predictions, sometimes quality

disclosure can reduce competition and give rise to market power of high-quality firms. In addition,

in some cases, it could increase competition so much that it discourages the entry of high-quality

firms. Therefore, mandatory quality disclosure is not necessarily always welfare improving. It

should be implemented with caution.

The rest of the paper is organized as follows. In Section 2, we review the related literature.

In Section 3, we set up the model and provide characterizations of the equilibrium solutions. In
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Section 4, we develop and prove comparative statics and provide numerical examples. In Section

5, we empirically test our model predictions using the restaurant industry in Texas as a case study.

In Section 6, we conclude and discuss future research areas.

2 Literature Review

This paper is closely related to several strands of literature. First, our paper contributes to the

studies of quality disclosure and its impact on market outcomes. Hotz and Xiao (2013) builds a

model of voluntary quality disclosure with differentiated products and heterogeneous consumers,

and shows that disclosure will result in more elastic demand and more intensive price competition.

Oh and Park (2019b) shows that quality disclosure can affect market competition. They show that

a unique non-disclosure equilibrium can exist, in which the incumbent does not reveal its quality

and prevents potential entrants from determining the profitable quality level, thereby deterring

entry. They also show that mandatory disclosure law will increase potential entrants and the

expected quality from the incumbent. Board and Meyer-ter Vehn (2013) models product quality

as a function of past investments, with incentives depending on quality disclosure and consumer

learning. When the market learns quality through good signals, a high-reputation firm has a lower

investment incentive to improve quality, while a low-reputation firm has a higher incentive to make a

breakthrough. Conversely, when the market learns quality through bad signals, incentives increase

in the firm’s reputation. Empirically, Jin and Leslie (2003) and Simon et al. (2005) support that

restaurant hygiene disclosure has caused restaurants to make hygiene quality improvements and

reduced foodborne disease in Los Angeles. Jin and Sorensen (2006) and Dafny and Dranove (2008)

provide evidence that public rating increased the market share for higher-rated plans.Dranove

and Sfekas (2008) derives a model of patient response to hospital report cards and structurally

estimates the profit gain for higher-rated hospitals. They show that the effect is mainly due

to patients shifting away from low-rated hospitals. Using online review platform as a quality

disclosure mechanism, Farronato and Zervas (2022) empirically support that restaurant improve

hygiene if they are more exposed to review platforms. In addition to revenue and quality change,

consumer welfare is affected by quality disclosure. Charbi (2021) look at the welfare impact of

quality reporting in Medicare Advantage. Wu et al. (2015) and Lewis and Zervas (2016) use

structural models to estimate the welfare effects of review platforms. Using online review platforms

as a quality disclosure enforcement, our paper has a novel contribution of modeling disclosure and

subsequent impact on dynamic entry and exit, and studying its impact on welfare through a more

complete framework.

Second, our paper contributes to the study of online reviews and their impact on market out-

comes. Some literature study the impact of online reviews on sales revenue; for example,Chevalier

and Mayzlin (2006), Zhu and Zhang (2010), Anderson and Magruder (2012), Luca (2016) and

Hollenbeck (2018). Using the structural learning model, Zhao et al. (2013) estimate the impact of
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reviews on book sales using panel data of 243 consumers. In addition to estimating the revenue

impact of online reviews on restaurants, our paper examines its impact on market structure through

the heterogeneous effect on different types of restaurants. Fang (2022) studies the heterogeneous

effect of online reviews and shows that high-rating restaurants in more touristy areas experience

larger revenue increases caused by online reviews. Our project is closely related to Donati (2022),

where he builds a model of consumer search with firms’ endogenous quality decisions and estimates

the impact of online reviews on the restaurant industry in Rome. He shows that the reduction

of mobile internet data expenses causes the monthly exit rate among more touristy restaurants to

increase by 0.11− 0.16 percentage points, which was mainly driven by low-rating restaurants. But

the firm entry is only studied in the aggregate industry composition analysis, where the overall

share of low-rating restaurants in tourist areas decreases by 2.5 percentage points. Newberry and

Zhou (2019) uses a discrete choice demand model that incorporates Bayesian learning to find that

the online review system has a larger impact on smaller local retailers on Alibaba’s Tmall. Anen-

berg et al. (2019) show that online review platforms put a larger selective force on urban markets.

In addition, Janetos and Tilly (2017) studies the impact of online review platforms on store exit

by estimating a dynamic model of adverse selection, ratings, and optimal stopping. In equilibrium,

sellers optimally exit the market, and market beliefs on quality are determined by the rating system

and seller’s actions. They compute the returns to reputation and use counterfactuals to show the

impact of the review system on market structure. However, online review platforms will ultimately

affect firm entry by reshaping the ex-ante beliefs and incentives, yet both theoretical and empirical

evidence on how online reviews affect entry is scarce. Our research studies both entry and exit

which allows a more complete and accurate estimate of the impact of online review platforms.

More broadly, this research contributes to the literature on the dynamic oligopoly game of entry

and exit, in particular, the application of the oblivious equilibrium concept for Ericson and Pakes

(1995a) type models. Weintraub et al. (2008) proposes an approximation method that bypasses the

curse of dimensionality for analyzing Ericson and Pakes (1995a)-style dynamic models of imperfect

competition. They define oblivious equilibrium, in which each firm makes decisions based only on

its own state and long-run industry state while ignoring current competitors’ states. They estab-

lish conditions under which oblivious equilibrium well approximates Markov perfect equilibrium

asymptotically as the market becomes large. In Weintraub et al. (2010), they develop an algorithm

for computing oblivious equilibrium and demonstrate its efficiency and accuracy by deriving its

approximation error bounds. Benkard et al. (2015) further extends OE to applications in highly

concentrated markets, by defining a partially oblivious equilibrium that allows a set of dominant

firms. This extension accommodates richer strategic interactions but is still computationally light.

A recent application is Chen and Xu (2023), where they develop a structural model of R&D in-

vestment and productivity for the Korean electric motor industry, and use OE approximation to

estimate the R&D cost, knowledge spillovers and other dynamic parameters. Our model is a novel

application of the oblivious equilibrium concept, where we are able to characterize the property
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of the model analytically, derive model comparative statics, and provide more generalized insights

from the model predictions.

3 Model

Our model follows the framework from the seminal work by Ericson and Pakes (1995b) (EP),

where firms are forward-looking and make entry and exit decisions every period, and they take into

consideration their rivals’ strategies that will affect their profits. Given that the restaurant industry

features many small differentiated firms in one industry, we adopt the oblivious equilibrium concept

proposed byWeintraub et al. (2008), who show that in a market with many small firms, the oblivious

equilibrium approximates well the Markov perfect equilibrium. In our model, there are high- and

low-quality restaurants as well as chain and independent restaurants. In addition, independent

restaurants are divided into three age types: new, young, and established, based on how long they

have been in the market. The age type of the independent restaurant matters because independent

restaurants do not enter the market with a reputation, unlike chain restaurants. Consumers need to

learn gradually the true quality of an independent restaurant. The longer an independent restaurant

is in the market, the more likely consumers know of its true quality. The reputation built through

consumers’ own trials and word of mouth (WOM), such as reviews on online review platforms and

recommendations from friends and family, will play a role in how fast consumers learn the true

quality of independent restaurants. Although we develop the model in the restaurant-industry

setting, our model is general enough to accommodate a wide range of industries where quality

disclosure is important and there are many small firms in a market. For this reason, we use firms

and restaurants interchangeably in this section. Below is the detailed setup of our model.

3.1 Firms, Actions, Profits and States

Every period potential entrants decide whether to enter the market or not. Entrants’ types in terms

of their quality type (T ∈ {H,L}) and chain affiliation (D ∈ {I, c}) are determined before entry.

The quality (q) for both high-quality independent and chain restaurants is q̄ , and the quality for

the low quality restaurants is q. The quality q is also set before entry and does not change after

entry. The numbers of potential entrants from each type are NH for high-quality independent

restaurants, NL for low-quality independent restaurants, NHc for high-quality chain restaurants,

and NLc for low-quality chain restaurants. Once potential entrants enter the market, they become

incumbents.

Incumbent chain restaurants’ quality is revealed to consumers as soon as they are in the market

because they benefit from the chain’s reputation. Incumbent independent restaurants, on the other

hand, need time to reveal their true quality to consumers. New incumbent independent restaurants

are perceived as having a quality at q̂0, which is assumed to be exogenously given. For simplicity,
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we set it at the average of those of the high- and low-quality restaurants:

q̂0 ≡
1

2
(q̄ + q), (1)

This perceived quality represents an average quality perceived by all consumers in the market.

After being in the market for one period, a new restaurant becomes a young restaurant, and

its perceived quality q̂1 becomes q̂0 + (q − q̂0)γ,∀q ∈ {q, q̄}. γ ∈ [0, 1] represents the amount of

information available that consumers can use to learn about restaurant quality.1 At one extreme,

when γ = 0, there is no information, and the perceived quality of young independent restaurants

stays at q̂0. At the other extreme, when γ = 1, information is so widely available such that the

perceived quality is the true quality. In reality, γ is mostly likely somewhere in between. The larger

γ is, the closer to the truth the perceived quality becomes.

After being in the market for two periods, a restaurant becomes established, and its true quality

is fully revealed to consumers. This stage is an abstraction of the period when a restaurant has

been in the market long enough, such that the restaurant’s true quality is learned. Similar to this

stage, the young stage is also a generalization of the learning period, where information on quality

is only starting to accumulate. The learning period may be much longer than one period in the real

world. Here we model it into one period as a way of simplification. At the extreme, the learning

period may last forever. We discuss this case in an extension of the model at the end of this section.

At the established stage, once a restaurant’s true quality is fully revealed, the perceived quality

is the true quality for the remainder of the restaurant’s life time until it exits. The time horizon

of this dynamic game is infinite. If a restaurant never exits, it stays in the market for an infinite

number of periods. We summarize how perceived quality evolves over different stages in Table C.1

of the Appendix.

Every period, an incumbent restaurant takes as given the market structure and consumers’

beliefs on its quality and engage in a static product competition.2 A restaurant’s perceived quality

affects its per-period flow profit in terms of both consumers’ willingness to pay and its competitive

position relative to other incumbents. In particular, the distribution of restaurants over perceived

quality (n(q̂)) matters for a restaurant’s flow profit, which has the following form:

π(q, q̂(q, g,D, γ),M,N, f) =
M exp(q̂)∑̂

q′
n(q̂′) exp(q̂′) + 1

− C(q,D), (2)

where q ∈ {q, q̄} is the restaurant’s true quality, and q̂ ∈ {q̂0, q̂1, q} is the perceived quality, which

is a function of a restaurant’s true quality q, chain affiliation D ∈ {I, c}, age type g and γ. Here I

1This function form is consistent with the Bayesian learning process when taken at the population average. Fang

(2022) provides detailed derivation of this functional form. (See equation (13) of Fang (2022).) Here, we abstract

away from the effect of a restaurant’s sales on its own perceived quality; that is, greater demand at a restaurant may

generate more information on quality.
2This is a common assumption in the EP framework. That is, we abstract away from firms’ dynamic considerations

when choosing prices, such as predatory pricing or pricing low at the beginning in order to induce more consumers

learn about their quality. Instead firms are myopic and choose prices only to maximize their current-period profits.
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denotes independent and c chain. Let {0, 1, 2} represent a restaurant age type of new, young, and

established, respectively, then g ∈ {0, 1, 2}. Similar to q̂, q̂′ ∈ {q̂0, q̂1, q} represents any perceived

quality that exists in the market. n(q̂′) is the number of restaurants with perceived quality q̂′.
exp(q̂)∑̂

q′
n(q̂′) exp(q̂′)+1 can then be seen as the market share of a restaurant with perceived quality q̂.

Here we abstract from equilibrium prices set in the static product competition, but rather use q̂ to

represent the “price-adjusted” quality; that is, the actual quality minus the price. This abstraction

is reasonable as quality measures, especially those from online review platforms or magazines, are

usually adjusted for prices. For example, a 5-star fine-dining restaurant does not have the same

actual quality (in terms of either food or service) with that of a 5-star burger joint. The 5-star

fine-dining restaurant is typically seen as having a much higher actual quality than the burger

joint, but as being much more expensive as well. In this demand expression, we also assume that

all firms have the same constant markup. This assumption follows directly from a logit demand

model with many small firms that compete in prices.3 The parameter M then represents the

multiple of market size and the markup, and consequently, M exp(q̂)∑̂
q′

n(q̂′) exp(q̂′)+1 summarizes the variable

profit of a restaurant. The function C(q,D) captures the fixed cost incurred by a restaurant each

period, such as rent and the chef’s salary. This cost depends on the restaurant’s true quality

and its chain affiliation. High-quality restaurants usually incur a higher cost than low-quality

restaurants. Given a quality type, independent restaurants typically experience higher costs than

chain restaurants, which benefit from economies of scale. Note that the cost function is affected

by the true quality of a restaurant, not the perceived quality. For example, even though a new

high-quality restaurant is perceived as having the same quality as a new low-quality restaurant,

the high-quality restaurant incurs a higher cost. In addition, we assume that M is large enough,

such that π(q, q̂(q, g,D, γ),M,N, f) > 0 always.

The timing of events in this dynamic game is as follows:

1. At the beginning of each period, potential entrants from each quality type and chain affili-

ation type decide to enter the market or not. Let a ∈ {0, 1} denote a firm’s action, with 0

representing inactive in the market and 1 active.

2. If a firm decides to enter (a = 1), it incurs an entry cost of κ(q,D) + ε, where κ(q,D) > 0

is the average entry cost incurred by a restaurant with quality q and chain affiliation type

D. ε ∼ U(−b0, b0) is a private random shock, and is independent and identically distributed

(i.i.d.) across time and firms. The firm observes the shock first before making the entry

decision.

3. Once a firm enters the market, it earns a profit as a new restaurant immediately.4

3See equation 3.5 of Berry et al. (1995). In a logit demand model with Bertrand competition, when the market

share of a product is small, its markup is constant.
4The absence of time-to-build assumption does not affect the predictions of the model.
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4. Consumers learn about restaurant quality over time. Restaurants make profits according to

equation 2.

5. At the beginning of each period, an incumbent firm decides whether to exit the market. If it

exits, it receives a scrap value of ϕ ∼ U [−b1, b1], which is a private shock only known to the

firm itself and is observed before the decision of exit. It is i.i.d. across time and firms. A firm

that chooses to exit does not earn a profit in that period.

6. Once a firm exits, it stays out of the market permanently. A firm that is not in the market

earns 0 profit.

Given the profit function in equation 2 as well as the shocks to entry cost and scrap value, a

restaurant’s payoff relevant state is (q, g,M,n, D, ε, ϕ), where n = {n(q̂′)} is a vector that sum-

marizes the long-run invariant distribution of the number of restaurants at each perceived quality

level. Here for notation simplicity, we assign g = 0 to potential entrants as well as new restaurants.

That is, restaurants with g = 0 are potential entrants at the beginning of the period; if they decide

to enter the market, they become new restaurants. New restaurants do not have the option to

exit until the beginning of next period after becoming young restaurants. Because we adopt the

oblivious equilibrium (OE) concept, where firms do not track each individual firm’s actions but take

the long-run invariant distribution of firms as given, M and n can be omitted from a restaurant

state. A restaurant can base its entry and exit action only on q, g, and D in addition to ε and ϕ.

Let s = (q, g,D) denote the state of a restaurant.

3.2 A Firm’s Problem

A firm chooses a strategy (σ) of entry and exit every period in order to maximize the net present

value of current and future profits. In particular, a firm discounts its future profits at a rate of

β ∈ (0, 1). Following the literature, we focus on symmetric Markov strategies of firms, such that

the action at each period from the strategy is state-dependent and firms of the same type choose

the same strategy. Let Ṽ (s, ε, ϕ, a) denote the action-specific value function that accounts for the

present value of a firm’s profits from current and all future periods, then a firm solves the following

maximization problem:

max
a

Ṽ (s, ε, ϕ, a|M,n) = Π(s, ε, ϕ, a) + (1{g = 0}+ a1{g > 0})βE
(
Ṽ (s′, ε′, ϕ′, a′|σ, s, a,M,n)

)
,

(3)

where Π(s, ε, ϕ, a) ≡ aπ(s, a) − a1{g = 0}(κ + ε) + (1 − a)1{g > 0}ϕ. The symbol ’ denotes the

next period. The law of motion for g is g′ = (g + a)1{g < 2}+ g1{g = 2}. The next period action

a′ = σ(s′, ε′, ϕ′).

Given that ε and ϕ are private shocks, firms’ strategies appear probabilistic to their rivals.

Once we integrate over ε or ϕ, a firm’s strategy can be represented by entry and exit probabilities.
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In particular, let PE
σ (q,D) and PX

σ (q, g > 0, D) denote the entry and exit probabilities associated

with the strategy σ respectively, then

PE
σ (q,D) =

∫
1{σ(q, 0, D, ε) = 1} 1

2b0
dε, (4)

PX
σ (q, g,D) =

∫
1{σ(q, g > 0, D, ϕ) = 0} 1

2b1
dϕ (5)

Let V (s) denote an integrated value function such that V (s) ≡
∫
Ṽ (s, ε, σ) 1

2b0
dε when g = 0

and V (s) ≡
∫
Ṽ (s, ϕ, σ) 1

2b1
dϕ when g > 0. Then integrated value function can be expressed as a

function of the entry and exit probabilities:

V (s;Pσ) =

PE
σ (s) (π(s)− κ−E(ε|a = 1) + βV (q, 1, D;Pσ)) + (1− PE

σ (s))βV (q, 0, D;Pσ) if g = 0,

(1− PX
σ (s)) (π(s) + βV (q, 2, D;Pσ)) + PX

σ (s)E(ϕ|a = 0) if g > 0,

(6)

where Pσ is a vector that summarizes the entry and exit probabilities at various states.

3.3 Oblivious Equilibrium

We use the concept of oblivious equilibrium (OE), which is defined as follows:

max
σ

V (s|σ,M,n) ≡ V (s;P∗|M,n), (7)

where P∗ = (PE,PX) is the oblivious equilibrium strategy and is a collection of the optimal PE

and PX at various states.

