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Abstract

We propose a method to learn personalized customer retention management strategies

when customers’ intentions to purchase evolve over time. Working with a Japanese online

platform, we first implement a large-scale randomized experiment, in which coupons are

randomly sent to first-time buyers at different times. The experimental data allow us to es-

timate personalized dynamic retention policies using off-policy policy learning methods.

We extend the existing methods by allowing non-Markovian strategies and by considering

inter-temporal budget constraints. Our offline evaluation results show that the optimal

dynamic policy is more cost-effective than baseline policies. Finally, we test the optimal

policy online to confirm its performance.

1 Introduction

Managing customer retention is a central part of customer relationship management (CRM).

In particular, it is well-known in both academia and practice that the attrition rate at the early

stage of the customer life cycle is quite high (e.g., Fader and Hardie, 2007, 2010; Kim, 2022),
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but attrition tends to be smaller as they repeat purchases over time. Hence, it is essential to

increase the retention of first-time buyers to increase the overall customer lifetime value.1

To improve the retention of first-time buyers, companies usually make special treatment

for those first-time buyers. For example, as many popular marketing strategy books suggest,

it is common for companies to send a special thank-you message to first-time buyers. It is

also commonly observed that companies send them a coupon so that they are going to make

another purchase with the coupon.2

In the era of Big Data, data-driven CRM strategies can improve the retention of first-time

buyers through targeting and personalization. Many e-commerce companies collect not only

basic demographic or socioeconomic information about customers but also a large number of

variables on customer behavior prior to and after the first purchase such as browsing history

and installing an app. These massive, fine-grained data allow companies to design personal-

ized targeting policies for sending messages or coupons, which enhance customer retention

and facilitate overall CRM performance.

Although the availability of large-scale detailed data has helped develop policy learning

methods for personalized data-driven marketing strategies on how and whom to target, there

are some challenges. The first challenge is that retention management inherently involves dy-

namics in that customers’ behavior and interest may change over time. For example, it is well-

known that the retention probability tends to decline as the length of time since the customer’s

first-time purchase increases, as known as a “recency trap” (Neslin, Taylor, Grantham, and Mc-

Neil, 2013). Given the empirical pattern, it may be too early to send retention incentives right

after the first purchase, or it can be too late to do so a month after the purchase. Thus, tim-

ing matters. Retention management strategies in the existing papers, however, mainly focus

on a static setting where a company sees customers at one point in time and decides how to

treat customers right away. It is crucial to incorporate dynamics in policy learning for retention

management.

The second challenge is that many marketing campaigns have a budget ceiling as compa-

1Throughout the paper, we use the “retention” instead of “attrition” even though our application is not con-
tractual setting as subscription businesses. Our method can be applied to both contractual and non-contractual
settings.

2There are a lot of blog posts and articles online on how to send appreciation emails to first-time buyers. For
example, https://www.drip.com/blog/customer-appreciation-emails.
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nies do not want to waste their resource too much. A common rule of thumb is that the mar-

keting budget for B2B companies is between 2 and 5% of their revenue and between 5 and 10%

for B2C companies.3 Hence, marketing managers need to efficiently select marketing strate-

gies within the budget. Even if there are no explicit budget constraints, companies may have

other types of constraints due to privacy concerns, for example. Such fairness constraints re-

strict what kind of policies companies can implement in practice.4 When the resource is limited

such that only a subset of customers can receive retention incentives, it is even more important

to determine a “cost”-effective personalized targeting strategy.

In this paper, we aim for overcoming these challenges. Specifically, we propose an empir-

ical framework to create dynamic personalized targeting strategies for retention management

when there exist budget constraints (or other constraints that limit what fraction of the cus-

tomers can be treated). We then apply the methodology to the experimental data from a lead-

ing Japanese e-commerce company, which contain detailed customer information for person-

alization. Since the company serves more than 100,000 first-time buyers every month, even a

small improvement in the cost-effectiveness of a personalized retention strategy can have large

impacts on the company’s profits.

Our method follows the recent literature on the dynamic treatment regime (DTR) used

in statistics, medicine, computer science, and economics. Dynamic treatment regimes, also

called adaptive treatment strategies, are sequential decision rules that adapt over time to the

changing status of each customer. A DTR, for example, determines whether or not to offer a

coupon as a function of state variables such as past purchase history, past browsing history,

past responses to emails, etc. This dynamic nature makes the estimation of DTRs challenging

because the treatment assignment today should have both direct effects on current outcomes

and indirect effects on future treatment assignments and outcomes by affecting future state

variables. We extend the methodologies to develop DTRs by explicitly incorporating budget

constraints, which makes the dynamic optimization problem even more complicated because

the current treatment assignment affects future treatment assignments and outcomes not only

through dynamic customer behavior but also through inter-temporal budget constraints. In-

3See, e.g., https://www.bdc.ca/en/articles-tools/marketing-sales-export/marketing/what-average-marketing-
budget-for-small-business

4See, e.g., Kallus and Zhou (2021) for refefence.
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corporating dynamics and constraints, however, makes the targeting policy more practical and

allows us to develop cost-effective dynamic targeting policies.

Our approach to estimating the optimal DTR given the budget constraint builds on both Q -

learning (e.g., Murphy, 2003) and Backward Outcome Weighted Learning (BOWL) (e.g., Zhao,

Zeng, Laber, and Kosorok, 2015). Q -learning is an approximate dynamic programming pro-

cedure that estimates the optimal DTR by maximizing the conditional expectation of the cu-

mulative sum of the current and future payoffs given the current state and action, known as

a Q -function. We model the Q -function by various machine learning methods such as Ran-

dom Forest, Gradient Boosting Machine (GBM), and LASSO. Those machine learning methods

are attractive as they allow one to avoid fully parameterizing underlying data-generating pro-

cesses. We then maximize the Q -functions to obtain the optimal DTRs. By contrast, the BOWL

approach reframes the estimation of an optimal DTR as a sequential weighted classification

problem, starting from the very end period. This reformulation is helpful as one can use exist-

ing classification algorithms such as Support Vector Machine (SVM) and Logistic Regression,

which are readily available in popular programming languages. Hence, BOWL is a direct ap-

proach to learning the optimal DTR. We provide the characterization of the optimal DTR given

the budget constraint and propose an algorithm to derive the optimal policy.

In this paper, we consider two models. The baseline model has two actions, where a cus-

tomer receives an appreciation email only or a coupon in addition to the email. The baseline

model allows us to estimate the value of financial incentives for retention. The extended model

has more than two actions, where a customer now may not receive an appreciation email. This

model can separately estimate the effect of sending appreciation messages and financial in-

centives.

To estimate the optimal DTR, we use experimental data from a large e-commerce platform

in Japan. Our randomized experimental design guarantees the “sequential ignorability” con-

dition, meaning treatment assignments are independent of potential future outcomes, condi-

tional on the history up to the current period. The experimental data allow us to consistently

estimate the optimal DTR.

Applying the method to the experimental data, we find that the optimal DTRs can achieve

significantly higher retention than the company’s status-quo policy of just sending apprecia-
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tion emails, and are also more cost-effective than alternative policies. For our baseline model,

the return on advertising (coupon) spending (ROAS), the company’s main KPI (Key Perfor-

mance Indicator), can be as high as 430% with our constrained BOWL, which is significantly

higher than other policies. For the extension model, the constrained BOWL achieves almost

900% in ROAS and outperforms the non-targeted policies by a lot. Moreover, due to person-

alization, our results reveal that it is not always optimal to send incentives right after the first

purchase. For some users, it may be more beneficial to send incentives later.

Lastly, based on our offline evaluation results, the company tested our optimal DTR on-

line. The online results confirm our offline evaluation results. For the baseline model, the

constrained BOWL earns 550% in ROAS, and the extension earns 306% in ROAS and hence

achieves better performance than other compared models. Now the company implements our

algorithm for their retention management.