It is important to note that in an OE, competitors’ strategies are relevant for a firm’s optimal

strategy through the industry state n, which is invariant over time in the long run. As shown in

Weintraub et al. (2008), the OE approximates the Markov perfect equilibrium well if M is very

large and if a number of assumptions and the “light-tailed” condition are satisfied. We provide

in the Appendix the proof that our setting satisfies the assumptions for OE and the “light-tailed”

condition. The light-tail condition means that there are many firms in the market such that not

a single firm’s action would have a large impact on any other firm’s profit, or the probability that

this happens is very small. This is why a firm does not need to keep detailed track of competitors’

states in an OE. In our setting, when M is very large, the total number of firms in the market is

very large. Regardless of each firm’s individual entry and exit actions, the fraction of restaurants

at any given perceived quality n(q̂)/
∑̂
q′

n(q̂′) remains constant.5 In addition, the event when the

industry is controlled by a few large firms has a very low probability of happening. Therefore, a

firm’s decision rule by simply taking into account the industry state n when making entry and exit

decisions is a close-to optimal strategy.

5This is based on the law of large numbers.
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An OE should satisfy the following conditions:

π(q, 0, D)− κ− ε+ βV (q, 1, D|P∗) > βV (q, 0, D|P∗), (8)

π(q, g > 0, D) + βV (q, 2, D|P∗) < ϕ (9)

These conditions 8 and 9 are based on firms’ optimal decisions of entry and exit.

In addition, the invariant long-run distribution of firms n in an OE should satisfy the following

conditions:

n(q, 0, I, γ) = N(q, I)PE(q, I, γ); (10)

n(q, 1, I, γ) = n(q, 0, I, γ)(1− PX(q, 1, I, γ)); (11)

n(q, 2, I, γ) = (n(q, 1, I, γ) + n(q, 2, I, γ))(1− PX(q, 2, I, γ)); (12)

n(q, c, γ) = N(q, c)PE(q, I, γ) + n(q, c, γ)(1− PX(q, c, γ)) (13)

where N(q,D) is NH if q = q̄ and D = I, NL if q = q and D = I, NHc if q = q̄ and D = c, and

NLc if q = q and D = c. These equations are based on the law of motion of n.

Equations (10) to (12) show the numbers of independent restaurants at various levels of per-

ceived quality. The age type of a restaurant is important for independent restaurants, but not

relevant at all for chain restaurants. Therefore, we have three equations for independent restau-

rants, but only one for chain restaurants, and the number of chain restaurants is not a function of

g. Furthermore, because the long-run distribution of restaurants over perceived quality is invari-

ant, the number of restaurants at each perceived quality level must remain constant as well. This

implies that the n(q, 2, I, γ) in equation (12) and n(q, c, γ) in equation (13) will show up in both

the left-hand side and the right-hand side of the equations.

The equilibrium conditions in equations (8) to (13) yield a system of non-linear equations, of

which the solution P∗ is a fixed point. For any given value of γ ∈ [0, 1], an equilibrium solution

P∗ exists. We provide the algebraic expressions of the solution P∗ and n in Tables C.3 and

C.4 in SectionC of Appendix. Note that there are no closed-form analytical solutions for these

probabilities, although they can be solved numerically.

Despite the lack of closed-form solutions, we can still sign the directions of γ’s effects on entry

and exit probabilities for a wide range of parameters. In the next section, we discuss the comparative

statics of the OE solutions. For notation simplicity, from the following section onward, we will

convert (q, g,D) into subscripts. We also omit the subscript I for independent restaurants but use

the “c” subscript to indicate chain. For example, PX(q̄, 1, I) will be denoted as PX
H1, and PX(q̄, g, c)

denoted by PX
Hc. We provide a detailed definition of each of these notations in Table A.1 of the

Appendix.

Model Extension As mentioned previously, in reality, the learning period captured by the young

stage of an independent restaurant can last much longer than one period. At the extreme, it could
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last forever. For example, at locations with mostly transient consumers, such as tourist areas or

areas around highway exits, consumers are travellers and visit the stores only once. No matter how

old the restaurants are at these locations, they are new to consumers because consumers never tried

them before. Unless consumers have access to online reviews or recommendation from magazines,

it is very difficult for consumers to discover the true quality of restaurants before trying them out.

In Appendix F, we extend the model to a case with an extremely slow learning process. In this

extension, the young stage of an independent restaurant lasts forever. We also provide the OE

solution to the extended model, comparative statics, as well as a set of numerical analysis. The

key difference in model behaviors between the baseline model in the main text and the extension

is that information (as captured by γ) has a much stronger effect on equilibrium outcomes in the

extended model. This is because information plays a role for a much longer period of a restaurant’s

life in the extension, instead of just one period.

4 Comparative Statics

The equilibrium outcomes of this model is the result of the interplay between two main forces: a

direct effect and a competition effect. The direct effect comes from the fact that quality disclosure

(γ) influences the perceived quality q̂ and thereby affects the flow profit. The change in flow profits

in turn alters firms’ entry and exit dynamics, which influence the competition faced by each firm.

This is the competition effect. Like the direct effect, the competition effect also affects the flow

profit, but through the denominator of the flow profit,
∑

q̂′ n(q̂
′) exp(q̂′). The direct effect and the

competition effect can work in the same direction for some types of restaurants, but can also work

against each other for other types of restaurants. Which effect dominates determines the direction

of the overall effect of quality disclosure (γ) on the entry and exit dynamics of firms. We first

formally define the direct effect and the competition effect. Then we introduce an assumption of

the parameter space to eliminate extreme cases. Next, we provide four propositions (Propositions

1-4) that characterise the directions of the effect of γ on entry and exit probabilities as well as the

conditions under which they hold.

Definition 1. The direct effect (DE) of γ on P∗
T, ∀T ∈ {H,L} is

∂P∗
T

∂πT1

∂πT1
∂M exp(q̂T1)

∂M exp(q̂T1)
∂q̂T1

∂q̂T1
∂γ ,

and 0 on P∗
Tc.

In this definition, P∗
T is the vector of equilibrium probabilities of independent restaurants

with quality level T ∈ {H,L}; for high quality, P∗
H = (PE

H , PX
H1, P

X
H2) and for low-quality, P∗

L =

(PE
L , PX

L1, P
X
L2). Similarly defined, P∗

Tc is the vector of equilibrium probabilities of chain restaurants.

This definition states that the direct effect is through the numerator of the flow profit function π.

Because the numerator of neither πT0 nor πT2 changes with γ, the derivative is only with respect to

πT1 and subsequently q̂T1. For chain restaurants, the numerators of the flow profits never change

with γ; therefore, the direct effect for chain is 0.
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Definition 2. The competition effect (CE) of γ on P∗
T,∀T ∈ {H,L} is(

∂P∗
T

∂πT0

∂πT0
∂
∑

q̂′ n(q̂
′) exp(q̂′) +

∂P∗
T

∂πT1

∂πT1
∂
∑

q̂′ n(q̂
′) exp(q̂′) +

∂P∗
T

∂πT2

∂πT2
∂
∑

q̂′ n(q̂
′) exp(q̂′)

)
∂
∑

q̂′ n(q̂
′) exp(q̂′)

∂γ , and the CE on

P∗
Tc is

∂P∗
T

∂πTc

∂πTc
∂
∑

q̂′ n(q̂
′) exp(q̂′)

∂
∑

q̂′ n(q̂
′) exp(q̂′)

∂γ

This definition states that the competition effect is through the denominator of the flow profit

function. The DE and CE together constitute the total effect of γ on equilibrium probabilities.

Before introducing the propositions, we first discuss an assumption on the parameter space in order

to eliminate extreme cases of the effect of γ. The assumption is not restrictive and easy to hold

under the assumptions of OE.

Assumption 1. The market size M is large enough such that

1.
(
1 + (

√
b1−BH)
BH

exp(q̄ − q̂H1)
)

−(nL1 exp(q̂L1)−nH1 exp(q̂H1))∑
q̂′ n(q̂

′) exp(q̂′)+1 < 1 when ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ > 0;

2.
(
1 + (

√
b1−BL)
BL

exp(q − q̂L1)
)

nL1 exp(q̂L1)−nH1 exp(q̂H1)∑
q̂′ n(q̂

′) exp(q̂′)+1 < 1 when ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ < 0,

where BT =
√
(b1 − βb1 − βπT2), ∀T ∈ {H,L}.

Assumption 1 can easily hold when there are many firms in the market. This assumption is to

eliminate cases where the number of restaurants from every type is going up (down) with γ, but∑
q̂′ n(q̂

′) exp(q̂′) is going down (up). This assumption will be used in the proofs of Propositions 3

and 4.

Once we have the definitions of direct effect and competition effect, we can sign these effects. The

signs for the direct effect are perfectly predictable and straightforward. Proposition 1 establishes

this:

Proposition 1. The DEs on chain restaurants are 0, and the DEs on independent restaurants

have the following signs:

DE(PE
H ) > 0, DE(PX

H1) < 0, DE(PX
H2) = 0,

DE(PE
L ) < 0, DE(PX

L1) > 0, DE(PX
L2) = 0.

In this proposition, DE(·) denotes the direct effect on each probability.6 The proof of Proposi-

tion 1 is shown in the Appendix. The intuition behind the proof of Proposition 1 is very simple.

The entry probability of an independent restaurant increases in the flow profit at the young stage,

and the young-stage flow profit increases in its numerator, which grows in the perceived quality

q̂1. Because the perceived quality increases with γ for high-quality restaurants, but decreases for

low-quality restaurants, the signs of the direct effects for the entry probabilities are then easily

determined. As for the exit probabilities, those at the young stage decrease in πT1, and therefore

the signs of the direct effects are the opposite as those for entry probabilities. The exit probabilities

at the established stage do not change in γ because πT1 do not enter firms’ decisions at this stage;

as a result, the direct effects for them are 0.

6The functional form of DE(·) is the same as that in Definition 1; for example, DE(PE
H ) =

∂PE
H

∂πH1

∂πH1
∂M exp(q̂H1)

∂M exp(q̂H1)
∂q̂H1

∂q̂H1
∂γ

.
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Proposition 2. Under certain conditions, the CE on any probability can be positive, zero or

negative. The key determining factor is ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ. The conditions are

(1) when F̄L + F̄H > 0, ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ > 0;

(2) when F̄L + F̄H = 0, ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ = 0, and

(3) when F̄L + F̄H < 0, ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ < 0, where

F̄L = NL

[
exp(q̂0)

∂PE
L

∂γ
+ exp(q̂L1)

(
∂PE

L (1− PX
L1)

∂γ
+ PE

L (1− PX
L1)

(q − q̄)

2

)
+exp(q)

(
∂PE

L (1− PX
L1)(1/P

X
L2 − 1)

∂γ
+

NLc

NL

∂PE
Lc(1/P

X
Lc − 1)

∂γ

)]
(14)

F̄H = NH

[
exp(q̂0)

∂PE
H

∂γ
+ exp(q̂H1)

(
∂PE

H (1− PX
H1)

∂γ
+ PE

H (1− PX
H1))

(q̄ − q)

2

)
+exp(q̄)

(
∂PE

H (1− PX
H1)(1/P

X
H2 − 1)

∂γ
+

NHc

NH

∂PE
Hc(1/P

X
Hc − 1)

∂γ

)]
(15)

The proof is shown in the Appendix. For ease of interpretation, we refer to
∑

q̂′ n(q̂
′) exp(q̂′

as competition in the remaining text. Proposition 2 says that a higher γ can potentially increase

or decrease competition faced by firms. On the one hand, greater extent of quality disclosure can

make higher-quality restaurants known to consumers and thereby increase competition. On the

other hand, it can also encourage the exit of low-quality firms and subsequently reduce competition

by decreasing the total number of competitors. The exact signs depend on which force overpowers

the other. As shown in the expressions of F̄L and F̄H (equations 14 and 15 respectively), the effect

on competition is mostly through the effect on entry and exit probabilities of firms. Proposition 2

allows us to sign the competition effect. The corollary below establishes that.

Corollary 1.

(1) When F̄L + F̄H > 0, CE(PE
T ) < 0, CE(PX

T1) > 0, CE(PX
T2) > 0, CE(PE

Tc) < 0, CE(PX
Tc) > 0, ∀T ∈ {H,L}.

(2) When F̄L + F̄H = 0, CE(PE
T ) = 0, CE(PX

T1) = 0, CE(PX
T2) = 0, CE(PE

Tc) = 0, CE(PX
Tc) = 0, ∀T ∈ {H,L}.

(3) When F̄L + F̄H < 0, CE(PE
T ) > 0, CE(PX

T1) < 0, CE(PX
T2) < 0, CE(PE

Tc) > 0, CE(PX
Tc) < 0, ∀T ∈ {H,L}.

In this corollary, CE(·) indicates the competition effect on each probability, and it follows the

functional form as illustrated in Definition 2. The proof of Corollary 1 is trivial and therefore not

provided.

Proposition 1 and Corollary 1 together show that for certain regions of the parameter space,

the DE and CE work in the same direction for some probabilities while work against each other

for other probabilities. For example, when F̄L+ F̄H < 0, CE and DE are both positive for PE
H , but

are in different directions for PE
L . The total effect of γ on PE

L then depends which effect dominates.
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With these definitions and propositions in hand, we can sign the total effect of γ for certain regions

of the parameter space. Proposition 3 and Proposition 4 establish that.

Proposition 3. When F̄L+ F̄H > 0, the signs of the effects of γ on all equilibrium probabilities are

certain except for PE
H and PX

H1. In particular, ∂PE
Tc/∂γ < 0, T ∈ {H,L}, ∂PX

T2/∂γ > 0, T ∈ {H,L},
and ∂PX

Tc/∂γ > 0, T ∈ {H,L}. As for PE
H and PX

H1, only two cases arise: (1) ∂PE
H /∂γ > 0 and

∂PX
H1/∂γ < 0. (2) ∂PE

H /∂γ < 0 and ∂PX
H1/∂γ < 0.

Proposition 3 says that when competition increases, the entry probabilities of chain restaurants

decrease with γ, and the exit probabilities of established independent and chain restaurants increase

with γ. In terms of the signs of PE
H and PX

H1, only two scenarios can arise: one is that the entry

probability of high-quality independent restaurants increases in γ, and the exit probability of high-

quality young restaurants decreases in γ. The other is that the entry probability of high-quality

independent restaurants decreases in γ, and the exit probability of high-quality young restaurants

also decreases in γ.

Proof of Proposition 3 is provided in the Appendix. The intuition behind the proof is that when

F̄L+F̄H > 0, competition faced by restaurants increases with quality disclosure, i.e. ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ >

0. In this case, the DEs of all other probabilities work in the same direction as CEs except for PE
H

and PX
H1. For these two probabilities, only two possible cases of the signs are possible because other

cases would violate either the condition ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ > 0 or the fact that if DE overpow-

ers CE for PE
H , then DE will overpower CE for PX

H1.
7 In particular, the first case, ∂PE

H /∂γ > 0

and ∂PX
H1/∂γ < 0, requires that DE overpower CE for both both probabilities. The second case,

∂PE
H /∂γ < 0 and ∂PX

H1/∂γ < 0, requires that DE dominate CE for PX
H1 at the young stage of an

independent restaurant, but be dominated by CE for PE
H upon entry. In addition, it is simple to

see that this can occur when F̄L + F̄H = 0. The corollary below states this formally:

Corollary 2. When F̄L + F̄H = 0, the effects of γ on all equilibrium probabilities come from DEs,

and the signs of these effects are as outlined in Proposition 1.

Proposition 4. When F̄L+ F̄H < 0, the signs of the effects of γ on all equilibrium probabilities are

certain except for PE
L and PX

L1. In particular, ∂PE
Tc/∂γ > 0, T ∈ {H,L}, ∂PX

T2/∂γ < 0, T ∈ {H,L},
and ∂PX

Tc/∂γ < 0, T ∈ {H,L}. As for PE
L and PX

L1, only two cases arise: (1) ∂PE
L /∂γ > 0 and

∂PX
L1/∂γ > 0. (2) ∂PE

L /∂γ < 0 and ∂PX
L1/∂γ > 0.

Proposition 4 says that when competition declines, the entry probabilities of chain restaurants

increase with γ, and the exit probabilities of established independent and chain restaurants decrease

with γ. In terms of the signs of PE
L and PX

L1, only two cases can happen: one is that the entry

7The latter condition comes from the fact that at the entry stage, for DE to dominate, DE must over come the

CEs from all π0, π1 and π2, but at the young stage, DE only needs to overcome the CEs from π1 and π2. Therefore,

if DE dominates at the entry stage, it must dominate at the young stage. See the Appendix for a detailed argument.
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probability of low-quality independent restaurants increases in γ, and the exit probability of low-

quality young restaurants also increases in γ. The other is that the entry probability of low-

quality independent restaurants decreases in gamma, and the exit probability of low-quality young

restaurants increases in γ. Proof of Proposition 4 is provided in the Appendix. The intuition behind

the proof is very similar to that for Proposition 3, and will not be repeated here. In particular.

the first case in Proposition 4 requires that DE dominate CE for PX
L1 at the young stage, but be

dominated by CE for PE
L at the entry stage. The second case requires that DE dominates CE at

all stages of an independent restaurant’s life.

Proposition 3, Corollary 2 and Proposition 4 summarize all the possible cases that could arise

as the result of quality disclosure. First, for chain and established independent restaurants, the

entry and exit probabilities are solely determined by the competition effect. Second, in terms

of the entry and exit probabilities of young independent restaurants, the total effect of quality

disclosure depends on which type effect dominates, DE or CE. In both Proposition 3 (1) and

Proposition 4 (2), the DEs dominate the CEs for all probabilities in question. In Proposition

3 (2) and Proposition 4 (1), the DEs dominate in the exit probabilities at the young stage of

an independent restaurant, but the DEs are dominated by the CEs in the entry probabilities of

independent restaurants.

As shown by Proposition 3, Corollary 2 and Proposition 4, the prediction of the effect of quality

disclosure is not deterministic, and a few cases can arise depending on the parameters of the model.

To illustrate some of these cases and to gain insights into the solution’s properties, we provide a

set of numerical examples in the next section.

4.1 Numerical Examples

As mentioned previously, the model does not have a closed-form analytical solution.8 In this

section, we turn to numerical methods and conduct a comprehensive exploration of equilibrium

solutions across a wide range of parameters. In Subsection 4.1.1, we explore the parameter space

and compare the OE solutions when there is no disclosure at the young stage (i.e. γ = 1) to those

when there is full disclosure (i.e. γ = 1). This comparison elucidates the effect of γ and illustrates

some cases as shown in the propositions above. In particular, we emphasize the interplay between

the direct effect and competition effect on a selected set of outcomes. In Subsection 4.1.2, we take

one point from the parameter space and examine the gradual change in all of the OE outcomes

as γ increases gradually from 0 to 1. By plotting the equilibrium probabilities against γ, we show

intuitively how entry and exit of firms may change as γ grows.

8See Table C.3 in the Appendix for the model solutions.

17



4.1.1 Exploring the Parameter Space

We explore the parameter space mainly along the dimensions of the average entry costs and the

difference between q̄ and q. In particular, we normalize q to 0, and vary only q̄. For the average

entry costs, we vary the entry cost of high-quality independent restaurants (κH) and assume that

the entry costs of low-quality independent and chain restaurants are of fixed proportions to κH .

This assumption is to reflect that in reality both low-quality independent and chain restaurants

usually incur lower entry costs. For example, low-quality independent restaurants do not need to

buy high-end kitchen equipment as high-quality restaurants do. In addition, chain restaurants can

benefit from economies of scale in entry because the chain headquarters usually select the sites

and negotiate rent or property acquisition on behalf of each individual outlet. We focus on the

two main parameters (q̄ and κH) because they are the most economically meaningful compared to

other parameters. The parameter q̄ is directly related to the effect of γ — if q̄ is not much higher

than 0, then quality disclosure is meaningless. The entry cost κH directly influences the entry

decisions of firms, and thereby could exacerbate the effect of γ. The detailed setup of the values

of other parameters of the model is outlined in Table E.1 of the Appendix. We provide additional

explanation of the parameter values in the Appendix. For the ranges of q̄ and κH , they are set

to be [0.2, 3] and [1, 24] respectively. We hope through this wide range of parameter space, we are

able to capture the different cases described in Section 4.

For this numerical exercise, we focus on comparing the OE outcomes under the scenario with

no disclosure (γ = 0) to those with full disclosure (γ = 1). In particular, we present two types

of comparison results: one is the direction of the change, i.e positive or negative, and the other is

the change in magnitude, i.e. percentage change in the values of the outcome variables, such as

exit probabilities. All changes are calculated as the OE outcomes when γ = 1 minus those when

γ = 0. Below we present the comparison results for three sets of equilibrium outcomes: (1) change

in competition (i.e.
∑

q̂′ n(q̂
′) exp(q̂′)), (2) change in entry probabilities (i.e. PE

H and PE
L ), and

(3) change in exit probabilities of young independent restaurants (i.e. PX
H1 and PX

L1). By focusing

on these three sets of equilibrium outcomes, we hope to unravel the interplay between the various

forces that influence the effect of quality disclosure.

Effect on Competition Figure 1 illustrates the change in competition. The left panel, Figure

1a, displays the direction of the change, and the right panel, Figure 1b, shows the percentage

change. The x axis in both panels is the entry cost, and the y-axis is the quality difference. In

panel 1a, the yellow region represents a positive change, whereas the dark blue region indicates

a non-positive change. The positive change implies that competition intensities as the result of

quality disclosure; in contrast, the non-positive change suggests that competition either does not

change or weakens when there is quality disclosure. These results are consistent with Proposition

2, i.e. under some conditions, competition can increase, and under some other conditions, it could

weaken.

18



Figure 1a also shows two distinct features: (1) the yellow region is much larger than the dark blue

region, suggesting that competition effect is much more likely to intensify as the result of quality

disclosure.9 (2) The dark blue region occurs mostly in the lower right corner of the graph; that is,

when the quality difference is small and when the entry cost is high. It is easy to understand that

when the quality difference is large, the direct effect of quality disclosure will be large. High-quality

independent restaurants will be encouraged to enter the market, whereas low-quality independent

restaurants will exit. Given that high-quality restaurants contribute more to competition — because

in competition (
∑

q̂′ n(q̂
′) exp(q̂′)), the numbers of high-quality restaurants are weighted by exp(q̄)

— competition is likely to intensify when the quality difference is large. When the quality difference

is small, on the other hand, competition could weaken, as shown by the dark blue region in figure 1a.

In particular, bigger entry costs would discourage the entry of all restaurants and thereby dampen

competition in the market in general. When combined with a small quality difference, bigger entry

costs can decrease competition. This is because the marginal benefit of quality disclosure is small for

high-quality independent restaurants at this point, and due to the high entry barrier, high-quality

independent restaurants’ entry probability would not increase much. Low-quality independent

restaurants, on the other hand, will exit due to quality disclosure. Therefore, there is likely a net

loss in the number of restaurants in the market, leading to weaker competition.

The right panel, Figure 1b, displays the magnitude of the change in competition. It offers

a compelling insight: the competition effect is strongest when entry costs are small and quality

difference is high. When entry cost is small, restaurants of all types are incentivized to enter the

market, regardless of quality disclosure. The impact of quality disclosure on competition can be

amplified by small entry costs. This is because high-quality independent restaurants are more likely

to enter the market as the result of quality disclosure at this point, leading to a more competitive

market environment. Along the quality-difference dimension, the greater the quality difference, the

higher the direct effect of quality disclosure, and the greater incentives high-quality restaurants have

to enter the market. More high-quality restaurants in the market therefore intensify competition.

It should be noted that too much increase in competition can reduce the entry of high-quality

independent restaurants. This case will be discussed in detail when we examine the effect of

quality disclosure on entry.

9In the main paper, we set equal number of potential entrants for high- and low- quality restaurants. In Appendix

Section E.2, we also provide numerical simulations with the same specification as Table E.1 except that we set the

number of potential entrants for low-quality restaurants to be significant higher than that for high-quality restaurants.

In this case, we only observe decreased competition. We explore and discuss the corresponding equilibrium under

this set of parameter specification as well.
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(a) Direction (b) Percentage Change

Figure 1: Change in Competition When NL = NH

Effect on Entry Figure 2 displays the change in the entry probabilities for both high- and low-

quality independent restaurants (i.e., PE
H and PE

L ). The top two panels, figures 2a and 2b, are for

high-quality restaurants, and the lower two, figures 2a and 2b, are for low-quality. As shown in

figure 2a , high-quality independent restaurants enter more as the result of quality disclosure most of

the time, except for the top left corner where the entry cost is very low but the quality difference is

very high. As mentioned previously, the top left corner of the parameter space is where competition

increases the most, and at this point, the effect of competition (CE) can overpower the direct effect

(DE) for PE
H , leading to a decrease in the entry of high-quality independent restaurants.

One may question why competition can increase when there are fewer high-quality independent

restaurants entering the market. The reason is that if there are fewer exits of young high-quality

independent restaurants, then the market can still experience an increase in the number of high-

quality independent restaurants, resulting in greater competition. This is indeed the case. As will

be shown later (in figure 3a), the exit probability of young high-quality independent restaurants

decreases in the entire parameter space. Therefore, in the top left region of the parameter space,

even though high-quality restaurants enter less, they also exit less at the young stage. The fewer

exits can overcome the effect of less entry on competition, leading to more fierce competition. This

phenomenon is consistent with Proposition 3 (2).

Another notable feature of the top left corner of figure 2a is that the dark blue region is relatively

small. The reason for this lies in the fact that in this region, the CE dominates the DE at the

entry stage (i.e. for PE
H ), but it is dominated by DE at the young stage of a high-quality restaurant

(i.e. for PX
H1). This is a tighter condition than DE dominating CE at all stages. (See the proof

for Proposition 3 in the Appendix for detail.) Therefore, the tighter condition leads to a relatively

small area in the parameter space.
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In terms of the magnitude change in PE
H , figure 2b shows two interesting features: (1) the

percentage change is higher when the entry cost is larger, and (2) the change is non-monotonic

along the quality-difference dimension. Several forces are at work here. First, when entry costs are

large, the entry probability is small to begin with, and is thereby more prone to a higher percentage

change. Second, as shown in figure 1b, the change in competition decreases as entry costs increase,

and therefore, the change in the entry probability is likely bigger. Third, the direct effect of quality

disclosure increases with higher quality difference, which in turn also augments competition. Since

competition and the direct effect work in different directions, the change in PE
H ultimately presents

a non-monotonic pattern with respect to quality difference. All of these forces produce the pattern

of change in figure 2b .

For low-quality independent restaurants, figure 2c shows that in the entire parameter space, the

change is negative. Figure 2d indicates that the percentage change in the entry probability PE
L is the

largest when the entry cost is the highest and when the quality difference is the highest. Similar to

the change for high-quality restaurants, when the entry cost is high, the entry probability is small,

and thereby is prone to a larger percentage change. In addition, when the quality difference is high,

the direct effect of quality disclosure is high, preventing more low-quality independent restaurants

from entering. Note that competition and the direct effect of quality disclosure work in the same

direction for PE
L . Therefore, greater competition when the quality difference is high further helps

keep out more low-quality independent restaurants.

Effect on Exit Figure 3 illustrates the exit probabilities for both high- and low-quality indepen-

dent restaurants at the young stage. The top two panels, figures 3a and 3b, are for high-quality

restaurants, and the lower two, figures 3c and 3d, are for low-quality restaurants. The left two

panels show the directional change in the exit probabilities of high- and low-quality restaurants.

As shown, young high-quality independent restaurants exit less as the result of quality disclosure

for the entire region of the parameter space. At the same time, as indicated by the lower left panel,

young low-quality independent restaurants exit more for the entire parameter space.

In terms of magnitude, as shown in figure 3b, the percentage change in the exit probability of

young high-quality restaurants (PX
H1) increases with both the entry cost and the quality difference.

Two factors lead to this pattern: (1) the higher the quality difference, the smaller the incentives

of high-quality restaurants to exit the market, and therefore, the change in the exit probability

PX
H1 increases with quality disclosure. In addition, (2) even though the entry cost does not affect

exit probabilities directly, it affects exit through competition. As shown in figure 1a, greater entry

costs lead to lower competition, which in turn reduces firms’ motives to exit the market. Therefore,

when the entry cost is high, the exit probability PX
H1 is low to begin with, and is more prone to

greater changes in relative terms.

For young low-quality independent restaurants, as shown in figure 3d, the percentage change in

the exit probability (PX
L1) increases with the entry cost, but varies non-monotonically with respect
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(a) Direction (High-quality) (b) Percentage Change (High-quality)

(c) Direction (Low-quality) (d) Percentage Change (Low-quality)

Figure 2: Change in Entry Probabilities of Independent Restaurants (Increased Competition)

to quality difference. Similar to the reasons discussed previously, when the entry cost is high,

the exit probabilities are small to begin with, and thereby are more likely to receive a bigger

change in relative percentage terms as the result of quality disclosure. Along the quality difference

dimension, the change is non-monotonic because when the quality difference is very high, young

low-quality restaurants’ exit probabilities are high even without quality disclosure. Recall that

young low-quality restaurants’ true quality will be fully revealed in the next period regardless of

quality disclosure; this gives a greater incentive for young low-quality restaurants to exit. Even

though higher quality difference makes the direct effect of quality disclosure stronger, when it is too

high, the base exit probability would be large to begin with, dampening the change in percentage

terms.10 That is why the change in PX
L1 varies non-monotonically in quality difference.

10Note that this is not the case for young high-quality restaurants, whose exit probabilities are low when quality
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(a) Direction (High-quality) (b) Percentage Change (High-quality)

(c) Direction (Low-quality) (d) Percentage Change (Low-quality)

Figure 3: Changes in Exit Probabilities of Young Restaurants

To summarize, the exploration of the solutions in a large parameter space shows that com-

petition can increase or decrease as the result of quality disclosure. In particular, the cases in

Proposition 3 (1) and (2) as well as Proposition 4 (2) show up in this exercise. The parameter

region for Proposition 3 (2) (i.e. the dark blue region in figure 2a) is relatively small, and the

most common case with the largest region in the parameter space is Proposition 3 (1). The case in

Proposition 4 (1) does not appear here. It is likely because of the stringent conditions it requires.

See the proof of Proposition 4 in the Appendix for detail. Specifically, for this case to appear,

there need to be much more low-quality independent restaurants than high-quality in the market,

a condition that can be achieved either through having a lot more potential entrants of low-quality

than those of high-quality, i.e. NL >> NH , or through a very low entry cost for low-quality inde-

difference is high when there is no quality disclosure.
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pendent restaurants. In our numerical exercise shown here, we set NL = NH , and the entry cost

of low-quality independent restaurants is fixed at a ratio of 0.7 to the entry cost of high-quality

independent restaurants. Therefore, Proposition 4 (1) is unlike to show up in our numerical setting.

To show the possibility of Proposition 4 (1), in Appendix Section E.2, we re-did the numerical

simulation with the same parameter specification in Table E.1 except that we set the number of

potential entrants for low-quality restaurants to be significantly higher than that for high-quality

restaurants (i.e., NL = 3000, NH = 500). With our parameter space specification, the numerical

simulation suggests decreased competition, and the possibility of an increased entry probability for

low-quality restaurants. We also provide detailed discussion about the equilibrium entry and exit

probabilities in Appendix Section E.2.

4.1.2 Gradual Information Disclosure

Having examined the difference between the scenarios with no disclosure and with full disclosure for

a wide range of parameters, we now zoom in onto one point in the parameter space, and investigate

how equilibrium outcomes change when γ increases gradually. Unlike the previous section, which

focuses on a selected set of outcomes, this section provides a detailed and complete picture of all

equilibrium probabilities. In our analysis, we also explore a counterfactual scenario where only

the direct effect is present and juxtapose these counterfactual probabilities with the equilibrium

outcomes. The difference between them reflects the competition effect.

We choose the point in the parameter space where κH = 22 and q̄ = 3. As shown in the

figures from the previous section, this point is aligned with the most common case, Proposition

3 (1). We compute equilibrium solutions for 100 evenly spaced values of γ between 0 and 1, and

plot the equilibrium probabilities against γ in figures 4 to 6. Figures 4 and 5 are for independent

restaurants, and figure 6 is for chain restaurants. As both the direct effect and competition effect are

at work for independent restaurants, we plot the counterfactual outcomes as well as the equilibrium

outcomes in figures 4 and 5. In these graphs, we use solid lines for the equilibrium outcomes and

dashed lines for the counterfactuals. For chain restaurants, because they are affected only by the

competition effect, we omit the counterfactual outcomes in figure 6, and use solid and dashed lines

to differentiate entry probabilities from exit probabilities.

Figure 4 plots the entry probabilities for both high- and low-quality independent restaurants.

The blue lines represent those for high-quality and the red lines for low-quality. The dashed lines

are the counterfactual entry probabilities. As can be seen, as γ increases, the dashed lines diverge

from the solid lines, suggesting that competition effect grows as γ increases. Furthermore, for

both high- and low-quality restaurants, the counterfactual entry probabilities are higher than the

equilibrium probabilities, implying that competition has intensified as γ grows. The increase in

competition attenuates the direct effect and reduces the equilibrium entry probabilities.
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Figure 4: Effect on Entry Probabilities of Independent Restaurants

Figure 5 displays the exit probabilities for independent restaurants. The left panel, figure 5a,

is for young restaurants, and the right panel, figure 5b , for established restaurants. As shown

in figure 5a, the exit probabilities of young high-quality restaurants decrease with γ, and those

probabilities of young low-quality restaurants increase with γ. The difference between the dashed

lines and the solid lines is much more pronounced for high-quality restaurants, suggesting that

competition affects high-quality restaurants much more than low-quality restaurants. This feature

seems to be consistent across all figures of the independent restaurants.

Figure 5b plots the exit probabilities of established independent restaurants. Restaurants’

exit probabilities are affected only by competition at this stage. Therefore, the counterfactual

probability lines (dashed lines) are flat, showing a constant value. The equilibrium exit probabilities

of both high- and low-quality restaurants increase with γ, consistent with the notion of increased

competition. Again, competition seems to influence high-quality restaurants much more than low-

quality restaurants.

For chain restaurants, figure 6 illustrates the entry and exit probabilities for both high- and

low-quality chain restaurants. The green lines are for high-quality and purple lines for low-quality.

As show in the graph, both the entry probabilities (solid lines) and the exit probabilities (dashed

lines) are relatively flat, suggesting that γ does not have a large effect on chain restaurants. Of

all probabilities, the change in the exit probability of high-quality chain restaurants is the most

pronounced. Again, this pattern is consistent with the feature shown in the previous two figures

that competition appears to affect high-quality restaurants more than low-quality restaurants.

Overall, the results in this section suggest that quality disclosure has heterogeneous effects on

restaurants across quality types and chain affiliation. The effect is most pronounced for high-quality

independent restaurants and relatively small for chain restaurants.
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(a) Young Restaurants (b) Established Restaurants

Figure 5: Effect on Exit Probabilities of Independent Restaurants

Figure 6: Effect on Entry and Exit Probabilities of Chain Restaurants

Both the comparative statics and the numerical examples show that the effect of quality disclo-

sure on the entry and exit dynamics firms is not deterministic. It really depends on the economic

fundamentals, such as the entry cost. Nonetheless, the most common case is the most intuitive

one, i.e. quality disclosure increases competition, encourages the entry of high-quality independent

restaurants and reduces the exit of high-quality young independent restaurants. Therefore, the

overall effect of quality disclosure is an empirical question. In the next section, we test the model

predictions in an empirical setting.
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5 Empirical Application

Our empirical context is the effect of online reviews platforms’ penetration on firm entry and exit

dynamics in the restaurant industry in Texas. Online reviews disclose the quality of restaurants

and allow consumers to learn from each other’s experiences. In areas where consumers frequently

use online reviews to share experiences, the quality disclosure of restaurants is likely fast, and

the reverse would be true in areas where consumers do not share reviews often. Online review

platforms, such as Yelp and Google, penetrated different regions in Texas during various periods

of time. This variation in the timing of penetration allows us to tease out the effect of quality

disclosure on industry dynamics.

We test the model predictions from the following aspects: (1) the effect of online review plat-

forms on the number of new entries of restaurants across quality and chain affiliation; (2) the effect

of online review platforms on the exit probabilities of restaurants across quality, chain affiliation,

and stage (young v.s. established). Although the model in Section 3 has entry probabilities as part

of the main equilibrium outcomes, we cannot measure entry probabilities directly in the real world

because the numbers of potential entrants are unobservable. Therefore, we opt to test the number

of new entries in lieu of entry probabilities. For exits, we test the exit probabilities directly because

incumbent firms are observed.

In addition, we leverage the heterogeneity in consumers’ learning speed across locations to

demonstrate the heterogeneous effects of online review platforms. Fang (2022) show that consumers’

learning about quality is much faster in local areas than touristy areas because local consumers can

learn from their repeated trials at a restaurant in addition to word-of-mouth; tourists or transient

consumers, on the other hand, learn only from word of mouth. Based on the results from the

model extension with slow learning, shown in Appendix F, the effect of quality disclosure in areas

with slow learning should be stronger than that with fast learning. To investigate this difference

in impact, we follow the practice in Fang (2022) to use areas within 500 meter radius of interstate

highway exits to represent locations with transient consumers, and the rest as local areas. We

estimate the effects of online review platforms for highway areas and non-highway areas separately

to compare the difference.

We begin with a description of our data and the construction of various measures in Section

5.1. Then we discuss our identification strategy and potential endogeneity in Section 5.2. Finally

in Section 5.3, we illustrate the empirical results.