Our approach is practically important for many marketing managers. For companies with

limited resources such as start-ups, they may not have enough marketing resources to give

coupons or financial incentives to many customers. Since we leverage one experimental dataset

to learn optimal DTRs under different scenarios, even start-ups can set up the data and derive

dynamic personalized policies. Also, our approach is useful for marketing managers in bigger

institutions. That is because our cost-effective approach allows the companies to save a signif-

icant amount of resources for other marketing campaigns than retention management. More-

over, since our approach derives the optimal strategies within the budget constraint, it is much

easier for the company to manage expenses. As Ascarza, Ross, and Hardie (2021) point out,

many companies do not effectively use their customer data to achieve the companies’ goals

within their budget. Our method can contribute to those companies’ objectives.

The rest of the paper is organized as follows. In Section 2, we review the related literature

in marketing, economics, and computer science. Section 3 introduces the background of the

setup we study and Section 4 describes the experimental design and provides some descriptive

statistics with a special emphasis on consumer heterogeneity. Section 5 explains the model and

our solution approaches. In Section 6, we discuss the results of the off-policy policy evaluation

and show the online evaluation results. Lastly, Section 7 concludes.
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2 Related Literature

Our paper is related to the marketing literature on proactive churn/attrition management.5

Churn management is one of the key priorities for most businesses as customer retention is

a major component of customer lifetime value (CLV) and hence a cornerstone of successful

CRM (Ascarza, Neslin, Netzer, et al., 2018; Ascarza, Ross, and Hardie, 2021). As summarized

by Neslin, Taylor, Grantham, and McNeil (2013), a popular industry practice for data-driven

retention management is to flag risky customers who are likely to churn using behavioral and

demographic variables. By predicting customer attrition before they decide, firms can proac-

tively communicate with those who are at risk of churning to convince them to stay (e.g., Nes-

lin, Gupta, Kamakura, Lu, and Mason, 2006). Recently, a few papers go beyond estimating the

churn prediction model and targeting customers with the highest risk. Ascarza (2018) points

out that it is not effective to target customers with a higher chance of predicted retention as they

may not be responsive to marketing interventions and propose to determine targeting based

on uplift. Lemmens and Gupta (2020) note that it is crucial to take the financial impact of a

retention intervention based on CLV into account. Our approach adds to the literature by de-

veloping a method that estimates a (counterfactual) dynamic targeting policy that maximizes

retention given budget constraints.6

In marketing, a growing number of papers propose methods for learning optimal personal-

ized policies.7 Hitsch and Misra (2018) propose a policy learning method based on the estima-

tion of conditional average treatment effect (CATE) using k-nearest neighbors. Simester, Tim-

oshenko, and Zoumpoulis (2020) consider an efficient policy evaluation method when existing

5Although “churn” is used in the context of contractural settings such as subsciption business and “attrition” is
used in non-contractural settings, we use those words almost interchangeably as our method can be used in both
cases.

6For a review of the literature, see, e.g., Ascarza, Neslin, Netzer, et al. (2018).
7In economics, there is a strand of papers on policy learning. Athey and Wager (2021), for example, develop

methods for policy learning that can work with observational data. Their method can be used to optimize various
types of treatment allocation such as binary treatments and infinitesimal changes in continuous treatments. Kita-
gawa and Tetenov (2018) study policy learning in a nonparametric setting and obtain regret bounds for the Empiri-
cal Welfare Maximization (EWM) method. Bhattacharya and Dupas (2012) and Sun (2021) study how to incorporate
a certain policy constraint in a static setting of policy learning. Sakaguchi (2022) extends the EWM method to a dy-
namic setting with inter-temporal constraints. Our method is different from Sakaguchi (2022) in that our approach
transforms the constrained problem into a sequence of unconstrained problems, which allows us to use the existing
approaches such as Q -learning and BOWL. Moreover, our method is computationally light and can accommodate
a large number of state variables.
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policies and new policies are compared. Yoganarasimhan, Barzegary, and Pani (2022) estimate

CATE with different machine learning models and compare the performance of targeting poli-

cies constructed based on these models. Yang, Eckles, Dhillon, and Aral (2022) consider how

to derive targeting policies when an outcome of interest is observed only in the long term. To

do so, they use the idea of statistical surrogacy (Athey, Chetty, Imbens, and Kang, 2019) and

optimal policy learning.

Recently, a few papers in marketing explicitly examine dynamic personalized policies. The

most closely related paper is Liu (2022). Liu (2022) develops a dynamic reinforcement learn-

ing algorithm for dynamic pricing in e-commerce and finds that the dynamic reference price

effect plays an important role. Also, Wang, Li, Luo, and Wang (2022) propose a sequential tar-

geting strategy using deep reinforcement learning, and apply it to the experimental data from a

mobile app promotion campaign. In a different context, Kar, Swaminathan, and Albuquerque

(2015) and Rafieian (2022) examine dynamic ad targeting and show the importance of the inter-

temporal externalities that the dynamic targeting ad allocation policy should take into account.

We add to this brand-new literature by proposing a method to estimate dynamic cost-effective

policies, which explicitly take constraints into account. Moreover, we differ from those papers

as we consider a non-Markov dynamic setup.8 Finally, our paper investigates a substantively

different topic on retention management.

3 Background

The company we work with is one of the largest e-commerce platforms in Japan (about $2,300

million transaction volume in 2021) that mainly sells apparel products for young female cus-

tomers. There are more than 1,500 retailers on the platform and more than 8 million active

users. Those users purchase products from the retailers through the platform’s website or through

the mobile app. Those apparel brands and retailers basically delegate marketing activities to

the platform company that also manages inventories at the company’s warehouse and handles

shipping directly to consumers. The platform charges a certain fee to retailers for each trans-

8In the literature of personalized medicine, DTRs are developed in non-Markov settings to adaptively select clin-
ical treatments in response to the factors emerging over time (e.g., Murphy, 2003; Murphy, Lynch, Oslin, McKay, and
TenHave, 2007; Zhao, Kosorok, and Zeng, 2009; Zhang, Tsiatis, Laber, and Davidian, 2013, to name a few). Another
related paper is Nie, Brunskill, and Wager (2021), which study when to start treatment and learn the optimal policy.
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action, but retailers do not have to bear any costs for keeping their products in the platform’s

inventory warehouse.

The company is interested in increasing the retention of the customers who have just made

their first purchase as those first-time buyers’ retention rate is lower than other customers who

have experienced multiple purchases before. Also, based on the company’s examination, the

contribution of the second purchase to the customer lifetime value (LTV) is much larger than

that of the third/fourth/fifth purchases. Hence, it is critical to have first-time buyers make a

second purchase for improving the overall retention rate and LTV of customers. Before we

started the project, as suggested by many popular marketing strategy books, the company

sends “thank you” messages to first-time buyers to show appreciation and to provide them

with some useful information about the platform such as rankings and the company’s app. The

purpose of such emails is to convince them to buy another item and also to collect customer

behavior information.

Although the company knows that the current appreciation emails to first-time buyers have

some positive impacts on retention, the company would like to increase the retention rate even

further by providing financial incentives.

As to providing incentives, the timing can be crucial. It has been well-known in marketing

that there is a recency trap as pointed out by Neslin, Taylor, Grantham, and McNeil (2013), i.e.,

the retention probability becomes smaller as time passes since the last purchase increases. Fig-

ure 1 shows the relationship between the days since the last purchase and the average purchase

probability in our application. As in the previous papers, the average purchase probability gen-

erally declines as recency increases.9

The declining pattern in the figure has implications on when to target customers. It may

imply that waiting too long after the first purchase may not be optimal as the intention to buy

is already too low, while sending incentives right away may not be optimal either, as they may

purchase for the second time even without such incentives.

Moreover, the company has a practical constraint in its marketing strategy. While the com-

pany’s general objective function is to maximize the retention rate (and hence LTV), in partic-

ular for first-time buyers, the company hesitates to distribute too generous incentives. That

9Previous papers consider the recency trap in longer terms than ours. Although we are not allowed to disclose
the average purchase intervals, customers in the platform we study buy more frequently than other prior studies.
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Figure 1: Recency and Retention Probability

Note: The graph shows the time (days) since the first purchase on
the horizontal axis and purchase probabilities, i.e., retention proba-
bilities on the vertical axis. The purchase probabilities are calculated
from the experimental data we use for the estimation of the optimal
DTR. The company sends incentives 2 days, 10 days, and 30 days af-
ter the customer’s first purchase, giving hikes around those days.

is because some customers purchase other items even without coupons and some customers

may use coupons to buy low-margin items. This concern leads us to study how to design cost-

effective personalized strategies.

4 Experimental Design and Data

4.1 Experimental Design

In this section, we describe the design of the randomized experiment that we will use for esti-

mating the optimal DTR later. The company conducted two experiments: one for the baseline

model we will explain in Section 5.2, and another for the extension in Section 5.4. Below, we

discuss the first experiment to save space. In Online Appendix C.1, we discuss the experimental

design of the second experiment, which is an extension of the first experiment.

The company conducted the first experiment from September 2020 to December 2020. As

explained above, the company’s focus is on the customers who have just made their first pur-
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Figure 2: Experimental Design

Note: The figure shows the experimental design of the first experiment where there are two actions, email
only and email and coupon.

chase, and there are about 150,000-200,000 first-time buyers per month during the experiment

period.10First-time buyers need to provide demographic information and contact information

when they make a purchase. We randomly pick about 70% of those first-time buyers for the

experiment.

In the first experiment, customers in the control group receive only appreciation emails,

each of which contains information about how to use the platform or a generic ranking of the

items sold on the platform. They receive appreciation emails at three different times: 2 days,

10 days, and 30 days after the first purchase. The customers in the treatment group receive the

financial incentive of 1,000 points (about $10) along with the appreciation emails.11 There is

no expiration date for those points.12 Since providing coupons for first-time buyers was never

implemented on the platform before, users did not know if they could receive coupons before

they made a purchase.

In the treatment group, there are three sub-groups depending on when the customers re-

ceive the incentive (Figure 2). The customers in the 2-day treatment group receive the incentive

2 days after the first purchase, and they receive only the appreciation emails 10 days and 30 days

after the first purchase. The 10-day treatment and the 30-day treatment groups are similarly

10The NDA does not allow us to report the exact number of customers involved in the experiment.
11The company was not willing to offer %-off coupons because such a coupon can be very costly for the platform

if users purchase expensive items. The design of coupons is beyond our research question.
12For an impact of coupon expiration dates, see, e.g., Inman and McAlister (1994).
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Table 1: Treatment Allocation

Percent

Control 39.76%
2 day 19.15%
10 day 20.50%
30 day 20.59%

Note: The table reports
the fraction of each group
including three treatment
groups and the control
group. Due to the NDA,
we cannot report the exact
number of observations in
each group.

defined. Hence, each first-time buyer in the treatment groups receives the incentive at most

once during the experimental period. Note that in Section 5, we consider the optimal DTR in

this class of the strategy. Hence, our experimental design covers all possible combinations of

treatments to estimate the optimal DTR.

The randomization is done at the user level. We randomly assign each user right after their

first purchase to one of the four groups: the control, the 2-day treatment, the 10-day treat-

ment, or the 30-day treatment. Since we randomize the assignment right after each first-time

purchase, we do not have to re-randomize at each of the three possible times. Table 1 reports

the fraction of first-time buyers allocated to each of the treatment conditions and the control

group. We have about 40% of users for the control and 20% of users for each treatment condi-

tion.

Table 2 reports the summary statistics of the subset of the variables we use. In the first

two columns, we show the mean and standard deviation of each variable for the customers in

the 2-day treatment. Similarly, the third and fourth columns are for the customers in the 10-

day treatment, the fifth and sixth columns for the customers in the 30-day treatment, and the

seventh and eighth columns for the customers in the control group.

For user demographics, about 63% of users are female and the average age of users is 30.

Also, we do not see any significant difference across conditions. The number of items pur-

chased (quantity) and total spending (sales) on the user’s first purchase occasion are on aver-

age 1.7 and 6,200 JPY, respectively, across conditions. Also, users apply about 555 points for the

11



Table 2: Summary Statistics

Variable 2 day 10 day 30 day Control
mean sd mean sd mean sd mean sd

Female 0.631 0.483 0.631 0.483 0.629 0.483 0.634 0.482
Age 30.24 12.69 30.31 12.76 30.23 12.68 30.25 12.67
Quantity: first buy 1.699 1.520 1.697 1.482 1.691 1.588 1.697 1.493
Sales: first buy 8065.3 8213.6 8127.3 8405.5 8102.7 8361.3 8089.4 8157.9
Points used: first buy 557.5 756.9 556.5 760.2 556.5 762.0 560.3 860.9
# of sessions/day (pre 1st buy) 0.697 2.016 0.698 2.032 0.703 2.049 0.704 2.047
# of PVs/day (pre delivery) 15.08 31.78 15.38 33.02 15.24 32.73 15.23 32.64
# of favorites/day (2-10 day) 0.207 1.036 0.178 1.119 0.179 1.047 0.180 1.018
# of messages (10-30 day) 32.21 37.81 32.31 37.16 31.60 37.28 31.61 37.29

Note: The first six columns report the mean and standard deviation of each variable for each of the three treatment groups.
The last two columns are for the control group. The number of observations in each treatment is not reported due to the
non-disclosure agreement (NDA).

Figure 3: Balance Check

(a) 2 day (b) 10 day (c) 30 day

Note: Each figure plots the histogram of t-values for a mean-comparison test between each treatment and the control
group.

first purchase across all conditions.13

The last four rows in the table contain a subset of the user behavior variables. Since we use

more than 100 behavioral variables based on the user access data (sessions, page views (PVs),

favorites, messages sent, etc.), it is not possible to report the summary statistics of all of those

variables. Hence, we randomly choose four variables and show their summary statistics in the

table.14

Next, we check the balance between the treatment groups and the control group to make

sure if the randomization is done accurately. Since we use more than 100 variables for the

estimation of DTRs, we do not report the mean comparison of each variable in a table. Rather,

13Most users receive 500 to 2000 points when they sign up for the platform. They can use them immediately,
especially for their first purchase.

14Note that we do not mean those reported variables are more important than other variables. We simply choose
those variables at random. This is required by the company for confidentiality issues.
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in Figure 3, we show the histograms of the t-values for the mean comparison test between the

treatment and control groups for each variable used in the estimation of DTRs. As the graph

shows, there is no significant difference in mean between the control and treatment groups as

the t-value is located between −2 and 2 for most of the variables.

In terms of the outcome, we consider the second-time purchase (i.e., retention) within 8

weeks after the first purchase or within 12 weeks, and we estimate the optimal DTR to maxi-

mize them as the objective function as it is the company’s main KPI. We also investigate the ef-

fects of the derived optimal DTRs on long-term outcomes to see if there are any inter-temporal

substitution effects by simply shifting the timing of purchases.

4.2 Average Treatment Effect

Before we explain the estimation of DTR with the experiment data, to understand the data in

more detail, we examine the average treatment effects in this section. Specifically, we estimate

the following simple linear regression:

yi t =β0t +β1t Di t + εi t ,

where yi t is the outcome of interest, Di t is the dummy for the treatment, and t = 2, 10, 30.