5.1 Data and Measures

The data are the same as those used in Fang (2022), which studies the effect of online review

platforms on restaurant revenue. We use this data to investigate the effect on firm entry and exit

dynamics. The data are drawn from a variety of sources: (1) Texas restaurant mixed beverage gross

receipts data from the Texas Comptroller Office of Public Accounts. It contains monthly revenue
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from alcoholic drinks at the establishment level in Texas from January, 1995 to December, 2015,

and it tracks the entry and exit dates of each restaurant. (2) Restaurant characteristics and review

data collected from Yelp, TripAdvisor and Google, including snapshots of overall average ratings

on each platform, prices in $ ranges and restaurant cuisine types. For restaurants listed on Yelp

and TripAdvisor, we have the rating history data that show the time stamp and star rating for each

review of each restaurant. (3) Consumer demographics data gathered from sources including the

decennial census and the American Community Survey. Although the Texas mixed beverage gross

receipts dataset contains all establishments that hold a liquor license, we restricted the sample to

only full-service restaurants. In total, there are 15,417 restaurants in the dataset.

We use these data to construct four measures that are particularly important for the empiri-

cal analysis. They are measures for (1) online review platforms’ penetration, (2) the quality of a

restaurant, (3) the number of new entries, and (4) the action of exit. For market definition, we

choose county-month. County is a natural choice for market definition because it is an administra-

tive entity and a basic unit for infrastructure provision. In total, there are about 110 counties in

our dataset.

To construct the first measure, online review platforms’ penetration, we follow the practice in

Fang (2022) and use the average number of new reviews received by each restaurant per month

on Yelp at the county level. This measure is constructed from the rating history data on Yelp.

It represents consumers’ review activity in each county each month.11 Although only the review

history data from Yelp is used in the construction of the measure, it can be seen as capturing

the penetration of all online review platforms as consumers’ review activity on each platform is

highly correlated. This measure varies widely across different counties in Texas. As shown in Fang

(2022), this variation reflects the availability of broadband internet in each county (Connected

Texas, 2011). It is this variation that we leverage to tease out the effect of online review platforms

on restaurant entry and exit dynamics. The rating history on Yelp shows that the first review on

Yelp was written in March 2005. Because Yelp is the pioneer of online review platforms, we use

March 2005 as the start time of all online review platforms’ penetration in our analysis.

For the second measure, the quality of a restaurant, we use mainly the overall average rating

on Google as of November 2016, the time of data collection. As demonstrated by Fang (2022),

Google rating covers the highest number of restaurants in the sample (9,0240 or 59%) and is a

good measure of quality. Among all restaurants operated after March 2005, the start of the online

review platforms’ penetration, over 68% of restaurants have ratings on Google.

For the third measure, the number of new entries, we count the number of newly entered

restaurants by their chain affiliation and quality level at each county in each month. In particular, by

11As described in Fang (2022), averaging the number of new reviews across restaurants makes the measure less

sensitive to the size of a county, so that larger counties do not necessarily have larger penetration measures. Fur-

thermore, Berry and Waldfogel (2010) show that the number of restaurants in a region is generally proportional to

the region’s population size. The average number of new reviews per restaurant therefore reflects the average review

activity from each person.
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using the revenue information, we define an entry as the first month that a restaurant makes positive

revenue. In total, during our sample period, there were about 10,310 new entries of independent

restaurants and 2,500 of chain restaurants. While it is easy to separate chain restaurants from

independent restaurants, counting the number of new entries by quality level is harder. This is

because the quality measure, Google rating, is continuous. We need to discretize the ratings into

bins first before doing the tally. For the number of bins, we choose 3, 5 and 7 to show robustness of

the results. The discretization is based on the quantiles of the rating distribution of all restaurants in

the sample. For example, to discretize the ratings into 3 bins, we rank the ratings of all restaurants,

and classify the highest 33.3% of the ratings into the high-quality bin. Ratings between 33.3% and

66.6% are in the medium-quality bin, and the remainder is in the low-quality bin. Breaking the

ratings into 3 bins creates cutoff ratings for each bin as 4.1+ for high quality, between 3.7 and 4.1

for medium quality, and below 3.7 for low quality. The new entrants with ratings that fall into

these cutoffs are classified into their appropriate bins. The quality of the new entrants in each bin

in each market is then the average quality of the new entrants’ ratings in that market.12 This type

of discretization thus retains the scale in Google rating regardless of the number of the bins chosen,

and the coefficients from regressions using different bins are thereby comparable. The discretization

with 5 and 7 bins are done in a similar way.

For the last measure, the measure of exit, we use a restaurant’s action of exit. The month of

exit is informed by the out-of-business (OOB) date in the Texas mixed beverage dataset. The OOB

date is the official date of business closure, at which point, the business no longer needs to report

taxable earnings. However, for some restaurants, their revenues had already turned 0 before the

OOB date. In those cases, we define the timing of exit as the month after which a restaurant’s

revenue is 0. In our sample, 8,594 restaurants ever exited, of which about 3,000 have ratings on

Google.13

Table 1 provides the key summary statistics of our data. In terms of entry, the number of entries

in each market varies from 0 to 19 with a mean of 0.44 for independent restaurants, and ranges from

0 to 10 with a mean of 0.11 for chain restaurants. Figure 7 illustrates the distribution of the total

number of new entries in a market. As shown, the distribution is highly skewed to the right, with

the majority of the observations falling between 0 and 5. In terms of exit, Table 1 shows that the

12We choose discretization based on quantile instead of equal distance in rating scale because the latter can generate

disproportionally large bins. For example, most restaurants have a rating greater than 3.5 on Google. If we use equal

distance in rating scale to create bins, then the cutoff ratings would be 1.67, 1.67 to 3.33, and above 3.33. In this

case, almost all restaurants will be classified into high-quality bins, leaving very few in the other two bins.
13For both entry and exit definitions, we adjust for regular or major renovation. If some restaurants temporarily

withdrew from the market and then reappeared after less than two months, then we treat this as regular renovation

and do not count the withdrawal as exit nor the reappearance as a new entry. However, if a restaurant disappeared

from the market for longer than two months, then we treat this as a major renovation that likely changes the

restaurant substantially. We count this incidence in both exit and new entry. We do not, however, change the Google

rating before and after the major renovation due to lack of data. Given that there are very few major renovation

incidents (less than 10), this treatment of the rating should not cause significant bias in empirical testing.
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Figure 7: Distributions of New Entries

Table 1: Summary Statistics

Variable Mean Std. Dev. Min. Max. Number of Observations

Average # of entries for independent per county per month 0.44 1.35 0 19 23,288

Average # of entries for chain per county per month 0.11 0.43 0 10 23,288

Average # of exits for independent per county per month 0.32 1.05 0 15 23,288

Average # of exits for chain per county per month 0.048 0.32 0 19 23,288

Number of months in operation 74.6 71.3 1 265 15,417

Average rating for independent 3.93 0.43 1.5 5.0 6,356

Average rating for chain 3.63 0.46 1.9 4.8 2,668

Average rating for local areas 3.85 0.46 1.5 5.0 7,810

Average rating for highway areas 3.73 0.47 2.0 4.9 1,214

Average # of new reviews per restaurant on Yelp per county per month 0.109 0.33 0 5 23,288

number of exits in each market goes from 0 to 15 with a mean of 0.32 for independent restaurants,

and extends from 0 to 19 with a mean of 0.048 for chain restaurants. There were a lot more exits

among independent restaurants than chain restaurants during the sample period. In fact, of the

8,594 restaurants that ever exited, only 1,125 were chains. The average life span of a restaurant is

about 75 months or 6 years. With regard to ratings, the average rating for independent restaurants

is 3.93, much higher than the average of 3.63 for chain restaurants. Restaurants’ ratings also differ

across local areas and highway areas, with the average rating being higher in local markets, 3.85,

than that in highway markets, 3.73. This pattern is consistent with the literature, which finds that

the quality of restaurants or hotels in locations with transient consumers tends to be lower than

that in locations with repeat consumers (Mazzeo, 2004; Blair and Lafontaine, 2005).
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5.2 Regression Design and Identification Strategy

The identification strategy we employ to test the model predictions is a triple difference-in-difference

(DiD) approach. Following Fang (2022), we exploit the variation in the penetration of online review

platforms across geographic regions and time to tease out their effects on restaurant entries and

exits. Because online reviews disclose quality of restaurants, for a given quality, the change (increase

or decrease) in new entries or exits should be larger in regions with greater amount of consumer

review activity than in those with a lower amount, and the change should vary with chain affiliation,

age and location. See Figures 4 to 6 in Section 4.1.2 for a demonstration. Here we also make the

implicit assumption that across all markets in our sample, the changes in equilibrium outcomes

with respect to quality disclosure have the same direction; that is, it should not be the case that

new entries (or exit probabilities) increase with quality disclosure in some markets but decrease in

other markets. With this assumption, we use the following econometric specifications to examine

new entries and exit.

Entry To test the effect on new entries, we use a Poisson regression. Poisson DiD regressions

yield consistent estimates as long as the conditional mean of the dependent variable is correctly

specified (Wooldridge, 2023). The main econometric specification is as follows:

log(E(Nqfct|X,θ, . . .)) =(θy + θyrRatingqfct) log(Y elpct)(1−Dch
f ) + (θchy + θchyrRatingqfct) log(Y elpct)D

ch
f

+Xctθx + θα log(αfct) + θlt + θqfc + θMt + θchMt, (16)

where Nqfct is the number of new entries by quality level q and chain affiliation f per county c

each month t. Df is a dummy variable for chain affiliation. If f indicates chain, then Dch
f = 1;

otherwise, 0. Ratingqfct is the numerical average of the Google ratings of all new entries with the

quality level q and affiliation f in market ct. As mentioned before, we group restaurants based on

their ratings into 3, 5, and 7 levels, high, medium and low. q simply indicates which level a new

restaurant falls into, but Ratingqfct is the group average of the Google ratings for all new entries in

level q. The variable log(Y elpct) is the natural logarithm of the penetration measure in county c at

time t. log(αfct) is the natural logarithm of the share of new entries by chain affiliation f in each

county c and each month t. The variable θlt is the fixed effect of new entries with low quality l at

each month t.14 Xct is county-level market characteristics such as demographics, income, and the

number of incumbent independent and chain restaurants in the market at time t−1.15 The variable

θqfc is the fixed effect of new entries with quality level q, chain affiliation f , and county c. This

fixed effect is to capture that restaurants with certain quality levels and chain affiliation are more

likely to enter in some counties than in other counties. θMt is a metro-region-time fixed effects, and

14The definition for low-quality is the lowest 2 levels in regressions with 5 and 7 quality levels, and the lowest level

in the regression with 3 quality levels.
15As will be discussed later, we also include in Xct the natural logarithm of the ratio of new entries that are listed

on Google.
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θchMt is metro-region-time fixed effects for chains. A metro region is a core-based statistical area as

defined by the US Census Bureau. The fixed effects θMt and θchMt are to control for the varying

time trend across different regions in Texas in the entry of either independent or chain restaurants.

In this regression, the key parameters of interest are θy, θyr, θ
ch
y , and θchyr . In particular, the

composite coefficient θy + θyrRatingq represents the impact of online review platforms on the

entries of independent restaurants with quality rating q, and θchy + θyrRatingchq represents that for

chain restaurants. They can be interpreted as the percentage change in the expected number of

entries when the activity on online review platforms increases by 100%.

The sample for this regression includes all entries after March 2005, the start time of online

review platforms’ penetration. New entries before this date should not be affected by online reviews.

In addition to the specification in equation 16, we also estimate a regression where the effect of

online review platforms is interacted with a location indicator for being within 500 meters of an

interstate highway. Through this regression, we aim to see differential effects of online review

platforms across locations with fast learning and with slow learning.

The identifying assumptions for this DiD regression include (1) the treatment – online review

platform’s penetration – is exogenous to the change in outcome, and (2) the new entries in the

treated markets should follow the same trend as those in the non-treated markets in the absence of

the treatment. With these two assumptions, the effect of online review platforms estimated from the

regression can be interpreted as causal. Like Fang (2022), we deal with the potential endogeneity

of our measure of penetration by controlling for observable market characteristics as well as a rich

set of fixed effects. For market characteristics, we control for the demographic information at the

county level, such as population, income, age, and race. We also take into account the numbers of

incumbent chain and independent restaurants in the same county from the last period, which likely

describe the competitive environment in the market. In addition, we include a number of fixed

effects to address the endogeneity concern that our measure of penetration might be correlated

with county-time specific demand shocks, such as popular festivals. These demand shocks can

increase both consumers’ review activity and new entries of restaurants, leading to a spurious

positive correlation between them. To account for county-time specific demand shocks, we use

metro-region×time fixed effects because one county’s demand shocks are likely to spill over to the

entire metro region.16 To capture idiosyncratic shocks in each county for a specific type of chain

affiliation and quality level, we include quality-level×chain-affiliation×county fixed effect. All of our

errors are clustered two-way at the county level and time level in order to account for correlations

across time for the same county and geographic correlation between counties at a given time.

An important challenge to identification in the entry analysis is that we do not observe the

quality of all new entrants during our sample period. Although we observe all new entries and

their chain affiliation in each market, we cannot tell the quality of a new restaurant if it did not

have a rating on Google. To approximate Nqfct in equation 16, we use the number of new entries

16We cannot use a county-time fixed effect because it would absorb the penetration measure.
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that have ratings on Google instead; however, they represent only a portion of Nqfct. Figure 8

displays the portion of those new entrants that have ratings on Google out of the total entries over

time. As shown, about 60% of the new entrants in around March, 2005 had presence on Google.

This share increased over time. By the end of the sample period, about 85% of the new entrants

have ratings on Google. This increasing trend is likely due to two processes: (1) one is that a

smaller proportion of restaurants were listed online when online review platforms first started; (2)

the other is that many restaurants exited long before the data on ratings were collected.17 These

two processes could cause bias in our estimates if they are correlated with online review platforms’

penetration.

For the first process, if the portion is uncorrelated with online review platforms’ penetration,

then the metro-region×time fixed effect will absorb the effect of the changing ratio because the

logarithm of the ratio comes into equation 16 linearly. However, if the ratio is correlated with

online review platform’s penetration, then not accounting for it will cause omitted variable bias.

Therefore, on the right-hand side of equation 16, we also add the natural logarithm of the share

of the new entries listed on Google by chain affiliation in each county and each month, denoted

by log(αfct), where α indicates the ratio.18 For the second process related to exit, it is likely that

more lower-quality restaurants had exited than higher-quality restaurants by the end of the sample

period. Therefore, in terms of the quality-makeup, the new entries with Google ratings from the

earlier years are likely to have a lower share of low-quality restaurants than those from the later

years. If exits are uncorrelated with online review platforms’ penetration, then by controlling for

a common trend in the entries of low-quality restaurants across high- and low penetration areas,

we can account for this systematic under-representation of low-quality entries observed in the older

years. For this reason, we also add low-quality×time fixed effects to the right-hand side of equation

16. However, based on our theory from Section 3, we know that exits should be affected by online

review platforms’ penetration. In particular, there is a greater under-counting of low-quality entries

in high-penetration areas in the older years than in low-penetration areas because online reviews

speed up the exit of low-quality restaurants (especially young independent restaurants). In this

case, the change in low-quality entries in high-penetration area will be dampened, leading to a

downward bias on the magnitude of the estimated effect of online review platforms’ penetration.

In this regard, our estimates from equation 16 can be seen as a lower bound.

17Note that Google keeps a record of restaurants that are closed, but if they have been closed for a very long, they

may not show up in the query from Google Places API.
18Note that it is not possible to have this ratio by quality level because we simply do not observe the quality of all

restaurants.
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Figure 8: Percentage of New Entrants Listed on Google (Quarterly), 1995-2015

Exit To examine the effect of online review platforms on exit, we use a linear probability regres-

sion:

ajt =(θy + θyrRatingj) log(Y elpct)(1−Dch
j ) + (θchy + θchyrRatingj) log(Y elpct)D

ch
j

+Xjtθx + θjmnth + θMt + θchMt + εjt, (17)

where ajt is a dummy variable for the exit action. It is 1 if the restaurant decides to exit at time t,

and 0 if the restaurant decides to stay in the market. Dch
j ≡ 1{restaurantjis affiliated with a chain.}

is a dummy variable for chain affiliation. Xjt includes restaurant characteristics as well as county-

level demand and cost conditions. θjmnth is the restaurant×month fixed effect, where mnth indi-

cates calendar months as in January to December. θjmnth controls for restaurant-specific seasonality

because different types of restaurants may be affected by seasonality to various degrees, and they

may decide to exit in different months of the year. The rest of the variables are defined the same

way as in equation 16.

The identifying assumption in this test is the same as those for the entry. In particular, because

the exit regression is done at the restaurant level, where we observe both the quality and the exit

decision, we do not have the issue of having to approximate the dependent variable as in the entry

regression. Here the restaurants that were not listed on Google are simply not included in the

regression. The identification comes from comparing those restaurants listed on Google in high-

penetration areas to those in low-penetration areas in terms of the change in their exit decisions.

The sample for this regression is limited to the periods when a restaurant was treated by online

reviews, i.e. those periods after a restaurant had received at least one review online from either

Yelp, TripAdvisor or Google. For those restaurants also listed on Yelp, we use the date of their first

Yelp review because Yelp was usually the go-to platform for reviews for new restaurants during
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our sample period. For those restaurants listed not on Yelp but on Google, because we could not

observe the date of their first review on Google, we follow the practice in Fang (2022) and use the

penetration date of Google in Texas as a proxy, which is around January 2011.19.

Similar to the analysis of entry, we also examine the differential effects of online review platforms

across areas with fast and slow learning by interacting the penetration measure with a high-way

area dummy in equation 17. In addition, we investigate the heterogeneous effects of online reviews

on young v.s. established restaurants’ exits by interacting the penetration measure with an age

dummy of older than 12 years. One of the important predictions from the model in Section 3

is that young and established restaurants’ exit rates react differently to quality disclosure. In

particular, how established restaurants’ exit probability changes with respect to online review

platforms’ penetration can tell us about the effect of online reviews on competition. We choose 12

years as the cutoff for young and established restaurants based on the findings from Fang (2022),

who shows that the effect of online review platforms peters out after a restaurant becomes 12 years

old.

Pre-trend Analysis For both the entry and exit regressions, we conduct a pre-trend analysis to

check if entries and exits in high-penetration areas and low-penetration areas shared the same trend

before the penetration of online review platforms. As mentioned previously, treated and non-treated

areas sharing the same trend absent of the treatment is an important assumption for identification.