We run three separate regressions for each treatment group. For each regression, we use the

treatment group which receives a coupon on day t and the control group which receives no

financial incentives at any time. As the outcome variable, we consider three variables: whether

or not user i makes the second purchase (retention), the total purchase (sales) in JPY, and the

number of items purchased (quantity).15

We estimate the treatment effects with the outcomes measured 8 weeks and 12 weeks after

the first purchase (not after each treatment). As Panel (A) of Table 3 shows, the 2-day treatment

increases the retention rate by 2.4%, the 10-day treatment by 1.4%, and the 30-day treatment by

1.5%. Panel (B) reports similar treatment effects for the outcomes within 12 weeks. Note that

the 10-day treatment effect is 1.1% for the 12-week retention, which is smaller than the one for

15The estimation sample includes the users who make the second purchase before they receive incentives. We
run another set of regressions where we remove all users who make a purchase before they receive coupons. The
results are virtually the same as Table 3.
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Table 3: Average Treatment Effect

Retention Sales Quantity

Panel (A): 8 Week Outcomes
2 day 0.024∗∗∗ 229.6∗∗ 0.084∗∗∗

(0.002) (101.8) (0.022)
10 day 0.014∗∗∗ -33.0 0.025

(0.002) (84.7) (0.018)
30 day 0.015∗∗∗ 149.9 0.045∗∗

(0.002) (94.7) (0.019)

Panel (B): 12 Week Outcomes
2 day 0.024∗∗∗ 385.0∗∗∗ 0.056∗∗∗

(0.002) (157.0) (0.010)
10 day 0.011∗∗∗ -90.3 0.012∗∗∗

(0.002) (102.8) (0.009)
30 day 0.015∗∗∗ 144.0 0.024∗∗∗

(0.002) (95.6) (0.007)
Note: The first column reports the treatment effects on

whether a customer makes any purchases within 8 weeks
(Panel (A)) or 12 weeks (Panel (B)) since their first purchase.
The second column reports the treatment effects on total
sales and the third column reports the treatment effects on
the number of items purchased. The table does not report
the constants as the constants reveal the baseline retention
rates, baseline sales, and baseline quantity, which is prohib-
ited due to the NDA.

the 8-week retention. This is because the users in the control group eventually increase their

purchases over time and hence the treatment effect could decrease. This suggests that there is

an inter-temporal substitution within a user.

In terms of total spending, the 2-day treatment increases the total spending by 230 JPY

($2.3) in 8 weeks, while the 10-day and 30-day treatment effects on total spending are not sta-

tistically significant. The third column reports the treatment effects on the number of items

purchased. We find that the treatment effects are mostly positive for the 2-, 10-, and 30-day

treatments. Even for the 30-day treatment, the effect is positive and statistically significant.

In sum, the optimal uniform strategy is to send incentives 2 days after the first purchase. We

consider it as the baseline strategy.

Although the average treatment effects are informative to see which treatment is more ef-

fective than others on average, it may not necessarily be the case that the 2-day treatment is
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Figure 4: Heterogeneous Treatment Effects

(a) (b)

Note: The figures show the average treatment effects (2-day treatment for Panel (a) and 30-day treatment for Panel (b))
against the total spending for the first purchase. The total spending is split into deciles.

optimal for all users. To see how much heterogeneity exists, we now estimate the heteroge-

neous treatment effects by estimating interaction effects.16. Note that our main purpose is not

to investigate the mechanism behind heterogeneity, but to merely show heterogeneity in treat-

ment effects across different customer segments. More specifically, we estimate the following

regression with interaction terms

yi t =β0t +β1t Di t +β2t X i t +β3t (Di t ×X i t ) + εi t ,

where X i t is a variable indicating customer segments. Figure 4 shows the bar charts of the

average treatment effects of the 2-day treatment (Panel (a)) and 30-day treatment (Panel (b))

for each decile of the total spending for the first purchase. For both treatments, it seems that

the average treatment effects generally decrease as the total spending increases. Although our

main objective is not to identify the mechanism behind the decreasing patterns, we want to

emphasize that treatment effects vary a lot across users. Significant heterogeneity of the treat-

ment effects can be found for other conditioning variables.

One might wonder if those who receive the 2-day treatment get other marketing interven-

tions triggered by the 2-day treatment, and hence the estimated average treatment effects are

confounded by the impacts of other marketing campaigns. The company confirmed that there

16We report more results in Online Appendix B. We examined more variables to see heterogeneous effects. For
most of the variables, there is significant heterogeneity.
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are no major campaigns that target the first-time buyers in our experimental sample. Moreover,

in our optimization in the next section, the state variables include those marketing campaigns.

Therefore, our final results do not suffer from this issue.

Lastly, in Online Appendix C.2, we report the average treatment effects for the second ex-

periment, where users may not receive an appreciation email. Note that the second experiment

allows us to separately estimate the effect of a coupon and the one of an appreciation email.

We find that both the coupon and the email have positive treatment effects, while the coupon

has a larger impact on outcomes.

5 Dynamic Treatment Regime with Constraints

In this section, we propose our strategy for estimating the optimal dynamic treatment regime

(DTR) when there exist inter-temporal budget constraints. We start with discussing the model

setup and then explain how to estimate the optimal DTR.

5.1 Setup

We study the following dynamic environment. In our model, there are three periods (t = 1, 2, 3)

and X t ∈ X t denotes the state variables in period t . Note that our methodology can be ex-

tended to the case with more than three periods. The state variables include the user demo-

graphic information, past purchase information, browsing information, responses to past mar-

keting activities, etc. Our methodology can easily accommodate a large number of state vari-

ables. In our application, we use more than 100 variables for X t . The company can choose

an action every period from the action set At ∈ At . In our baseline application, the com-

pany either sends an incentive or not in addition to the appreciation message, and we denote

At = {0, 1}, where option 1 is sending the incentive. Later, we will extend the model to the

case where the action set includes more than two options. Lastly, the final outcome is Y ∈ R,

which will realize after period 3. In our case, we consider customer retention within two or

three months after the first purchase.17

We introduce the history Ht ∈ Ht to describe the summary of the events up to period t .

17It is straightforward to apply our method to the case where the outcome is the discounted cumulative reward,
e.g.,

∑

t β
t Yt , where Yt is the period-t outcome and β is the discount factor.
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More precisely, we define H1 = X1, H2 = (X1, A1, X2), and H3 = (X1, A1, X2, A2, X3). Note that the

history includes not only the state variables but also the actions taken up to that period. The

initial state distribution and state transition distributions are denoted by PX1
(x1), PX2

(x2|h1, a1),

and PX3
(x3|h2, a2). The final outcome is then determined by the entire history up to period 3,

h3, and the action taken in period 3, a3, i.e., PY (y |h3, a3). Thus, the model is non-Markov and

hence the state transition depends not only on the previous state but also on the entire history.

This implies that we may not be able to use off-the-shelf reinforcement learning algorithms

that typically assume a Markov environment.

With this dynamic environment, a dynamic treatment regime (DTR) is a sequence of de-

cision rules d = (d1, d2, d3), where dt :Ht → ∆(At ) is a function that maps the history up to

time t into a probability distribution over actions. We use dt (at |ht ) to denote the probabil-

ity of choosing action at given history ht . If the decision rule is deterministic and chooses an

action with probability one, then we use dt (ht ) to denote the action.

When a DTR d is applied to the above dynamic environment, the trajectory H = (X1, A1, X2, A2, X3, A3, Y )

is generated by the following process.

1. X1 ∼ PX1
, A1 ∼ d1(·|H1)

2. X2 ∼ PX2
(·|H1, A1), A2 ∼ d2(·|H2)

3. X3 ∼ PX3
(·|H2, A2), A3 ∼ d3(·|H3)

4. Y ∼ PY (·|H3, A3)

That is, the DTR generates the state variables and actions for each period, which determine the

final outcome of interest Y . The resulting distribution of H is given by

PX1
(x1)d1(a1|h1)PX2

(x2|h1, a1)d2(a2|h2)PX3
(x3|h2, a2)d3(a3|H3)PY (y |h3, a3).

We denote the distribution by Pd and the expectation with respect to Pd by Ed.

Suppose that we observe data {H (i )}ni=1 of n individuals, where trajectories H (1), ..., H (n ) are

independently and identically generated by the above process with some DTR d0. In our em-

pirical setting, d0 is the random assignment policy used by the experiment and is known to
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us.18 We denote the distribution of the observed trajectory H (i ) by P and the expectation with

respect to P by E .

Our learning objective is to use the data {H (i )}ni=1 to choose a DTR that maximizes the ex-

pected value of Y over a (possibly constrained) class of DTRsD:

d∗ ∈ arg max
d∈D

Ed[Y ].

In order to identify the value Ed[Y ] for every DTR d ∈D, we assume the following overlap con-

dition.

Assumption 1. For all d ∈D, t , and (at , ht ) ∈At ×Ht , if dt (at |ht )> 0, then d 0
t (at |ht )> 0.

This assumption ensures that in the data generated by DTR d0, we observe every trajectory

(x1, a1, x2, a2, x3, a3, y ) that can be realized under candidate DTRs d ∈D.

5.2 Estimation Approaches without Constraints

We consider two approaches to estimating the optimal dynamic treatment strategy: Q -learning

and Backward Outcome Weighted Learning (BOWL). We first discuss the two approaches with-

out any constraints and then extend to the case with constraints in the next subsection.

5.2.1 Q -Learning

The first approach to estimating the optimal DTR is to use Q -learning (e.g., Murphy, 2003; Mur-

phy, Lynch, Oslin, McKay, and TenHave, 2007). This approach first models the Q -function,

which is the conditional mean function of the outcome given the history and current action, by

a parametric, semiparametric, or nonparametric function, and then derives the optimal DTR

by maximizing the estimated Q -function over actions. In our application, we try several ma-

chine learning models such as LASSO, Random Forest, and GBM to estimate Q -functions.19

18Note that our experiment randomly divided the customers into four groups who would receive different action
profiles (A1, A2, A3) prior to the first treatment. Implementing this randomization design is equivalent to imple-
menting a sequential randomization design (or a DTR) that randomly determines each customer’s treatment prior
to each period based on the past treatment profile.

19In principle, one can apply deep reinforcement learning (DRL) methods to estimate the Q -function. There are
a few challenges in our application. First, typically DRL is applied to the case with a longer time horizon. Since
our application has only three periods, the benefits of using DRL may be limited. Second, typical applications of
DRL consider a Markov situation, while our application considers a non-Markov situation. Hence, widely-used DRL
algorithms may not work.
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In the dynamic setup we consider, we can define the Q -function sequentially as follows:

Q3(h3, a3) = E [Y |H3 = h3, A3 = a3],

Q2(h2, a2; d3) = Ed3
[Y |H2 = h2, A2 = a2]

= E





∑

a3∈A3

d3(a3|H3)Q3(H3, a3)|H2 = h2, A2 = a2



 ,

Q1(h1, a1; d2, d3) = Ed2,d3
[Y |H1 = h1, A1 = a1]

= E





∑

a2∈A2

d2(a2|H2)Q2(H2, a2; d3)|H1 = h1, A1 = a1



 .

LettingD be the set of all DTRs, a (deterministic) optimal DTR d∗ that maximizes Ed[Y ] can be

solved backward:

d ∗3 (h3) ∈ arg max
a3∈A3

Q3(h3, a3),

d ∗2 (h2) ∈ arg max
a2∈A2

Q2(h2, a2; d ∗3 ),

d ∗1 (h1) ∈ arg max
a1∈A1

Q1(h1, a1; d ∗2 , d ∗3 ),

and the optimal Q -function (Q ∗1 ,Q ∗2 ,Q ∗3 ) is given by

Q ∗3 (h3, a3) =Q3(h3, a3), Q ∗2 (h2, a2) =Q2(h2, a2; d ∗3 ), Q ∗1 (h1, a1) =Q1(h1, a1; d ∗2 , d ∗3 ).

We can solve this problem by the followingQ -learning algorithm that estimatesQ -functions

backward and obtains the period-t decision rule maximizing the period-t Q -function.

Algorithm 1 (Q -Learning).

1. Conduct a (possibly nonparametric or semiparametric) regression of Y on H3 and A3.

Let Q̂3 be the estimated function, and let d̂3(h3) ∈ arg maxa3∈A3
Q̂3(h3, a3).

2. Conduct a regression of Q̂3(H3, d̂3(H3)) on H2 and A2. Let Q̂2 be the estimated function,

and let d̂2(h2) ∈ arg maxa2∈A2
Q̂2(h2, a2).
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3. Conduct a regression of Q̂2(H2, d̂2(H2)) on H1 and A1. Let Q̂1 be the estimated function,

and let d̂1(h1) ∈ arg maxa1∈A1
Q̂1(h1, a1).

Steps 2 and 3 are motivated by the following observation:

Q2(H2, A2; d̂3) = E [Q3(H3, d̂3(H3))|H2, A2], Q1(H1, A1; d̂2, d̂3) = E [Q2(H2, d̂2(H2); d̂3)|H1, A1].

Since Q3(·, ·) and Q2(·, ·; d̂3) are unobserved in data, Steps 2 and 3 use the estimated values from

the previous step Q̂3(·, ·) and Q̂2(·, ·), respectively, as the outcome variable in the regressions.20

Since the standard Q -learning chooses the action with the largest estimated value at each step,

it may result in the overestimation of the Q -value for the chosen action, i.e., Q̂t (Ht , d̂t (Ht )) (e.g.,

Lan, Pan, Fyshe, and White, 2020), which affects the optimization in the next step. To reduce

the bias, we do sample splitting for Q -learning. That is, at each step we split the sample into

two subsamples, use one subsample to choose the action, and use the other to estimate the

Q -value for the chosen action.21

5.2.2 Backward Outcome Weighted Learning (BOWL)

Another approach to estimating the optimal DTR we consider is the Outcome Weighted Learn-

ing (OWL) algorithm proposed by Zhao, Zeng, Rush, and Kosorok (2012) for a static setting. A

key observation of Zhao, Zeng, Rush, and Kosorok (2012) is to formulate optimal policy learning

as a weighted classification problem. This transformation allows one to use existing classifica-

tion algorithms to learn the optimal DTR. Zhao, Zeng, Laber, and Kosorok (2015) extend the

idea of OWL to dynamic settings, called the Backward Outcome Weighted Learning (BOWL)

algorithm. In BOWL, a classification problem is sequentially solved from the last period going

backward toward the first period. Since BOWL directly maximizes over a class of DTRs a non-

parametric estimator of the expected long-term outcome, it is different than regression-based

methods such as Q -learning, which indirectly attempts such maximization and relies on the

correct model specification.

20An alternative approach is to use the importance-weighted outcomes Y 1[A3=d̂3(H3)]
d 0

3 (A3 |H3)
and Y 1[(A2 ,A3)=(d̂2(H2),d̂3(H3)]

d 0
2 (A2 |H2)d 0

3 (A3 |H3)
in-

stead of the estimated Q -values Q̂3(H3, d̂3(H3)) and Q̂2(H2, d̂2(H2)) in Steps 2 and 3, respectively.
21This method is similar to the idea of the “honest” approach proposed by Athey and Imbens (2016).
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To see how it works, observe first that if d is deterministic, we can write

Ed3
[Y |H3 = h3] = E

�

Y 1[A3 = d3(H3)]
d 0

3 (A3|H3)
|H3 = h3

�

.

Again, d0 = (d 0
1 , d 0

2 , d 0
3 ) in our empirical setting is the random allocation rule of the treatments,

which is known. Note that the expectation on the right-hand side is taken with respect to the

distribution under d0.22 This way of adjusting distributions is called the inverse probability

weighting or importance sampling technique.