To implement the pre-trend analysis, we move the penetration measure backward in time by 10

years. Instead of starting in March 2005, the penetration now starts in March 1995. We then

run the regressions in equation 16 and equation 17 respectively by using the sample from March

1995 to March 2005. If our penetration measure picks up inherent differences across high- and low-

penetration regions unrelated to online review platforms’ penetration, then the regression results

from the pre-trend analysis will show significant effects of online review platforms’ penetration in

both entry and exit. The results from the pre-trend analysis are displayed in Tables G.3 and G.4

of Appendix G. As shown, none of the coefficients associated with log(Y elpct) are significant in

these tables. These results imply that the high- and low-penetration areas share the same trend in

entry and exit without online reviews.

5.3 Results

The results of the entry and exit analyses are shown below in in Sections 5.3.1 and 5.3.2 respectively.

5.3.1 Entry

Table 2 displays the results from the main entry regression with 7, 5 and 3 levels of quality respec-

tively in each column. As mentioned previously, the way we constructed the quality bins preserves

19Fang (2022) provides justification for this date.
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the scale of Google rating; therefore, the coefficient estimates from all columns in the table are com-

parable. As shown, across the different numbers of quality levels, the estimates are very similar.

The coefficients for chain are all insignificant, indicating that online review platforms’ penetration

had very little effect on the entry of chain restaurants. The coefficients for independent are all signif-

icant at the 1% level. The coefficient for log(Yelp) is θy in equation 16. It represents the percentage

change in the expected number of entries in a market when consumers’ review activity increases

by 100%. It being negative implies that for the very low quality levels, the number of new entries

declines with the penetration of online review platforms. The coefficient for log(Yelp)×rating is θyr

in equation 16. It being positive means that the effect of online review platforms increases with

quality levels. In particular, for very high quality levels, the overall effect from online reviews on

entry would be positive.

For ease of interpretation, we calculate the composite coefficient θy + θyrRatingq in order to

gauge the total effect of online review platforms at each star rating level on Google. Table 3

illustrates the effects based on the coefficients from using 7 quality levels (1st column in Table 2).

As can be seen, for restaurants with a quality of only 2 stars, the number of new entries declines

by 18.4% as consumers’ review activity doubles. For restaurants with a quality of 5 stars, however,

the effect is the opposite, with new entries increasing by 14% as consumers’ review activity doubles.

For restaurants with a quality of 3 or 4 stars, the effects are close to 0, which is consistent with the

observation from the summary statistics (in Table 1) that the average Google rating for independent

restaurants is about 3.93. That is, the entry of a restaurant with a quality at the population average

is affected very little by quality disclosure because consumers’ initial perception of the restaurant

quality is the same as the true quality. These results indicate that high-quality restaurants’ entry

is encourage by quality disclosure from online reviews, whereas low-quality restaurants’ entry is

discouraged. These results are consistent with the model predictions shown by Proposition 3 (1),

Proposition 4 (2), and Corollary 2 in Section 4. That is, the direct effect of quality disclosure

through online reviews dominates the competition effect.

To investigate the heterogeneous effect of online review platforms across fast and slow learning

areas, we run the regression in equation 16 by interacting log(Yelp) with a location indicator for

being within 500 meters of an interstate highway. The results from using 7 quality levels are shown

in Table 4. As illustrated, the effects of online review penetration are again significant only for

independent restaurants, not chains. Furthermore, when comparing the effects across locations, we

can see that the coefficients from the highway areas are slightly bigger in magnitude than those from

the non-highway areas (i.e. local areas). This is consistent with our model prediction that quality

disclosure has a bigger effect in areas with slow learning than areas with fast learning. Nonetheless,

these results are not robust when we use 5 or 3 quality levels; the results from regressions with 5

and 3 quality levels show that the effects are somewhat similar across highway and local areas. See

Tables G.1 and Table G.2 in Appendix G.
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Table 2: Effects of Online Review Platforms on Entry

(1) (2) (3)

entry entry entry

log(Yelp) (independent) -0.400*** -0.419*** -0.447***

(0.0940) (0.106) (0.118)

log(Yelp)×rating (independent) 0.108*** 0.103*** 0.109***

(0.0197) (0.0278) (0.0287)

log(Yelp) (chain) -0.178 -0.0599 0.0791

(0.146) (0.147) (0.124)

log(Yelp)×rating (chain) 0.0494 0.0464 -0.00540

(0.0349) (0.0341) (0.0276)

Controls ✓ ✓ ✓

Group FE ✓ ✓ ✓

Year× Month× Metro× Chain FE ✓ ✓ ✓

Year× Month× Low-Quality× Chain FE ✓ ✓ ✓

N 3,301 3,126 2,734

N of Clusters 34 35 41

Number of Quality Levels 7 5 3

Controls include demographics (population, income, age, race), ratio of

new entries that are listed on Google, and the numbers of incumbent chain

and independent restaurants in the same county from the last period.

Group FE is quality-levels × chain-affiliation × county × highway. Low-

Quality includes the lowest 2 levels when 5 and 7 quality levels are used,

and only the lowest level when 3 levels are used. All standard errors are

two-way clustered at the county level and time level. They are shown in

parentheses. * p<0.10, ** p<0.05, *** p<0.01

Table 3: Effect of Online Review Platforms on Entry by Google Star Rating (Independent)

Star Rating 2 3 4 5

Effect -0.1841*** -0.0760* 0.0320 0.1401***

( 0.0584) ( 0.0432) ( 0.0330) ( 0.0331)

All standard errors are shown in parentheses. * p<0.10, ** p<0.05,

*** p<0.01
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Table 4: Effects of Online Review Platforms on Entry by Chain Affiliation and

Location (7 Levels)

Dependent variable Number of New Entries

Independent Chain

Non-Highway Highway Non-Highway Highway

log(Yelp) -0.295*** -0.333** -0.0304 -0.0641

(0.0937) (0.134) (0.152) (0.205)

log(Yelp)×rating 0.0856*** 0.0891*** 0.00627 0.0100

(0.0208) (0.0291) (0.0326) (0.0458)

Controls ✓

Group FE ✓

Year×Month×Metro×Chain FE ✓

Year×Month×Low-Quality×Chain FE ✓

N 3344

N of Clusters 33

Quality Measure Google Rating

Controls include demographics (population, income, age, race), ratio of new entries that

are listed on Google, and the numbers of incumbent chain and independent restaurants

in the same county from the last period. Group FE is quality-levels × chain-affiliation ×
county × highway. Low-Quality includes the lowest 2 levels when 5 and 7 quality levels

are used, and only the lowest level when 3 levels are used. All standard errors are two-way

clustered at the county level and time level. They are shown in parentheses. * p<0.10,

** p<0.05, *** p<0.01

5.3.2 Exit

To examine the effect of online review platforms on exit, we run the regression in equation 17. The

results are shown in Table 5. As can be seen, similar to the results from the entry regressions, the

coefficients for chains are all insignificant, whereas the coefficients for independent restaurants are

all significant at the 1% level. In particular, the coefficient for log(Yelp) being positive indicates

that when a restaurant is very low-quality, the penetration of online review platforms will speed out

its probability of exit. The coefficient for log(Yelp)×rating being negative implies that the effect

of online review platforms on exit decreases with quality. In particular, for a very high-quality

restaurant, the overall effect of online review platforms’ penetration can be negative. That is,

online reviews can reduce the exit of high-quality restaurants.

Again for ease of interpretation, we calculate the composite coefficients in order to show the

overall effect of online review platforms on a restaurant with a given star rating on Google. Table

6 displays these coefficients. As can be seen, when consumers’ review activity doubles, the exit

rate of a restaurant with a 2-star rating on Google will increase by 0.19 percentage points, and this

effect is significant. For a 5-star restaurant, the exit rate will decrease by 0.17 percentage points.

For medium quality restaurants with 3 and 4 star ratings, the effects are very muted. These results

are again consistent with the model predictions shown by Proposition 3 (1), Proposition 4 (2), and

Corollary 2.

To see how the effect of online review platforms vary across highway and non-highway local
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Table 5: Effects of Online Review Plat-

forms on Exit

(1)

exit

log(Yelp) (independent) 0.00795***

(0.00284)

log(Yelp)×rating (independent) -0.00205***

(0.000703)

log(Yelp) (chain) 0.000570

(0.000745)

log(Yelp)×rating (chain) -0.000246

(0.000206)

Controls ✓

Restaurant× Month FE ✓

Year× Month× Metro× Chain FE ✓

N 371,085

N of Clusters 97

Controls include demographics (population, in-

come, age, race) and the number of chain and

independent rivals in the same zip code tabula-

tion area at the same period. All standard errors

are two-way clustered at the county level and time

level. They are shown in parentheses. * p<0.10,

** p<0.05, *** p<0.01

Table 6: Effect of Online Review Platforms on Exit by Google Star Rating (Independent)

Star Rating 2 3 4 5

Effect 0.0019*** 0.0007* -0.0005 -0.0017***

( 0.0006) ( 0.0004) ( 0.0004) ( 0.0005)

All standard errors are shown in parentheses. * p<0.10, ** p<0.05,

*** p<0.01
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areas, we run the regression in equation 17 again by interacting the penetration measure with

a highway dummy. The results are shown in Table 7. As can be gleaned, the coefficients for

independent restaurants in highway areas are almost twice as large as those in the non-highway

areas, suggesting that the effect of online review platforms on exit is much stronger in slow-learning

areas than in fast-learning areas. This is consistent with the model predictions in Section 3. It is

nonetheless puzzling that the difference in the effect on exit across highway and non-highway areas

is much stronger than the difference in the effect on entry across these two types of locations. Both

entry and exit decisions are affected by firms’ profits, which are directly influenced by the degree

of quality disclosure in the market, but revenue has a more direct impact on exits as it directly

affects the curent period review. This phenomenon may be explained by a large entry cost and a

small exit cost (or scrap value). That is, when the exit cost is very small, firms would exit as soon

as their expectations of sales decline, but with a large entry cost, firms may still hesitate to enter

even if their expected revenues or profits increase substantially. Furthermore, when it comes to

independent restaurants’ entry around highway exits, the opportunities can be very limited because

those areas are dominated by strip malls and plazas, which often prefer leasing to chain restaurants

due to financial security. As a result, even though online review platforms’ penetration affects the

revenues of those independent restaurants in highway areas much more than those in non-highway

areas, the difference in the effect on entry across the two types of areas is much more muted because

the highway area has a higher entry barrier for independent restaurants.

Table 7: Effects of Online Review Platforms on Exit by Chain Affiliation

and Location

Dependent variable Exit

Independent Chain

Non-Highway Highway Non-Highway Highway

log(Yelp) 0.00702** 0.0137*** 0.000422 0.000915

(0.00284) (0.00447) (0.000625) (0.00184)

log(Yelp)×rating -0.00183** -0.00352*** -0.000189 -0.000376

(0.000696) (0.00114) (0.000195) (0.000434)

Controls ✓

Restaurant× Month FE ✓

Year×Month×Metro×Chain FE ✓

N 371085

N of Clusters 97

Controls include demographics (population, income, age, race) and the number of chain

and independent rivals in the same zip code tabulation area at the same period. All

standard errors are two-way clustered at the county level and time level. They are

shown in parentheses. * p<0.10, ** p<0.05, *** p<0.01

To test the model predictions regarding the differential effect of quality disclosure on exit across

a restaurant’s stage, young and established, we run the regression in equation 17 by interacting the

penetration measure with an age dummy of over 12 years old. The results are displayed in Table

8. As can be seen, only the coefficients for young independent restaurants are significant. All the
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other coefficients are not statistically significant, indicating that the effect on exit is solely driven

by the effect on young independent restaurants. This result implies that the effect of online review

platforms did not lead to a significant increase or decrease in the overall competitive environment in

the market. It is mostly consistent with the model predictions shown in Corollary 2. Nonetheless, it

is possible that if the effect on competition (either increase or decrease) is small, the regression may

not be able to pick up significant effects. Therefore, we cannot exclude scenarios from Proposition

3 (1) and Proposition 4 (2) completely.

Table 8: Effects of Online Review Platforms on Exit by Chain Affiliation

and Age

Dependent variable Exit

Independent Chain

Established Young Established Young

log(Yelp) -0.000103 0.0103*** -0.00139 0.000838

(0.00328) (0.00363) (0.00114) (0.000980)

log(Yelp)×rating -0.000299 -0.00260*** 0.000202 -0.000321

(0.000828) (0.000895) (0.000351) (0.000262)

Controls ✓

Restaurant×Month FE ✓

Year×Month×Metro×Chain FE ✓

N 363630

N of Clusters 97

Established restaurants are those which are older than 12 years. Young restaurants

are those which are 12 years old or younger. The regressions account for all controls

including demographics, traffic counts, visitor’s spending, the number of chain and

independent rivals in the same zip code tabulation area to control for endogenous

exits. All standard errors are clustered at the county level and are shown in paren-

theses. * p<0.10, ** p<0.05, *** p<0.01

To summarize, the results from the analyses on both entry and exit show that the direct effect

of quality disclosure through online reviews dominate the competition effect. Specifically, online

review platforms’ penetration increases the entry of high-quality young independent restaurants and

reduces the entry of low-quality young independent restaurants. It also reduces the exit of high-

quality independent restaurants, but speeds up the exit of low-quality independent restaurants. It

has very little effect on chain and established independent restaurants’ entry or exit, and it did

not lead to a significant change in competition during our sample period. These results are most

consistent with our model prediction in Corollary 2; however, we cannot fully rule out predictions

from Proposition 3 (1) and Proposition 4 (2) either.

6 Conclusion

Online resources like reviews and social media have made quality information critical in purchase

choices. Policymakers also recognize the importance of quality disclosure. Previous literature
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focuses more on consumer demand, or firm’s voluntary quality disclosure decisions. Our paper

investigate the impact from an unexplored perspective— how quality disclosure shapes firms’ entry

and exit in markets with many firms.

Building on the dynamics of oligopoly games, our model introduces two key driving forces

for market dynamics: the direct effect, magnifying perceived quality gaps, and the competition

effect, reshaping market competition and entry-exit behavior. These forces create several possible

scenarios where quality disclosure’s impact can encourage or discourage the entry of high-quality

firms depending on the relative magnitude of the two effects. Using data from restaurants industry

in Texas, our empirical findings confirm the theoretical insights. In particular, we demonstrate

the penetration of online review encourages the entry of high-quality independent restaurants, and

speeds up the exit of low-quality independent restaurants. We do not find significant changes for

chain restaurants.

Our results shed light on quality disclosure’s broader implications, beyond matching consumers

with products. The insights guide businesses to navigate information availability and competition.

In terms of policy implication, our paper suggests that policymakers should be cautious about the

complex interplay of forces that can lead to unintended outcomes, such as reduced competition and

more concentrated industries.

42



References

Anderson, M. and Magruder, J. (2012). Learning from the crowd: Regression discontinuity esti-

mates of the effects of an online review database. The Economic Journal, 122(563):957–989.

Anenberg, E., Kuang, C., and Kung, E. (2019). Social learning and local consumption amenities:

Evidence from yelp. The Journal of Industrial Economics.

Benkard, C. L., Jeziorski, P., and Weintraub, G. Y. (2015). Oblivious equilibrium for concentrated

industries. The RAND Journal of Economics, 46(4):671–708.

Berry, S., Levinsohn, J., and Pakes, A. (1995). to econometrica. Econometrica, 63(4):841–890.

Besanko, D., Doraszelski, U., and Kryukov, Y. (2014). The economics of predation: What drives

pricing when there is learning-by-doing? American Economic Review, 104(3):868–897.

Blair, R. D. and Lafontaine, F. (2005). The economics of franchising. Cambridge University Press.

Board, S. and Meyer-ter Vehn, M. (2013). Reputation for quality. Econometrica, 81(6):2381–2462.

Borkovsky, R. N., Doraszelski, U., and Kryukov, Y. (2012). A dynamic quality ladder model

with entry and exit: Exploring the equilibrium correspondence using the homotopy method.

Quantitative Marketing and Economics, 10:197–229.

Charbi, A. N. (2021). Quality reporting, bonus payments and welfare in medicare advantage. PhD

thesis, The University of Texas at Austin.

Chen, Y. and Xu, D. Y. (2023). A structural empirical model of R&D, firm heterogeneity, and

industry evolution. The Journal of Industrial Economics, 71(2):323–353.

Chevalier, J. A. and Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews.

Journal of Marketing Research, 43(3):345–354.

Dafny, L. and Dranove, D. (2008). Do report cards tell consumers anything they don’t already

know? the case of medicare hmos. The RAND Journal of Economics, 39:790–821.

Donati, D. (2022). The end of tourist traps: A natural experiment on the impact of tripadvisor on

quality upgrading. CESifo Working Paper.

Dranove, D. and Jin, G. Z. (2010). Quality disclosure and certification: Theory and practice.

Journal of Economic Literature, 48(4):935–963.

Dranove, D. and Sfekas, A. (2008). Start spreading the news: A structural estimate of the effects

of new york hospital report cards. Journal of Health Economics, 27:1201–7.

43



Ericson, R. and Pakes, A. (1995a). Markov-perfect industry dynamics: A framework for empirical

work. The Review of Economic Studies, 62(1):53–82.

Ericson, R. and Pakes, A. (1995b). Markov-perfect industry dynamics: A framework for empirical

work. The Review of Economic Studies, 62(1):53–82.

Fang, L. (2022). The effects of online review platforms on restaurant revenue, consumer learning,

and welfare. Management Science, 68(11):8116–8143.

Farronato, C. and Zervas, G. (2022). Consumer reviews and regulation: Evidence from nyc restau-

rants. Technical report, National Bureau of Economic Research.

Guo, L. and Zhao, Y. (2009). Voluntary quality disclosure and market interaction. Marketing

Science, 28(3):488–501.

Hollenbeck, B. (2018). Online reputation mechanisms and the decreasing value of chain affiliation.

Journal of Marketing Research, 55(5):636–654.

Hotz, V. J. and Xiao, M. (2013). Strategic information disclosure: The case of multi-attribute

products with heterogeneous consumers. Economic Inquiry, 51(1):865–881.

Janetos, N. and Tilly, J. (2017). Reputation dynamics in a market for illicit drugs. arXiv preprint

arXiv:1703.01937.

Jin, G. Z. (2005). Competition and disclosure incentives: An empirical study of hmos. The RAND

Journal of Economics, pages 93–112.

Jin, G. Z. and Leslie, P. (2003). The effect of information on product quality: Evidence from

restaurant hygiene grade cards. The Quarterly Journal of Economics, 118(2):409–451.

Jin, G. Z. and Sorensen, A. T. (2006). Information and consumer choice: The value of publicized

health plan ratings. Journal of Health Economics, 25(2):248–275.