If there are no constraints in the class of DTRs, the optimal deterministic rule in period

3 then satisfies d ∗3 (h3) ∈ arg maxa3∈A3
E
h

Y 1[A3=a3]
d 0

3 (A3|H3)
|H3 = h3

i

for every h3 ∈ H3. Therefore, the

optimal rule d ∗3 is a solution to the following maximization problem:

d ∗3 ∈ arg max
d3

E

�

Y 1[A3 = d3(H3)]
d 0

3 (A3|H3)

�

.

We can similarly obtain the optimal rules d ∗2 and d ∗1 for periods 2 and 1. Since the action is bi-

nary and hence 1[A3 = d3(H3)] = 1−1[A3 6= d3(H3)], the above maximization problem is equiv-

alent to the following minimization problem:

d ∗3 ∈ arg min
d3

E

�

Y 1[A3 6= d3(H3)]
d 0

3 (A3|H3)

�

.

The objective function in this problem can be viewed as a weighted misclassification error. We

can define similar minimization problems for t = 2 and 1.23 Hence, we can obtain the opti-

mal DTR by sequentially applying any classification algorithms, which have been extensively

22For t = 1 and 2, we can write as follows:

Ed2 ,d3
[Y |H2 = h2] = E

�

Y 1[(A2, A3) = (d2(H2), d3(H3))]
d 0

2 (A2|H2)d 0
3 (A3|H3)

|H2 = h2

�

Ed[Y |H1 = h1] = E

�

Y 1[(A1, A2, A3) = (d1(H1), d2(H2), d3(H3))]
d 0

1 (A1|H1)d 0
2 (A2|H2)d 0

3 (A3|H3)
|H1 = h1

�

.

23The minimization problems for period 2 and period 1 are as follows:

d ∗2 ∈ arg min
d2

E

�

Y 1[A3 = d ∗3 (H3)]

d 0
2 (A2|H2)d 0

3 (A3|H3)
1[A2 6= d2(H2)]

�

,

d ∗1 ∈ arg min
d1

E

�

Y 1[(A2, A3) = (d ∗2 (H2), d ∗3 (H3))]

d 0
1 (A1|H1)d 0

2 (A2|H2)d 0
3 (A3|H3)

1[A1 6= d1(H1)]

�

.
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studied in machine learning. Thus, we can easily apply existing machine learning algorithms

to estimate the optimal DTR.24

BOWL estimates the solution by minimizing the sample analog of the objective function

(plus the penalty) backward for t = 3, 2, 1, which is basically solving a classification problem se-

quentially. Zhao, Zeng, Laber, and Kosorok (2015) show that the obtained DTRs are consistent,

and provide finite sample bounds for the errors using the estimated rules. Their simulation

results suggest that BOWL outperforms Q -learning.

5.3 Estimation Approaches with Constraints

In this subsection, we extend the estimation of the optimal DTR to the case where constraints

are imposed. For expositional simplicity, we start with a single-period problem and then extend

to a multi-period case.

5.3.1 Single-period Optimization

To get the basic idea of how we deal with constraints, we first consider the single-period con-

strained maximization problem:

max
d

Ed [Y ] s.t. Ed [C ]≤ B ,

where C is the cost variable, which is generated together with the outcome Y , and B is the

per-person budget. In our empirical context, C is the coupon amount that the customer uses,

and the company has a budget ceiling of B on how much can be spent for each customer. We

can also consider capacity constraints. For example, if the company has a limited number of

coupons, we can denote the constraint as Ed [A] ≤ B , where A is a dummy variable indicat-

ing whether the customer receives a coupon, and B ∈ [0, 1] is the capacity on the fraction of

customers who can receive a coupon.

Under certain conditions, it is straightforward to show that an optimal rule is a threshold

strategy. That is, lettingβ (h ) and γ(h )denote the conditional average treatment effects (CATEs)

24Since the function is non-convex and discontinuous, Zhao, Zeng, Laber, and Kosorok (2015) propose to replace
the 0–1 loss 1[At 6= dt (Ht )] with a hinge loss φ(At ft (Ht )) =max(1− At ft (Ht ), 0), where ft :Ht → R is the decision
function so that dt (ht ) = sign( ft (ht )). Zhao, Zeng, Laber, and Kosorok (2015) show that the change in the loss func-
tion does not change the solution to the minimization problems.
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on the outcome and cost, respectively, i.e., β (h ) = E [Y |H = h , A = 1]− E [Y |H = h , A = 0] and

γ(h ) = E [C |H = h , A = 1]−E [C |H = h , A = 0] for h ∈H , the following rule is optimal:

d ∗(h ) = 1[β (h )≥λ∗γ(h )], (5.1)

where λ∗ satisfies Ed ∗ [C ] = B (see Online Appendix A.1). If γ(h )> 0 for all h , the rule is written

as d ∗(h ) = 1[β (h )/γ(h )≥λ∗]. In other words, the optimal rule assigns the treatment to individ-

uals from those with the highest ratios between the CATEs on the outcome and cost until the

capacity is reached.

Now, we consider how to solve the constrained optimization problem. The key idea to solve

the constrained optimization problem is to transform the problem into an unconstrained prob-

lem by introducing a shadow price as follows.

dλ ∈ arg max
d

Ed [Y −λC ]

for given λ≥ 0. It is straightforward to see that an optimal policy targets a customer if and only

if E [Y −λC |H = h , A = 1]−E [Y −λC |H = h , A = 0]≥ 0. The solution is

dλ(h ) = 1[E [Y −λC |H = h , A = 1]−E [Y −λC |H = h , A = 0]≥ 0]

= 1[β (h )≥λγ(h )]. (5.2)

Comparing equation (5.1) with equation (5.2), observe that d ∗ = dλ∗ . In other words, the solu-

tion to the unconstrained problem with λ = λ∗ indeed can yield the optimal constrained rule.

Note that Edλ [C ] = E [E [C |H , A = 0]+1[β (H )≥λγ(H )]γ(H )] is decreasing in λ. Using this prop-

erty, it is easy to obtain the optimal constrained rule by the following modified OWL algorithm.

Algorithm 2 (Constrained OWL).

1. For given λ≥ 0, apply a single-period OWL with the outcome set to Y −λC to obtain dλ.

2. Find λ∗ such that Edλ∗ [C ] = B .

For the second step, we need to evaluate the expected cost under the policy dλ. We can use

existing off-policy policy evaluation (OPE) methods to estimate Edλ [C ]. We will explain our
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evaluation method in detail in Section 5.6.

It is straightforward to find λ∗ in the second step thanks to the monotonicity in λ. Thus,

we can effectively convert the original constrained optimization problem to a loop through

unconstrained optimization problems.

Although the algorithm above uses OWL for deriving the optimal policy, we can also use

Q -learning to estimate it. To do so, we can simply use the Q -learning approach in the first step

to obtain dλ.

5.3.2 Multi-period Optimization

We extend the above idea to the problem with multiple periods. For convenience, we describe

the method in a two-period setup, but the model can be easily extended to more than two peri-

ods, accommodating our empirical application with three periods. We consider the following

constrained maximization problem:

max
(d1,d2)

Ed1,d2
[Y ] s.t. Ed1,d2

[C ]≤ B , (5.3)

where B is the per-person budget. Note that the budget constraint is not period-specific, but

an inter-temporal one. Similarly to the static problem, we can show the following proposition.

Proposition 1. Under suitable conditions, there exists (λ∗1,λ∗2) such that the following threshold

strategy is a solution to the problem (5.3):

d ∗2 (h2) = 1[β2(h2)≥λ∗2γ2(h2)], (5.4)

d ∗1 (h1) = 1[β1(h1; d ∗2 )≥λ
∗
1γ1(h1; d ∗2 )], (5.5)

where β2(h2) =Q2(h2, 1)−Q2(h2, 0), β1(h1; d2) =Q1(h1, 1; d2)−Q1(h1, 0; d2), Q2(h2, a2) = E [Y |H2 =

h2, A2 = a2], and Q1(h1, a1; d2) = Ed2
[Y |H1 = h1, A1 = a1]. γ2(h2) and γ1(h1; d2) are analogously

defined for the cost C .

Proof. See Online Appendix A.2. �

Again, as in the static optimization problem, we can solve the constrained problem by

transforming the problem into an inter-temporal unconstrained problem by introducing shadow
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values λ= (λ1,λ2). To do so, we start by considering the following period-2 problem:

d2,λ2
∈ arg max

d2

Ed 0
1 ,d2
[Y −λ2C ],

where d 0
1 is the data-generating rule. The solution to this problem is the same as the static one.

d2,λ2
(h2) = 1[E [Y −λ2C |H2 = h2, A2 = 1]≥ E [Y −λ2C |H2 = h2, A2 = 0]]

= 1[β2(h2)≥λ2γ2(h2)]. (5.6)

Now, given d2,λ2
, consider the following period-1 problem:

d1,λ1,λ2
∈ arg max

d1

Ed1,d2,λ2
[Y −λ1C ].

Since Ed1,d2,λ2
[Y − λ1C ] = E [Ed2,λ2

[Y − λ1C |H1, A1 = d1(H1)]], the solution to this problem is

given by

d1,λ1,λ2
(h1) = 1[Ed2,λ2

[Y −λ1C |H1 = h1, A1 = 1]]≥ Ed2,λ2
[Y −λ1C |H1 = h1, A1 = 0]]

= 1[β1(h1; d2,λ2
)≥λ1γ1(h1; d2,λ2

)] (5.7)

Comparing equations (5.4)–(5.5) with equations (5.6)–(5.7), observe that (d ∗1 , d ∗2 ) = (d1,λ∗1,λ∗2
, d2,λ∗2

).

Thus, the optimal threshold strategy can be obtained by correctly specifying the shadow costs

λ1 and λ2. This motivates us to use the following modified BOWL algorithm.

Algorithm 3 (Constrained BOWL).

1. For given (λ1,λ2) ∈R2
+, apply BOWL with the outcomes for periods 1 and 2 set to Y −λ1C

and Y −λ2C to obtain dλ1,λ2
= (d1,λ1,λ2

, d2,λ2
).

2. Find (λ1,λ2) that maximizes Edλ1,λ2
[Y ] subject to the constraint that Edλ1,λ2

[C ]≤ B .

As in the static case, for the second step, we can use existing OPE methods to estimate

Edλ1,λ2
[Y ] and Edλ1,λ2

[C ] and we will explain the evaluation methods in Section 5.6.

There are a few remarks in order. First, the algorithm can also be applied to Q -learning.

In the first step, for a given pair of λ1 and λ2, we estimate the Q -functions for the outcome
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and cost and plug the estimates into (5.6)–(5.7) to obtain dλ1,λ2
= (d1,λ1,λ2

, d2,λ2
). Then in the

second step, we can search for the optimal shadow values. Second, unlike the static model, the

monotonicity of Edλ1,λ2
[C ]with respect to λ1 and λ2 may not hold. Hence, we have to use a grid

search to find the optimal λ1 and λ2.

5.4 Extension: Multiple Actions

In the previous section, we consider the model where the platform’s action set is a binary one,

i.e., sending a message with or without a coupon. In this section, we extend the model to the

case where the action space includes more than two options.

Note that it is straightforward to extend Q -learning to the case with multiple actions. We

can estimate the Q -function and choose the action with the largest Q -value. Hence, we focus

on how to extend BOWL. This extension is important for both methodological and substantive

purposes. Methodologically, since BOWL is based on the idea of the sequential binary classifi-

cation problem, it is not straightforward to extend the model to multiple action cases. Substan-

tively, our extension considers three options: (i) sending an appreciation email with a coupon,

(ii) sending an appreciation email only, and (iii) no emails. By comparing the effect of the first

option with the effect of the second option, one can decompose the effect of incentives and the

mere effect of messages.

We propose a method to extend the baseline BOWL approach. Intuitively, our algorithm

identifies the optimal policy by running a series of round-robin tournaments among actions to

determine the optimal DTR.

Algorithm 4 (Constrained BOWL with multiple actions).

1. For given (λ1,λ2) ∈R2
+, apply the following procedure backward for t = 2, 1:

(a) For each pair (at , a ′t ) ∈ At ×At with at 6= a ′t , apply the binary single-period OWL

to the subsample with At ∈ {at , a ′t } to solve

min
d2:H2→{a2,a ′2}

E

�

(Y −λ2C )1[A2 6= d2(H2)]
d 0

2 (A2|H2)
|A2 ∈ {a2, a ′2}

�
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when t = 2 and

min
d1:H1→{a1,a ′1}

E

�

(Y −λ1C )1[A2 = d2,λ2
(H2)]

d 0
1 (A1|H1)d 0

2 (A2|H2)
1[A1 6= d1(H1)]|A1 ∈ {a1, a ′1}

�

when t = 1, where d2,λ2
is the majority rule obtained in Step (b). This determines

whether at is better than a ′t given each history ht .

(b) Construct a rule that uses the majority rule to choose the optimal action amongAt

for each history ht . That is, we choose the action with the highest winning proba-

bility.25

Let dλ1,λ2
= (d1,λ1,λ2

, d2,λ2
) denote the resulting DTR.

2. Find (λ1,λ2) that maximizes Edλ1,λ2
[Y ] subject to the constraint that Edλ1,λ2

[C ]≤ B .

As in the baseline model with two actions, for the second step, we can use existing OPE

methods to estimate Edλ1,λ2
[Y ] and Edλ1,λ2

[C ].

5.5 Discussion

Before we show the results in the next section, we discuss some modeling considerations.

Comparison of Two Approaches Q -learning is an indirect approach in the sense that one

needs to estimate the Q -function first and then derive the optimal strategy. By contrast, BOWL

is a direct approach because one can derive the optimal strategy by solving the classification

error minimization problem. Hence, there is no interim step.

The performance of theQ -learning approach depends on how wellQ -functions are approx-

imated. The approximation of the Q -function depends on how well the data cover the action-

state space. In other words, if some states never arise in the data, then its value is extrapolated

based on the functional form. Therefore, one may need sufficiently large experimental data.

The performance of the BOWL approach relies on classification accuracy. Although non-

linear classification algorithms such as deep neural networks have high classification accuracy,

25One may ask why we do not simply apply multi-class classification for the multiple action case. First, the trans-
formation from the maximization problem to the minimization problem does not generally work for the multi-class
case. Second, in many computer software packages available in R or Python, the multi-class classification is actually
implemented by reducing the problem to multiple binary classification problems as we do.
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they may take a long time when the state space is large. Hence, one may need to rely on a linear

classification algorithm.

Dynamic Model One may wonder whether a dynamic model using dynamic programming is

necessary given that our application is basically a three-period model. In other words, it may

be possible to estimate the optimal strategy in period 1.

First, our proposed model can be easily extended to more than three periods. For prob-

lems with longer periods, it easily becomes untractable to derive the optimal policy without

dynamic programming due to too many possible combinations of actions over time. Second,

in our model, two components, not just one, create dynamics. The policy in the current period

affects both the users’ behaviors and the remaining budget, which in turn changes the optimal

policy in the next period. It makes learning the static optimal policy with a budget constraint

challenging. That is because a static problem needs to be provided a certain fixed budget ex-

ante, but it is not straightforward to determine how to allocate a budget across time. Hence, it

is appropriate to consider a dynamic model.

More precisely, a naive, static approach is to construct a policy dt only using the data on

(Ht , At , Y ) separately for each period. This implicitly assumes that if the estimated policy d̂t

is actually implemented, the actions in the future periods would be determined by the exper-

imental policy, not by the estimated policy (d̂t+1, ..., d̂T ). That is, it ignores the policy in future

periods. Furthermore, it is hard to satisfy the inter-temporal budget constraint with this ap-

proach, since the policy in each period is separately optimized.