Lewis, G. and Zervas, G. (2016). The welfare impact of consumer reviews: A case study of the

hotel industry. Unpublished manuscript.

Luca, M. (2016). Reviews, reputation, and revenue: The case of yelp.com. Harvard Business School

NOM Unit Working Paper, (12-016).

Mazzeo, M. J. (2004). Retail contracting and organizational form: Alternatives to chain affiliation

in the motel industry. Journal of Economics & Management Strategy, 13(4):599–615.

Newberry, P. and Zhou, X. (2019). Heterogeneous effects of online reputation for local and national

retailers. International Economic Review, 60(4):1565–1587.

44



Oh, F. D. and Park, J. (2019a). Potential competition and quality disclosure. Journal of Economics

& Management Strategy, 28(4):614–630.

Oh, F. D. and Park, J. (2019b). Potential competition and quality disclosure. Journal of Economics

& Management Strategy, 28(4):614–630.

Simon, P., Leslie, P., Run, G., Jin, G., Reporter, R., Aguirre, A., and Fielding, J. (2005). Impact

of restaurant hygiene grade cards on foodborne-disease hospitalizations in los angeles county.

Journal of Environmental Health, 67:32–6, 56; quiz 59.

van Gelder, K. (2023). How many reviews do you typically read before you make a decision to

purchase? Statista.com.

Weintraub, G. Y., Benkard, C. L., and Roy, B. V. (2010). Computational methods for oblivious

equilibrium. Operations Research, 58(4):1247–1265.

Weintraub, G. Y., Benkard, C. L., and Van Roy, B. (2008). Markov perfect industry dynamics with

many firms. Econometrica, 76(6):1375–1411.

Wooldridge, J. M. (2023). Simple approaches to nonlinear difference-in-differences with panel data.

The Econometrics Journal, 26(3):C31–C66.

Wu, C., Che, H., Chan, T. Y., and Lu, X. (2015). The economic value of online reviews. Marketing

Science, 34(5):739–754.

Zhao, Y., Yang, S., Narayan, V., and Zhao, Y. (2013). Modeling consumer learning from online

product reviews. Marketing Science, 32(1):153–169.

Zhu, F. and Zhang, X. (2010). Impact of online consumer reviews on sales: The moderating role

of product and consumer characteristics. Journal of Marketing, 74(2):133–148.

A Table of Notations

In the main text, we write profits, value functions and costs as functions of quality, chain affiliation,

age type and so on. For the simplicity of notation, we use subscript to represent those parameters.

For instance, we let T ∈ {H,L} denote the quality type subscript for high- and low-quality, respec-

tively, then π(q̄, g,D) in the main text is denoted by πHg for high-quality independent restaurants

with age type g and by πHc for high-quality chain restaurants.

45



Table A.1: Table of Notations

Variable Meaning

q ∈ {q, q̄} true quality of restaurants, q̄: quality of high-quality (H) restaurants; q: qual-

ity of low-quality (L) restaurants

g ∈ {0, 1, 2} age type of the restaurants, 0: new entrant; 1: young; 2: established

q̂ ∈ {q̂0, q̂1, q} perceived quality of the restaurants, q̂0: perceived quality for new entrants;

q̂1: perceived quality for young restaurants; q: perceived (true) quality for

established restaurants

D ∈ {I, c} chain affiliation c: chain; I: independent restaurants 1

γ level of quality disclosure

β discount factor

M market size

ϕ scrape value, ϕ ∼ U [−b1, b1]

ε random shock associated with entry ε ∼ U [−b0, b0]

T ∈ {H,L} type of the restaurant, H: high quality with q = q̄, L: low quality with q = q

NT number of potential independent entrants with quality type T ∈ {H,L}
NTc number of potential chain entrants with quality type T ∈ {H,L}
κT average entry cost for independent restaurants with quality type T ∈ {H,L}
κTc average entry cost for chain restaurants with quality type T ∈ {H,L}
πTg flow profit for independent restaurants quality type T ∈ {H,L} with age type

g ∈ {0, 1, 2}
πTc flow profit for chain restaurants quality type T ∈ {H,L}2

VTg integrated value function for independent restaurants with quality type T ∈
{H,L} with age type g ∈ {0, 1, 2}

VTcg integrated value function for chain restaurants quality type T ∈ {H,L} with

age type g ∈ {0, 1, 2}. Here VTc1 = VTc2

1 For notation simplicity, we dropped the subscription I for independent restaurants
2 For a chain restaurant, the flow profit does not change across different age type
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B Proof of Compliance with the OE Assumptions

In this section, we provide proofs to show that our model is in compliance with the OE concept

proposed by Weintraub et al. (2008).

Assumption 2.

(1) For all n(q̂, D, γ) ∈ n, π(q̂, D) is increasing in q̂.

(2) For all n, n′ ∈ n, if n ≥ n′, then π(q̂, D, n) < π(q̂, D, n′)

(3) For all n ∈ n, π(q̂, D, n) > 0 and supn π(q̂, D, n) < ∞
(4) For all n ∈ n, the function lnπ(.) : n is continuously Frechet differentiable. Hence, for all

y ∈ N, and n ∈ n, lnπ(n) is continuously differentiable with respect to n(y). Further, for any

n ∈ n and h ∈ n such that n+ αh ∈ n for α > 0 sufficiently small, if∑
y∈N

h(y)|∂ lnπ(n)

∂n(y)
| < ∞

, then
d lnπ(n+ αh)

dα
|α=0 =

∑
y∈nh(y)

∂ lnπ(n)

∂n(y)

Proof. Assumption 2 (1) states that the flow profit increases wit perceived quality. From Table A.1

and C.1, we know that q̂ is a function of q and g. As a result, π(q, g,D) can be written as π(q̂, D).

Given the expression of profit function (2), we can easily show that ∂q̂
∂π(q̂,D) > 0.

Here, following Weintraub et al. (2008), let’s denote n ≥ n′ as n dominates n′ ∈ n if for all

q,
∑

q≥q̂ n(q) ≥
∑

q≥q̂ n
′(q). Assumption 2 (2) means strengthened competition cannot result in

increased profit.

if π(q̂, D, n) < π(q̂, D, n′) holds, based on our model setup, we will have∑
q>q̂

n(q)exp(q) + n(q̂)exp(q̂) +
∑
q<q̂

n(q)exp(q)

>
∑
q>q̂

n′(q)exp(q) + n′(q̂)exp(q̂) +
∑
q<q̂

n′(q′)exp(q)
(B.1)

Hence, ∑
q≥q̂

(n(q)− n′(q))exp(q − q̂)−
∑
q<q̂

(n′(q)− n(q))exp(q − q̂) (B.2)

is the key expression we need to examine.

We know that
∑

q≥q̂ n(q) ≥
∑

q≥q̂ n
′(q) holds for all q. To make our proof understandable, let’s

assume the quality level q are indexed by i ∈ {0, 1, 2...I}. That is to say, the lowest quality will be

indexed by 0, and the next higher quality is q1, and so on.

The definition of dominance implies the following inequalities will hold:
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n(qI) ≥ n′(qI)∑
q≥q0

n(q) ≥
∑
q≥q0

n′(q)

∑
q≥q̂

n(q) ≥
∑
q≥q̂

n′(q)

(B.3)

Here, we define

Bq̂ =
∑
q>q̂

(n′(q)− n(q))exp(q − q̂) + n′(q̂)− n(q̂)

+
∑
q<q̂

(n′(q)− n(q))exp(q − q̂)
(B.4)

To begin with, we assume q̂ = q0, which represents the lowest quality, we can re-write equation

B.2 and define B0 = (n′(q0)− n(q0)) +
∑

q>q0
(n′(q)− n(q))exp(q − q0).

After re-arrange the equation, B0 = (
∑

q≥q0
(n′(q)−n(q)))+

∑
q>q0

(n′(q)−n(q))(exp(q−q0)−1)

According to equation B.3, we can easily show the first term from B0,
∑

q′≥q0
(n′(q′)− n(q′)) < 0.

The second term in B0 can be re-written as follows.∑
q>q0

(n′(q)− n(q))(exp(q − q0)− 1)

=
1

exp(q1 − q0)
(
∑
q>q1

(n′(q)− n(q))(exp(q − q1)− 1))
(B.5)

Basically, B0 can be written as a function of higher quality levels. Moreover,
∑

q>q0
(n′(q) −

n(q))(exp(q − q0) − 1) <
∑

q>q0
(n′(q) − n(q)) < 0 since exp(q − q0) − 1 > 0 holds for all q > q0.

Therefore, we show that B0 < 0

If q̂ = qI , the highest quality, the dominance condition essentially becomes n(qI) ≥ n′(qI).

Based on equation B.2, we define BqI = n′(qI)−n(qI) +
∑

q<qI
(n′(q)−n(q))exp(q− qI) According

to equation B.3, we know that n′(qI) − n(qI) < 0 holds. BqI can be written as follows: BqI =
1

exp(q0−qI)
B0 < 0

It means if B0 < 0, we can easily show BqI < 0. Hence, Bq̂ can be written as follows

Bq̂ =
∑
q>q̂

(n′(q)− n(q))exp(q − q̂) + n′(q̂)− n(q̂)

+
∑
q<q̂

(n′(q)− n(q))exp(q − q̂)

=
1

exp(q0 − q̂)
Bq̂− + n′(q̂)− n(q̂) +

1

exp(q̂ − q0)
Bq̂+

(B.6)

As shown before, any Bq can be written as a function of B0, and we can easily show B0 < 0. Hence,

Bq̂ < 0, and π(q̂, D, n) < π(q̂, D, n′) holds.
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Assumption 2 (3) ensures profit is positive and bounded. In our model, the profit function

essentially comes from logit demand system and we assume π(q, g,D) > 0 and it is bounded:

supn π(q̂, D, n) < M

Assumption 2 (4) requires the log profits to be Frechet differentiable. As discussed by Weintraub

et al. (2008), profit function that are smooth such as logit model will satisfy this assumption. This

is our case where our profit comes from logit demand system. So it automatically satisfies this

assumption.

Assumption 3. The random variable {ϕit|t ≥ 0, i ≥ 1} are independent and identically distributed

(i.i.d.) and have finite expectations and well-defined density functions with support R+

Proof. This assumption implies that the exit is idiosyncratic conditional on the state. In our model,

we assume ϕit is i.i.d and follows a U [−b1, b1], which has mean 0, and a well defined density function
1
2b1

. As a result, our model complies the OE assumption.

Assumption 4.

1. The number of firms entering during period t is a Poisson random variable that is conditionally

independent of ϕit|t ≥ 0, i ≥ 1, conditional on nt.

2. κ > 0

Proof. In our model, given quality level T ∈ {H,L} and chain affiliation, we have NT and NTc

potential entrants for independent and chain restaurants, respectively, deciding whether to enter

the market or not. The proof and argument is identical to Weintraub et al. (2008). In particular,

each potential entrant enters if the entry cost κ is less than integrated value function upon entry.

One can then pose the problem faced by potential entrants as a game in which each entrant employs

a mixed strategy and enters with some probability PE .

As discussed in Weintraub et al. (2008), this equation is solved by a unique pEN ∈ [0, 1] when

κ ∈ [V (N), V (1)]. Here, V (N) is the integrated value function for the firm for the lowest value

and V (1) is the integrated value function for the firm with the highest value. If k < V (N) , the

equilibrium is given by pE = 0, and if k > V (1) , the equilibrium is given by pEN = 1.

The equilibrium entry and exit probability is a fixed point. the Poisson entry model can be

viewed as a limiting case as the number of potential entrants NT and NTc grows large. As stated

in Weintraub et al. (2008), if the number of potential entrants grows to infinity, then the entry

process converges to a Poisson random variable. As a result, the Poisson entry can be understood

as the result of a large population of potential entrants, each playing a mixed strategy and entering

the industry with a very small probability. In our model, we require a large number of potential

entrants, and the entry probability is small. Hence, our model satisfy this assumption.

Assumption (2) κ > 0 is assumed in our model.
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Assumption 5.

(1) supn∈n πm(n) = O(m)

(2) For all increasing sequences mk ∈ N|k ∈ N, n : N → N with n(m) = o(mk), x, z ∈ N with x > z,

and f ∈ n1,z, limk→∞ πmk
(f, n(mk)) = ∞.

(3) The following holds

sup
m∈R,f∈n1,n>0

|d lnπm(f, n)

d lnN
| < ∞

.

Proof. Assumption 5 (1) states that the profit increases with at most linearly with market size.

In our model, the profit function (2) derived from logit demand increases with M . In particular,

0 < ∂π
∂M < ∞, here for simplicity, we omit the subscript T and Tc for the profit. So it satisfies this

assumption

Assumption 5 (2) means that if the number of firms grows slower than the market size, then

the largest firm’s profit becomes arbitrarily large as the market grows.

In our model (see profit function 2, firm’s profit increases with M, but grow slower than M as the

market share a any firm is smaller than 1. Moreover, as M increases, the profit from the firm with

highest perceived quality will grown arbitrarily large. Hence, our model satisfy this assumption.

Assumption 5 (3) states that the profit to be smooth with respect to the number of firms, and

the relative rate of change of profit with respect to the relative change in the number of firms is

uniformly bounded.

In our model, the profit function is a smooth function of nT and nTc. Moreover, we can show

that
d lnπm(f, n)

d lnN
=

d lnπm(f, n)

d ln (n/f)

. Since f is time invariant, we can write the above equation as follows:

d lnπm(f, n)

d lnN
=

d lnπm(f, n)

d ln (n/f)
=

d lnπm(f, n)

∂n

Because of assumption 2 (4), we have |d lnπm(f,n)
dn | < ∞ . Hence, our model satisfies this assumption.

Assumption 6. For all quality levels x, g(x) < ∞. For all ϵ > 0, there exists a quality level z such

that

E
(
g(x̃(m))1x̃(m)>z

)
≤ ϵ

for all market sizes m.

Proof. Here, g(x) is defined as follows:

g(x) = sup
m∈R+,y∈N,f∈S,n>0

|d lnπm(y, f, n)

df(x)
|
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This assumption is the light-tail condition, and it states that the probability that a small change

in the fraction of firms has a large impact on the profits of other firms must be small under the

invariant distribution.

In our model,
d lnπm(y, f, n)

df(x)
=

d lnπm(y, f, n)

d(n/N)
= N

d lnπm(y, f, n)

dn(x)
|

We have shown that d lnπm(y,f,n)
dn(x) < ∞ from 5 (3), hence, E(g(x)) = |d lnπm(y,f,n)

df(x) | = |d lnπm(y,f,n)
d(n/N) | <

∞. Hence, our model satisfies this assumption.

C Model Solution

In this section, we provide the OE solution to the model described in Section 3 and the long-run

invariant distribution of restaurants in equilibrium. For notation simplicity, we will convert (q, g,D)

into subscripts. We also omit the subscript I for independent restaurants but use the “c” subscript

to indicate chain. For example, PX(q̄, 1, I) will be denoted as PX
H1, and PX(q̄, g, c) denoted by PX

Hc.

The detailed definition of each of these notations can be found in Table A.1. As described in the

main text, a restaurant experience 3 stages: new entrant, young, and established. The perceived

quality of a restaurant at the young stage is heavily influenced by the level of quality disclosure.

Given different perceptions of quality, restaurants at different stages will have different flow profits.

We summarize the perceived quality of a restaurant, as well as their corresponding flow profits, in

Table C.1 below.

Table C.1: Perceived Qualities and Profits at Different Stages

Type Perceived Quality Flow Profit

New entrant (g = 0) q̂0 =
1
2(q̄ + q) π0 =

M exp(q̂0)∑̂
q′

n(q̂′) exp(q̂′)+1 − CT for T ∈ {H,L}

Young high-quality (g = 1) q̂H1 =
1
2(q̄ + q) + 1

2(q̄ − q)γ πH1 =
M exp(q̂H1)∑̂

q′
n(q̂′) exp(q̂′)+1 − CH

Young low-quality (g = 1) q̂L1 =
1
2(q̄ + q)− 1

2(q̄ − q)γ πL1 =
M exp(q̂L1)∑̂

q′
n(q̂′) exp(q̂′)+1 − CL

Established high-quality (g = 2) q̄ πH2 =
M exp(q̄)∑̂

q′
n(q̂′) exp(q̂′)+1 − CH

Established low-quality (g = 2) q πL2 =
M exp(q)∑̂

q′
n(q̂′) exp(q̂′)+1 − CL

High-quality chain q̄ πHc =
M exp(q)∑̂

q′
n(q̂′) exp(q̂′)+1 − CHc

Low-quality chain q πHc =
M exp(q)∑̂

q′
n(q̂′) exp(q̂′)+1 − CLc

Following Weintraub et al. (2008), we can compute the integrated value functions for restaurants
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at different stages. To establish the existence of OE solution, we require the extreme value of error

term, b0 and b1 to be high enough. In particular, the following conditions should hold:

−2βb1 < −AT + 2
√
b1BT < 0 (C.1)

b1 >
1

(1− β)2
max{BT , BTc} (C.2)

b0 > (1− β)max{ET , ETc}, (C.3)

where AT = 2b1 + β(πT1 − πT2), BT =
√

(b1 − βb1 − βπT2), BTc =
√
(b1 − βb1 − βπTc) , ET =

−κT + βVT1 + πT0 , and ETc = −κTc + βVTc1 + πTc for T ∈ {H,L}.

Table C.2: Value Functions

Symbol Expression

VT0 (−b0(−2 + β) + βET − 2
√
b0(1− β)(b0 + βET )/β

2

VT1 (AT − 6
√
b1BT )(AT + 2

√
b1BT )/(4b1β

2)

VT2 (
√
b1 −

√
b1BT )

2/β2

VTc0 (−b0(−2 + β) + βETc − 2
√
b0(1− β)(b0 + βETc)/β

2

VTc1 (
√
b1 −

√
b1BTc)

2/β2

Note: AT = 2b1 + β(πT1 − πT2), BT =
√

(b1 − βb1 − βπT2), BTc =
√

(b1 − βb1 − βπTc) , ET = −κT +

βVT1 + πT0 , and ETc = −κTc + βVTc1 + πTc for T ∈ {H,L}

Based on the definition of OE (Weintraub et al., 2008), along with integrated value functions

computed in Table C.2, we are able to write down the OE solution, which includes the equilibrium

entry and exit probabilities for high- (H) and low- (L) quality restaurants, respectively, across

different age types (g ∈ {0, 1, 2}). Table C.3 shows the symbol, meaning and expressions of each

element in the solution.
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Table C.3: Model Solution

Variable Meaning Expression

PE
T entry probabilities for independent

new entrants (g = 0) of quality type

T ∈ {H,L}

1 +
−
√
b0+

√
(1−β)(b0+βET )

β
√
b0

PX
T1 exit probabilities for young indepen-

dent restaurants (g = 1) of quality

type T ∈ {H,L}

1 + −AT+2
√
b1BT

2βb1

PX
T2 exit probabilities for established in-

dependent restaurants (g = 2) of

quality type T ∈ {H,L}

1 + −
√
b1+BT

β
√
b1

PE
Tc entry probabilities for chain new en-

trants (g = 0) of quality type T ∈
{H,L}

1 +
−
√
b0+

√
(1−β)(b0+βETc)

β
√
b0

PX
Tc exit probabilities for chain restau-

rants (g = 1, 2) of quality type T ∈
{H,L}

1 + −
√
b1+BTc

β
√
b1

Note: AT = 2b1+β(πT1−πT2), BT =
√

(b1 − βb1 − βπT2), BTc =
√

(b1 − βb1 − βπTc) , ET = −κT +βVT1+πT0

, and ETc = −κTc + βVTc1 + πTc for T ∈ {H,L}

In addition to the entry and exit probabilities, we provide the long run invariant distributions

of restaurants in Table C.4 .

Table C.4: The Long-run Invariant Distribution

Variable Meaning Expression

nT0 the number of independent new entrants

of quality type T ∈ {H,L}
NTP

E
T

nT1 the number of young independent restau-

rants of quality type T ∈ {H,L}
NTP

E
T (1− PX

T1)

nT2 the number of established independent

restaurants of quality type T ∈ {H,L}

NTPE
T (1−PX

T1)(1−PX
T2)

PX
T2

nTc the number of chain restaurants of quality

type T ∈ {H,L}

NTcP
E
Tc(1−PX

Tc)

PX
Tc
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D Proof of Propositions

D.1 Proposition 1 Proof

Proof. For chain restaurants, the perceived quality does not change with respect to γ, and therefore,

the DEs on chain restaurants are 0. For independent restaurants, we need to show the following:

∂PE
H

∂πH1

∂πH1

∂M exp(q̂H1)

∂M exp(q̂H1)

∂q̂H1

∂q̂H1

∂γ
> 0, (D.1)

∂PX
H1

∂πH1

∂πH1

∂M exp(q̂H1)

∂M exp(q̂H1)

∂q̂H1

∂q̂H1

∂γ
< 0, (D.2)

∂PX
H2

∂πH1

∂πH1

∂M exp(q̂H1)

∂M exp(q̂H1)

∂q̂H1

∂q̂H1

∂γ
= 0, (D.3)

∂PE
L

∂πL1

∂πL1
∂M exp(q̂L1)

∂M exp(q̂L1)

∂q̂L1

∂q̂L1
∂γ

< 0, (D.4)

∂PX
L1

∂πL1

∂πL1
∂M exp(q̂L1)

∂M exp(q̂L1)

∂q̂L1

∂q̂L1
∂γ

> 0, (D.5)

∂PX
L2

∂πL1

∂πL1
∂M exp(q̂L1)

∂M exp(q̂L1)

∂q̂L1

∂q̂L1
∂γ

= 0. (D.6)

Equations D.3 and D.6 are obvious because πT1, T ∈ {H,L} does not enter the exit probabilities at

the “established” stage of the firm. It is also evident that (∂πT1/∂M exp(q̂T1))(∂M exp(q̂T1)/∂q̂T1) =

πT1 > 0,∀T ∈ {H,L}. Furthermore, ∂q̂H1/∂γ = (q̄ − q)/2 > 0 and q̂L1/∂γ = (q − q̄)/2 < 0. The

only work left to show is the signs of the derivatives of the probabilities with respect to the “young”

stage flow profit. Below we derive these derivatives.

∂PE
T

∂πT1
=

∂PE
T

∂VT1

∂VT1

∂πT1
> 0, (D.7)

∂PX
T1

∂πT1
= − 1

2b1
< 0, ∀T ∈ {H,L} (D.8)

For the entry probabilities, as shown in the expression for entry probabilities in Table C.3,

∂PE
T /∂VT1 > 0, and as shown in the expression for VT1 in Table C.2, ∂VT1/∂πT1 > 0. Therefore,

∂PE
T /∂πT1 > 0. With the signs of ∂PE

T /∂πT1 and ∂PX
T1/∂πT1 in hand, the signs of the expressions

D.1 to D.6 follow naturally. Q.E.D.

D.2 Proposition 2 Proof

Proof. As shown in Definition 2, the key determining factor of the directions of CEs is ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ.

In particular, when ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ = 0, the CEs are 0. Below we expand ∂

∑
q̂′ n(q̂

′) exp(q̂′)/∂γ,
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and derive the expressions of F̄H and F̄L.

∂
∑̂
q′

n(q̂′) exp(q̂′)

∂γ
=
∑
q̂′

[
∂n(q̂′)

∂γ
exp(q̂′) + n(q̂′)

∂ exp(q̂′)

∂γ

]

=
∑
q̂′

∂n(q̂′)

∂γ
exp(q̂′)− (nL1 exp(q̂L1)− nH1 exp(q̂H1))

(q̄ − q)

2
, where (D.9)

∑
q̂′

∂n(q̂′)

∂γ
exp(q̂′) =

(
∂nL0

∂γ
+

∂nH0

∂γ

)
exp(q̂0) +

∂nL1

∂γ
exp(q̂L1) +

∂nH1

∂γ
exp(q̂H1)

+

(
∂nL2

∂γ
+

∂nLc

∂γ

)
exp(q) +

(
∂nH2

∂γ
+

∂nHc

∂γ

)
exp(q̄) (D.10)

Based on the expressions of equilibrium n(q̂) shown in Table C.4, we can write

∂nL0

∂γ
= NL

∂PE
L

∂γ
(D.11)

∂nH0

∂γ
= NH

∂PE
H

∂γ
(D.12)

∂nL1

∂γ
= NL

∂PE
L (1− PX

L1)

∂γ
(D.13)

∂nH1

∂γ
= NH

∂PE
H (1− PX

H1)

∂γ
(D.14)

∂nL2

∂γ
= NL

∂PE
L (1− PX

L1)(1/P
X
L2 − 1)

∂γ
(D.15)

∂nH2

∂γ
= NH

∂PE
H (1− PX

H1)(1/P
X
H2 − 1)

∂γ
(D.16)

∂nLc

∂γ
= NL

NLc

NL

∂PE
Lc(1/P

X
Lc − 1)

∂γ
(D.17)

∂nHc

∂γ
= NH

NHc

NH

∂PE
Hc(1/P

X
Hc − 1)

∂γ
(D.18)

(D.19)
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Substituting equations D.11 to D.18 into equation D.10 and then D.9, we have the effect of γ on

competition as follows:

∂
∑̂
q′

n(q̂′) exp(q̂′)

∂γ
= F̄L + F̄H , where (D.20)

F̄L = NL

[
exp(q̂0)

∂PE
L

∂γ
+ exp(q̂L1)

(
∂PE

L (1− PX
L1)

∂γ
+ PE

L (1− PX
L1)

(q − q̄)

2

)
+exp(q)

(
∂PE

L (1− PX
L1)(1/P

X
L2 − 1)

∂γ
+

NLc

NL

∂PE
Lc(1/P

X
Lc − 1)

∂γ

)]
(D.21)

F̄H = NH

[
exp(q̂0)

∂PE
H

∂γ
+ exp(q̂H1)

(
∂PE

H (1− PX
H1)

∂γ
+ PE

H (1− PX
H1))

(q̄ − q)

2

)
+exp(q̄)

(
∂PE

H (1− PX
H1)(1/P

X
H2 − 1)

∂γ
+

NHc

NH

∂PE
Hc(1/P

X
Hc − 1)

∂γ

)]
(D.22)

Q.E.D.

D.3 Proposition 3 Proof

Proof. It is easy to show the statement in the first sentence. As shown in Proposition 1 and

Corollary 1, when F̄L + F̄H > 0, DE and CE work in the same direction for all equilibrium

probabilities, except for PE
H and PX

H1. In particular, ∂PE
L /∂γ < 0, ∂PX

L1/∂γ > 0, ∂PX
L2/∂γ > 0,

∂PX
H2/∂γ < 0, ∂PE

Hc/∂γ < 0, ∂PE
Lc/∂γ < 0, ∂PX

Hc/∂γ > 0, and ∂PX
Lc/∂γ > 0. Four cases are

possible in terms of the signs of ∂PE
H /∂γ and ∂PX

H1/∂γ. We examine each case one by one and

eliminate those cases that lead to contradictions with F̄L + F̄H > 0 or other conditions of the

model. For ease of labeling and interpretation, in the following text, we refer to
∑

q̂′ n(q̂
′) exp(q̂′)

as “competition.”

Case 1 ∂PE
H /∂γ > 0 and ∂PX

H1/∂γ < 0. This case requires the DE dominates the CE for both

probabilities. This condition is possible as long as DEs are large enough for both probabilities. In

particular, ∂PE
H /∂γ and ∂PX

H1/∂γ can be written as follows:

∂PE
H

∂γ
=

∂PE
H

∂πH1

∂πH1

∂M exp(q̂H1)

∂M exp(q̂H1)

∂q̂H1

∂q̂H1

∂γ

+

(
∂PE

H

∂πH0

∂πH0

∂
∑

q̂′ n(q̂
′) exp(q̂′)

+
∂PE

H

∂πH1

∂πH1

∂
∑

q̂′ n(q̂
′) exp(q̂′)

+
∂PE

H

∂πH2

∂πH2

∂
∑

q̂′ n(q̂
′) exp(q̂′)

)
∂
∑

q̂′ n(q̂
′) exp(q̂′)

∂γ
(D.23)

∂PX
H1

∂γ
=

∂PX
H1

∂πH1

∂πH1

∂M exp(q̂H1)

∂M exp(q̂H1)

∂q̂H1

∂q̂H1

∂γ

+

(
∂PX

H1

∂πH1

∂πH1

∂
∑

q̂′ n(q̂
′) exp(q̂′)

+
∂PX

H1

∂πH2

∂πH2

∂
∑

q̂′ n(q̂
′) exp(q̂′)

)
∂
∑

q̂′ n(q̂
′) exp(q̂′)

∂γ
(D.24)
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Using equations D.23 and D.24, we can derive that ∂PE
H /∂γ > 0 and ∂PX

H1/∂γ < 0 imply the

following conditions:

π̃H1

(
1

2
(q̄ − q)− Λ

)
>

2b1

(AH − 2
√
b1BH)

π̃H0Λ +

(
−1 +

b1(AH + 6
√
b1BH)

(AH − 2
√
b1BH)

√
b1BH

)
π̃H2Λ (D.25)

π̃H1

(
1

2
(q̄ − q)− Λ

)
>

(
√
b1 −BH)

BH
π̃H2Λ, (D.26)

where π̃Hg = πHg + CH ,∀g ∈ {0, 1, 2}, and

Λ =
∂
∑

q̂′ n(q̂
′) exp(q̂′)

∂γ

1∑
q̂′ n(q̂

′) exp(q̂′) + 1

Inequality D.25 comes from ∂PE
H /∂γ > 0, and uses the condition C.1. Inequality D.26 comes from

∂PX
H1/∂γ < 0.

It is easy to show that the right-hand-side (RHS) of inequality D.25 is larger than the RHS of

inequality D.26. The rationale is that when F̄L + F̄H > 0, ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ > 0. Therefore,

Λ > 0, and based on condition C.1, 2b1
(AH−2

√
b1BH)

πH0Λ > 0. In addition,(
−1 +

b1(AH + 6
√
b1BH)

(AH − 2
√
b1BH)

√
b1BH

)
πH2Λ >

(
√
b1 −BH)

BH
πH2Λ, (D.27)

This is because inequality D.27 implies b1(AH+6
√
b1BH) > b1(A−2

√
b1BH), which always holds as

long as BH > 0. Therefore, the RHS of inequality D.25 is always larger than the RHS of inequality

D.26. These two conditions imply that as long as inequality D.25 holds, Case 1 is possible.

Now we can check whether this case can support the assumption F̄L + F̄H > 0. We know

that low-quality restaurants enter less and exit more as γ increases, therefore, there should be

fewer low-quality restaurants. Furthermore, because both high-quality chain and established inde-

pendent restaurants exit more often, there should also be fewer high-quality chain or established

independent restaurants. The decrease in the number of competitors can reduce competition.

However, because high-quality independent restaurants enter more and because high-quality young

independent restaurants exit less, there are more new and young high-quality independent restau-

rants. The increase in the number of new and young high-quality independent restaurants can

compensate the loss in the number of restaurants from other types. In particular, it should be

noted that the number of low-quality restaurants affects competition, which can be summarized

by
∑

q̂′ n(q̂
′) exp(q̂′), much less than the number of high-quality restaurants because the number

of restaurants from each type n(q̂′) is weighted by exp(q̂′), i.e. the exponential of the perceived

quality. Therefore, the increase in the number of young high-quality independent restaurants can

more than offset the effect of a decreasing number of low-quality restaurants on competition.

Case 2 ∂PE
H /∂γ > 0 and ∂PX

H1/∂γ > 0. This case requires the DE(PE
H ) dominates CE(PE

H ), but

DE(PX
H1) is dominated by CE(PX

H1). This case is impossible. It requires inequality D.25 and the

reverse of inequality D.26 to hold at the same time. It is impossible because the RHS of inequality

D.25 is larger than the RHS of inequality D.26. π̃H1

(
1
2(q̄ − q)− Λ

)
cannot be simultaneously bigger

than a large number and smaller than a small number.
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Case 3 ∂PE
H /∂γ < 0 and ∂PX

H1/∂γ < 0. This case requires the DE(PE
H ) is dominated by

CE(PE
H ), but DE(PX

H1) dominates CE(PX
H1). More specifically, it requires the reverse of inequality

D.25, but retains inequality D.26. These conditions can be satisfied. Now we only need to check

whether this case complies with F̄L + F̄H > 0, i.e. ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ > 0. The directions of

the change in probabilities with respect to γ imply that the number of restaurants of all types is

declining as γ increases, except for the numbers of high-quality young and established restaurants

(i.e. nH1 and nH2 ). The changes in nH1 and nH2 are uncertain because although high-quality

independent restaurants are entering less, they are also exiting less at the young stage. This means

that potentially more young high-quality independent restaurants are in the market, and more of

them will become established, and nH1 and nH2 can increase. The increase in nH1 and nH2 can

make up for the loss in the number of restaurants from other types. Therefore, this case is possible.

Case 4 ∂PE
H /∂γ < 0 and ∂PX

H1/∂γ > 0. This case requires the DE is dominated by the

CE for both probabilities. This case implies that the numbers of restaurants from all types

are declining as γ increases. That is, U ≡
∑̂
q′

∂n(q̂′)
∂γ exp(q̂′) < 0. This will not contradict with

∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ > 0 if ∆ ≡ − (nL1 exp(q̂L1)− nH1 exp(q̂H1))

(q̄−q)

2 is large enough.

In addition, this case also requires the signs of both inequality D.25 and inequality D.26 be

reversed. Given that the RHS of inequality D.25 is larger than that of inequality D.26, we only

need the reverse of inequality D.26 to be true. That requires the following:

q̄ − q

2
<

(
1 +

(
√
b1 −BH)

BH
exp(q̄ − q̂H1)

)
U +∆∑

q̂′ n(q̂
′) exp(q̂′) + 1

; (D.28)

Based on Assumption 1,
(
1 + (

√
b1−BH)
BH

exp(q̄ − q̂H1)
)

∆∑
q̂′ n(q̂

′) exp(q̂′)+1 <
q̄−q

2 . In addition, given

U < 0, the above inequality cannot hold. Therefore, Case 4 is impossible.

Q.E.D

D.4 Proposition 4 Proof

Proof. The proof for this proposition is very similar to that for Proposition 3. First, it is easy to

show the statement in the first sentence of the proposition. Based on Proposition 1 and Corollary

1, when F̄L + F̄H < 0, DE and CE work in the same direction for all equilibrium probabilities,

except for PE
L and PX

L1. In particular, ∂PE
H /∂γ > 0, ∂PX

H1/∂γ < 0, ∂PX
H2/∂γ < 0, ∂PX

L2/∂γ < 0,

∂PE
Hc/∂γ > 0, ∂PE

Lc/∂γ > 0, ∂PX
Hc/∂γ < 0, and ∂PX

Lc/∂γ < 0. Second, we can iterate over the four

possible combinations of the signs of ∂PE
L /∂γ and ∂PX

L1/∂γ.

Case 1 ∂PE
L /∂γ < 0 and ∂PX

L1/∂γ > 0. This case requires the DE dominates the CE for both

probabilities. This condition is possible as long as the DEs are large enough for both probabilities.
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As with the proof for Proposition 3, we can write ∂PE
L /∂γ < 0 and ∂PX

L1/∂γ > 0 as

∂PE
L

∂γ
=

∂PE
L

∂πL1

∂πL1
∂M exp(q̂L1)

∂M exp(q̂L1)

∂q̂L1

∂q̂L1
∂γ

+

(
∂PE

L

∂πL0

∂πL0
∂
∑

q̂′ n(q̂
′) exp(q̂′)

+
∂PE

L

∂πL1

∂πL1
∂
∑

q̂′ n(q̂
′) exp(q̂′)

+
∂PE

L

∂πL2

∂πL2
∂
∑

q̂′ n(q̂
′) exp(q̂′)

)
∂
∑

q̂′ n(q̂
′) exp(q̂′)

∂γ
(D.29)

∂PX
L1

∂γ
=

∂PX
L1

∂πL1

∂πL1
∂M exp(q̂L1)

∂M exp(q̂L1)

∂q̂L1

∂q̂L1
∂γ

+

(
∂PX

L1

∂πL1

∂πL1
∂
∑

q̂′ n(q̂
′) exp(q̂′)

+
∂PX

L1

∂πL2

∂πL2
∂
∑

q̂′ n(q̂
′) exp(q̂′)

)
∂
∑

q̂′ n(q̂
′) exp(q̂′)

∂γ
(D.30)

Using D.29 and D.30, we can derive the following conditions that satisfy ∂PE
L /∂γ < 0 and

∂PX
L1/∂γ > 0:

πL1

(
1

2
(q − q̄)− Λ

)
<

2b1

(AL − 2
√
b1BL)

πL0Λ +

(
−1 +

b1(AL + 6
√
b1BL)

(AL − 2
√
b1BL)

√
b1BL

)
πL2Λ (D.31)

πL1

(
1

2
(q − q̄)− Λ

)
<

(
√
b1 −BL)

BL
πL2Λ, (D.32)

where

Λ =
∂
∑

q̂′ n(q̂
′) exp(q̂′)

∂γ

1∑
q̂′ n(q̂

′) exp(q̂′) + 1

Inequality D.31 comes from ∂PE
L /∂γ < 0, and uses the condition C.1. Inequality D.32 comes from

∂PX
L1/∂γ > 0.

These two inequalities have a very similar form compared with inequalities D.25 and D.26. In

particular, it is easy to show that the RHS of inequality D.31 is smaller than that of inequality

D.32. When F̄L + F̄H > 0, Λ < 0. Therefore, 2b1
(AL−2

√
b1BL)

πL0Λ < 0, and(
−1 +

b1(AL + 6
√
b1BL)

(AL − 2
√
b1BL)

√
b1BL

)
πL2Λ <

(
√
b1 −BL)

BL
πL2Λ, (D.33)

Then we have

2b1

(AL − 2
√
b1BL)

πL0Λ +

(
−1 +

b1(AL + 6
√
b1BL)

(AL − 2
√
b1BL)

√
b1BL

)
πL2Λ <

(
√
b1 −BL)

BL
πL2Λ, (D.34)

For Case 1 to be possible, we only need inequality D.31 to hold.

Now we can check if this case complies with the condition ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ < 0. Although

both the number of high-quality independent restaurants and the number of chain restaurants from

all quality types will increase as γ increases, the number of low-quality independent restaurants

decreases. As long as this decrease is large enough, it could compensate the increase in the number

of high-quality restaurants, leading to a decrease in competition.

Case 2 ∂PE
L /∂γ < 0 and ∂PX

L1/∂γ < 0. This case requires the DE(PE
L ) dominates CE(PE

L ), but

DE(PX
L1) is dominated by CE(PX

L1). More specifically, it requires inequality D.31 and the reverse

of inequality D.32. This is impossible because the RHS of inequality D.31 is smaller than that of

inequality D.32.
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Case 3 ∂PE
L /∂γ > 0 and ∂PX

L1/∂γ > 0. This case requires the DE(PE
L ) be dominated by

CE(PE
L ), but DE(PX

L1) dominates CE(PX
L1) . This condition is possible. This case requires the

reverse of inequality D.31, but retains inequality D.32. These conditions are consistent with each

other.

We can now check if it contradicts with ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ < 0. The directions of the

probabilities in this case imply that the number of restaurants from all types is increasing, except

for the numbers of young and established low-quality restaurants (i.e., nL1 and nL2 ). The change

in nL1 and nL2 is unclear because although low-quality independent restaurants are entering more,

they are also exiting more at the young stage. This means that potentially fewer young low-quality

independent restaurants are in the market, and fewer of them will become established. The decrease

in nL1 and nL2 could overpower the increase in the number of restaurants from other types if nL1

and nL2 are large enough. Therefore, this case is possible.

Case 4 ∂PE
L /∂γ > 0 and ∂PX

L1/∂γ < 0. This case requires the DE is dominated by the CE for

both probabilities. This case leads to an increase in the number of restaurants from all types; that is,

U > 0. However, if ∆ is negative and large in magnitude, the condition ∂
∑

q̂′ n(q̂
′) exp(q̂′)/∂γ < 0

can still hold.

This case also requires the reverse of inequality D.32 to hold, which implies

q̄ − q

2
<

(
1 +

(
√
b1 −BL)

BL
exp(q̄ − q̂L1)

)
(−Λ) (D.35)

Based on Assumption 1, this condition D.35 cannot hold. Therefore, this case is impossible. Q.E.D

E Parameter Space Setup for Numerical Examples

This section serves two goals: one is to provide parameter space specification in the main paper.

The other is to show additional simulation results to demonstrate the existence of Proposition 4

(1) where with decreased competition, the equilibrium entry probability for low-quality restaurants

increases.

E.1 NL = NH

The specifications of all parameters of the model are shown in Table E.1. For the market size

parameter M and the numbers of potential entrants (e.g. NH), we set them to a very large number

because the OE solution concept requires a very high market size and large numbers of entrants.

We set the number of potential entrants for chain restaurants at a relatively smaller level than

those for independent restaurants to reflect the fact that in reality, chain restaurants are harder to

come by. Altering the market size and potential entrants parameters would not make a difference

in our solutions or the properties of these solutions. Therefore, we set them constant.
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For the per-period fixed cost parameters (e.g. CH), we set them relatively small in order to

ensure that the flow-profits in each period for all firms are positive. Again this is a requirement in

the OE solution concept. See Assumption 2 (3). Regarding the discount factor β, we set it to a

relatively small number 0.8 to capture the fact that consumer learning make take a long time. A

smaller β makes the profits from established stage of independent restaurants less important and

therefore allows a greater effect of γ. For b0 and b1, we set them equal for simplicity, and we set

them large enough such that the model has a real solution. Smaller bs also amplifies the effect of

γ on equilibrium entry and exit probabilities.

Table E.1: Parameter Specifications in the Numerical Example

Variable Value Variable Value Variable Value

M 1000 β 0.8 q 0

NH 1000 CH 0.4 q̄ [0.2, 3]

NL 1000 CL 0.2 κH [1, 24]

NHc 200 CHc 0.2 κL 0.7κH [0.7, 18.9]

NLc 200 CLc 0.1 κHc = κLc 0.8κH , [0.8, 21.6]

b0 = b1 55

E.2 NL >> NH

As discussed in the proof for Proposition 4 in the subsection D.4, the condition for Proposition 4 (1)

to occur is stringent. To show this scenario is possible, we require the number of potential entrants

for low-quality restaurants to be significantly greater than that for high-quality restaurants. In

particular, we use the same parameter space specification shown in Table E.1 except thatNL = 3000

and NH = 500. As shown in figure ??, with a new set of parameters, we observe decreased

competition. The rationale is quite intuitive: with a large number of potential entrants for low-

quality restaurants, the number of low-quality restaurants will be much larger than the number of

high-quality restaurants in the market. With quality disclosure, it is likely that a large number of

low-quality firms exit the market, possibly leading to a decreased competition.
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(a) Direction (b) Percentage Change

Figure E.1: Change in Competition When NL ≫ NH

Figure E.2 shows the corresponding entry probabilities of independent restaurants. Figure E.2a

and E.2b in the top panel show the entry probabilities for the high-quality independent restaurants

in terms of directional and percentage changes respectively. The rationale behind the figures is

similar to the discussion in the main paper. In this case, high-quality firms do not only enjoy the

direct benefit from quality disclosure, but also get indirect benefit from decreased competition. As a

result, they are encouraged to enter the market. As for the percentage change in entry probabilities

as shown in figure E.2b, we see the biggest change occur when both entry cost and quality difference

are high. The reason is quite similar to the discussion for figure ?? in the main paper.

For low-quality restaurants, the changes in entry probabilities in terms of direction and per-

centage are shown in figure E.2c and E.2d. We observe some interesting features: (1) the entry

probability may increase or decrease. It confirms the existence of Proposition 4. (2) the increase

in entry probability occurs when quality difference is low. With a low quality difference, the di-

rect effect from quality disclosure is limited, and the benefit from a decreased competition may

dominate. In this case, despite the fact that quality disclosure makes low-quality restaurants less

desirable, those restaurants are still motivated to enter the market. In terms of percentage change,

the increase in entry probability is higher when the entry cost is lower. With low entry costs,

restaurants from all types are encouraged to enter. When the quality difference is low, even with

quality disclosure, high-quality restaurants are not as much encouraged to enter the market, imply-

ing low-quality restaurants do not lose much market due to the quality disclosure. When combining

the low entry costs with low quality difference, we expect to see a much bigger increase in the entry

probabilities for low-quality firms. Here, we do not show the figure for exit probabilities for young

independent restaurants as they are the same as the figures 3 and the rationale is the same.
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(a) Direction (High-quality) (b) Percentage Change (High-quality)

(c) Direction (Low-quality) (d) Percentage Change (Low-quality)

Figure E.2: Change in Entry Probabilities of Independent Restaurants (Decreased Competition)

F Model Extension to Extreme Case of Slow Learning

Our main model assumes that it takes consumers one period to learn the true quality of a restaurant

fully. However, it is possible that learning is slow, hence it takes consumers many periods to

completely learn the true quality of restaurants. For example, in transient locations, such as

tourist areas or areas around highway exits, consumers are travelers and they visit the stores only

once. They are not repeat consumers. Learning is likely very slow in the transient locations.

To consider this scenario, we take the learning period to the extreme and assume that without

yelp, quality is never fully revealed to consumers. That is, restaurants stay young forever in terms

of their perceived quality. The analysis for slow learning is analogous to that of the baseline model

in the main text. Any learning process in reality can be understood as a scenario in between these
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two cases.

Below we discuss the model solutions. Because, in this extension, firms stay young forever after

entry, we have only two distinct stages for independent restaurants: potential/new entrants (g = 0)

and young (g = 1). This means that the flow profits with slow learning stay constant after the

period of entry. That is, the original established-period profit πT2 is equal to πT1,∀T ∈ {H,L}) in
this extension. This is the key difference between the solutions for the two models. The rest of the

solutions is the same.

With sleight of hand, we derive the algebraic expressions of the integrated value functions and

the entry and exit probabilities. Table F.1 displays the integrated value functions, and Table F.2

shows the OE entry and exit probabilities. Again, to establish the existence of OE solutions, we

need b0 and b1 to be large enough. The conditions are identical to Equations C.1 to C.3, except

that AT is now defined as AT = 2b1 instead of AT = 2b1 + β(πT1 − πT2).
20

Table F.1: Value Functions

Symbol Expression

VT0 (−b0(−2 + β) + βET − 2
√
b0(1− β)(b0 + βET )/β

2

VT1 (
√
b1 −

√
b1BT )

2/β2

VTc0 (−b0(−2 + β) + βETc − 2
√
b0(1− β)(b0 + βETc)/β

2

VTc1 (
√
b1 −

√
b1BTc)

2/β2

Note: BT =
√

(b1 − βb1 − βπT1), BTc =
√

(b1 − βb1 − βπTc) , ET = −κT + βVT1 + πT0 , and ETc =

−κTc + βVTc1 + πTc for T ∈ {H,L}

20This is because πT1 = πT2 in this extension.
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Table F.2: Model Solution

Variable Meaning Expression

PE
T entry probabilities for independent

new entrants (g = 0) of quality type

T ∈ {H,L}

1 +
−
√
b0+

√
(1−β)(b0+βET )

β
√
b0

PX
T1 exit probabilities for independent

restaurants (g = 1) of quality type

T ∈ {H,L}

1 + −
√
b1+BT

β
√
b1

PE
Tc entry probabilities for chain new en-

trants (g = 0) of quality type T ∈
{H,L}

1 +
−
√
b0+

√
(1−β)(b0+βETc)

β
√
b0

PX
Tc exit probabilities for chain restau-

rants (g = 1, 2) of quality type T ∈
{H,L}

1 + −
√
b1+BTc

β
√
b1

Note:BT =
√

(b1 − βb1 − βπT2), BTc =
√

(b1 − βb1 − βπTc2) , ET = −κT + βVT1 + πT0 , and ETc = −κTc +

βVTc1 + πTc for T ∈ {H,L}

Comparative Statics As for the comparative statics, Propositions 1 to 4 all apply to this

extension. The proof is trivial and will not be repeated here. Similar to the analysis in the

main text, we also provide the same numerical examples of the OE outcomes in this extension. The

parameters are set to be exactly the same as those examples in the main text. To be concise, we here

present only the effect of quality disclosure on the entry probabilities of high-quality restaurants.

The effects on exits and low-quality restaurants are very similar to those shown in figures 7 and 3,

and will not be repeated here.

Figure F.1 shows the percentage change in the entry probabilities of high-quality independent

restaurants in the case of extremely slow learning. This graph shows several interesting patterns.

First, bigger increases in the entries of high-quality independent restaurants occurs when the entry

cost is high and when quality difference between the two types of restaurants is large. Second,

when the entry cost is low or when the quality difference between the two types of restaurants is

small, the effect on entries is limited. The rationale behind these results are similar to that for our

main model: when the quality difference between high- and low-quality restaurants is small, the

benefit of quality disclosure is small, leaving less incentive or motivation for the high-quality firm to

enter the market. When the entry cost is low, high-quality independent restaurants are motivated

to enter the market regardless, the incremental benefit from quality disclosure is then small.

Third, the effects tend to be monotonically increasing in the quality difference. This is differ-

ent from the non-monotonic pattern shown in Figure 2b for the main model. Last but not the

least, compared to those effects from the main model, as shown in Figure 2b, the effects from
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the extremely-slow-learning case are much bigger. The effect of quality disclosure in the slow-

learning case is in the order of hundreds of percentage points, whereas that from the main model

is in mostly single digits. The bigger effect of quality disclosure in the slow-learning case is very

reasonable because quality disclosure now affects flow profits forever instead of just one period.

Figure F.1: Percentage Change in the Entry Probability of High-quality Independent Restaurants

(Slow Learning)

Figure F.1 is based on the comparison between the cases when γ = 0 and when γ = 1. To

illustrate the effect of graduate change in quality disclosure, we plot the OE outcomes against γ

in figure F.2. The top two panels, figures F.2a and F.2b, are for independent restaurants, and the

bottom panel, figure F.2c, is for chain restaurants. In figures F.2a and F.2b , the solid lines represent

the OE entry and exit probabilities, and the dashed lines capture the counterfactual probabilities

when we have only direct effects of quality disclosure, i.e. by holding the competition effect constant.

The difference between the dashed lines and the solid lines then reveals the competition effect. The

figures F.2a and F.2b show that without considering the competition effect, we would observe higher

entry probabilities and lower exit probabilities for both high- and low- quality restaurants as γ

increases. Moreover, the competition effect is stronger for high-quality restaurants; in other words,

the high-quality restaurants are more sensitive to competition than the low-quality restaurants.

These patterns are consistent with those shown in figures 4 and 5a for the main model.

Compared to the main model, the most notable feature of figures F.2a and F.2b is that the
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slopes of the entry and exit probabilities are much steeper, implying that the effect of quality

disclosure is much stronger in the setting with slow learning.

When it comes to chain restaurants, the effect of quality disclosure comes from solely the

change in competition. Figure F.2c shows how chain restaurants’ entry and exit probabilities

change as γ increases. The solid lines represent entry probabilities, whereas the dashed are for

the exit probabilities. As shown, changes in these probabilities are smaller for low-quality than

high-quality, consistent with the patterns shown in the two previous graphs: competition effect

influences high-quality restaurants more than low-quality restaurants. Again when compared with

the main model, figure F.2c shows steeper slopes than those in figure 6, implying that the effect of

quality disclosure is stronger in the setting with slow learning, even for chains.

(a) Entry Probability for Independent

Restaurants

(b) Exit Probability for Independent

Restaurants

(c) Entry and Exit Probability for Chain

Restaurants

Figure F.2: Effect of Quality Disclosure with Slow Learning

G Figures and Robustness Check
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Table G.1: Effects of Online Review Platforms on Entry by Chain Affiliation

and Location (5 Levels)

Dependent variable Number of New Entries

Independent Chain

Non-Highway Highway Non-Highway Highway

log(Yelp) -0.338*** -0.280** -0.0383 -0.0618

(0.106) (0.135) (0.165) (0.180)

log(Yelp)×rating 0.0925*** 0.0733** 0.0291 0.0440

(0.0292) (0.0368) (0.0384) (0.0415)

Controls ✓

Group FE ✓

Year× Month× Metro× Chain FE ✓

Year×Month×Low-Quality×Chain FE ✓

N 3199

N of Clusters 35

Quality Measure Google Rating

Controls include demographics (population, income, age, race), ratio of new entries that

are listed on Google, and the numbers of incumbent chain and independent restaurants

in the same county from the last period. Group FE is quality-levels × chain-affiliation

× county × highway. Low-Quality includes the lowest 2 levels when 5 and 7 quality

levels are used, and only the lowest level when 3 levels are used. All standard errors are

two-way clustered at the county level and time level. They are shown in parentheses. *

p<0.10, ** p<0.05, *** p<0.01

Table G.2: Effects of Online Review Platforms on Entry by Chain Affiliation

and Location (3 Levels)

Dependent variable Number of New Entries

Independent Chain

Non-Highway Highway Non-Highway Highway

log(Yelp) -0.304*** -0.329** -0.0496 0.113

(0.117) (0.159) (0.124) (0.217)

log(Yelp)×rating 0.0853*** 0.0838* 0.0275 -0.00224

(0.0292) (0.0439) (0.0280) (0.0509)

Controls ✓

Group FE ✓

Year× Month× Metro× Chain FE ✓

Year×Month×Low-Quality×Chain FE ✓

N 2923

N of Clusters 39

Quality Measure Google Rating

Controls include demographics (population, income, age, race), ratio of new entries that

are listed on Google, and the numbers of incumbent chain and independent restaurants

in the same county from the last period. Group FE is quality-levels × chain-affiliation

× county × highway. Low-Quality includes the lowest 2 levels when 5 and 7 quality

levels are used, and only the lowest level when 3 levels are used. All standard errors are

two-way clustered at the county level and time level. They are shown in parentheses. *

p<0.10, ** p<0.05, *** p<0.01
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Table G.3: Placebo Test for Exit

(1)

exit

log(Yelp) (independent) 0.000825

(0.00257)

log(Yelp)×rating (independent) -0.000390

(0.000623)

log(Yelp) (chain) 0.000551

(0.00139)

log(Yelp)×rating (chain) 0.000328

(0.000260)

Controls ✓

Restaurant× Month FE ✓

Year× Month× Metro× Chain FE ✓

N 224,026

N of Clusters 69

Controls include demographics (population, in-

come, age, race) and the number of chain and in-

dependent rivals in the same zip code tabulation

area at the same period. All standard errors are

two-way clustered at the county level and time

level. They are shown in parentheses. * p<0.10,

** p<0.05, *** p<0.01
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Table G.4: Placebo Test for Entry

(1)

entry

log(Yelp) (independent) 0.187

(0.218)

log(Yelp)×rating (independent) -0.0338

(0.0480)

log(Yelp) (chain) 0.298

(0.244)

log(Yelp)×rating (chain) -0.104

(0.0814)

Controls ✓

Year× Month× Metro × Chain FE ✓

Year× Month× Low Quality × Chain FE ✓

Group FE ✓

N 1,300

N of Clusters 22

Controls include demographics (population, income,

age, race), ratio of new entries that are listed on

Google, and the numbers of incumbent chain and in-

dependent restaurants in the same county from the

last period. Group FE is quality-levels × chain-

affiliation × county × highway. Low-Quality includes

the lowest 2 levels when 5 and 7 quality levels are

used, and only the lowest level when 3 levels are

used. All standard errors are two-way clustered at

the county level and time level. They are shown in

parentheses. * p<0.10, ** p<0.05, *** p<0.01
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