Another static approach is to construct a policy that determines the action profile

(A1, ..., AT ) based on the initial state X1, using the data on (X1, A1, ..., AT , Y ). This approach

wastes information on the updated states (H2, ..., HT ), potentially leading to worse performance

than a dynamic approach.

Deep Reinforcement Learning This paper proposes two methods of estimating DTR with

inter-temporal budget constraints using Q -learning and BOWL, but we do not consider deep

reinforcement learning to estimate DTR. One reason that we do not do so is that there is, as

long as we are aware, no explicit reinforcement learning algorithm that can accommodate

inter-temporal constraints easily. Also, another reason is that there seem to be no established

28



(off-policy, offline) deep reinforcement learning algorithms that can be used for learning the

optimal dynamic treatment regime under a non-Markov decision process. Since our setup of

retention management for first-time buyers necessitates a non-Markov strategy, it is important

to consider a non-stationary dynamic programming problem.

5.6 Evaluation Methods

To see if the proposed methods work, we use the method of “off-policy policy evaluation” (OPE).

OPE evaluates the performance of hypothetical policies leveraging only offline log data, i.e., the

experiment data in our case. To do so, we use the inverse probability weighting (IPW) approach

(see, e.g., Precup, Sutton, and Singh, 2000).26 Let d= (d1, d2, d3) be a deterministic DTR that we

are interested in evaluating (e.g., the estimated policy in the previous section). When there are

three periods, IPW estimates the value of the DTR as follows:

V̂IPW =
1

n

n
∑

i=1

1[A(i )1 = d1(H
(i )

1 )]1[A
(i )
2 = d2(H

(i )
2 )]1[A

(i )
3 = d3(H

(i )
3 )]

d 0
1 (A

(i )
1 |H

(i )
1 )d

0
2 (A

(i )
2 |H

(i )
2 )d

0
3 (A

(i )
3 |H

(i )
3 )

R (i ), (5.8)

where R (i ) is either the outcome Y (i ) or cost C (i ). Hence, we can evaluate both Ed[Y ] and Ed[C ],

which we need for Step 2 of Algorithms 2–4. The IPW-based evaluation has been used in exist-

ing papers such as Hitsch and Misra (2018) and Yoganarasimhan, Barzegary, and Pani (2022).

When the treatment assignment probabilities are known, the IPW-based OPE is unbiased and

consistent, but its variance tends to be large due to extreme weights.

6 Results

6.1 Results of the Baseline Model

We use the first experimental data to derive the optimal DTR under the budget constraint for

the baseline model. Remember that the baseline model has two actions, sending a coupon

with the appreciation email and sending only the email.

26We also tried the doubly robust (DR) approach as in Jiang and Li (2016), which may lead to lower variance. The
results are qualitatively similar.
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6.1.1 Comparison of Regression and Classification Algorithms

For Q -learning, estimation of Q -functions can be done with various machine learning algo-

rithms such as LASSO, Random Forest, LightGBM (Light Gradient Boosting Machine), or deep

learning.27 For BOWL, any classification algorithm can be used to solve the weighted classifi-

cation error minimization problem. For example, one can use SVM (Support Vector Machine),

Logistic Regression, Random Forest, and SGDC (Stochastic Gradient Descent Classifier).28

To see which algorithm works better, we compare the performance of different algorithms

without imposing any budget constraints. Based on the results, we choose to use SGDC for

BOWL, and LASSO for Q -learning as those algorithms provide sufficiently high retention rates

with smaller costs per user.29 Those algorithms are attractive also in terms of computational

time.

6.1.2 Offline Policy Evaluation Results

Table 4 summarizes the results of the OPE for BOWL, Q -learning, and the baseline policy. We

consider three different levels of costs including 20, 30 JPY or∞ (no constraint). The company

selected those budgets. We learn policies subject to the budget constraint as well as a practical

constraint that does not allow one to send coupons to users who have already made the second

purchase or received coupons at earlier times.30 Our baseline policy is the “Two-days-after”

policy, which sends coupons to all users 2 days after the first purchase unless the user has not

made the second purchase. Note that the average treatment effects we estimate in Section

4.2 indicate that it is optimal to send incentives 2 days after the first purchase if we do not

personalize.31

For outcomes, we display the uplift in retention probabilities of the second and third pur-

27LightGBM is a tree-based algorithm using distributed gradient boosting framework. LightGBM runs faster than
XGBoost, a well-known gradient boosting machine, while maintaining a high level of prediction accuracy.

28SGDC is a linear classifier including SVM, optimized by the stochastic gradient descent. We try using the L1
norm (as LASSO), the L2 norm (as Ridge regression), and combinations of them (the elastic net) for regularization.

29We try LASSO, Random Forest, and LightGBM for Q -learning and SGDC and Random Forest for BOWL. The
results are available upon request.

30To incorporate the latter constraint into policy learning, we exclude those users from the data when estimating
the optimal decision rule for each period.

31We also tried “static” targeting policies without budgets as discussed in Section 5.5. Since the results are similar
to the baseline policy, we omit them here.
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Table 4: Offline Uplift Performance (Baseline Model)

2nd 3rd Cost ROAS

BOWL: SGDC, cost=20 1.16% 0.30% 29.97 401%
BOWL: SGDC, cost=30 1.46% 0.32% 35.81 388%
BOWL: SGDC, cost=∞ 1.73% 0.32% 47.96 314%
Q -Learning: LASSO, cost=20 0.59% 0.32% 17.97 431%
Q -Learning: LASSO, cost=30 0.76% 0.05% 28.24 213%
Q -Learning: LASSO, cost=∞ 1.86% 0.40% 48.95 342%
Two Days After 1.86% 0.40% 48.95 342%

Note: The table reports the uplift in the second and third purchases within three months
after the first purchase, compared to the case with no incentives. Costs are measured in
JPY and ROAS is the return on advertising spending.

chases relative to the no-incentive policy within three months after the first purchase.32 Al-

though we maximize the second-time purchase as the objective function, we also examine the

effect on the third-time purchase. That is because if customers simply shift their purchase tim-

ing due to the incentive, the third-time purchase probability may go down. Such inter-temporal

substitution may harm overall lifetime values. The table also reports the total cost of each pol-

icy and the return on advertising spending (ROAS), which is the company’s key KPI as it is easy

to compare the performance across different settings.33

The baseline policy of sending coupons 2 days after the purchase achieves an uplift of 1.86%

for the second purchase, and the baseline policy costs 48.95 JPY. Without any budget constraint

(i.e., setting cost =∞), we find that the uplift in the second purchase is 1.73% for BOWL and

1.86% for Q -learning. In terms of costs, BOWL spends 47.96 JPY per user, which is 1 JPY less

than Q -learning and Two-days-after. Taking both retention and cost into account, the ROAS

of Q -learning and Two-days-after is 342%, while the ROAS of BOWL is 314%. Hence, in our

application, without budget constraints, dynamic targeting policies based on BOWL and Q -

learning do not outperform the baseline policy.

Next, when we impose budget constraints (20 or 30 JPY), both BOWL and Q -learning have

lower retention rates than the baseline policy, but costs are much smaller. For BOWL, the up-

32Due to the NDA between the company and us, we are not allowed to disclose the baseline retention probabilities
but are allowed to report only uplift probabilities.

33ROAS is computed as follows. For each of the second-time to fifth-time purchases, we compute the uplift in
the purchase probability and the average spending conditional on the purchase. We then take the sum of the uplift
times the conditional average spending over the second-time to fifth-time purchases. Finally, we divide it by the
cost.
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Table 5: Offline Treatment Allocation (Baseline Model)

2 day 10 day 30 day

BOWL: SGDC, cost=20 30.61% 0.00% 46.23%
BOWL: SGDC, cost=30 47.74% 0.01% 32.36%
BOWL: SGDC, cost=∞ 87.80% 0.01% 0.74%
Q -Learning: LASSO, cost=20 29.46% 17.05% 14.07%
Q -Learning: LASSO, cost=30 36.44% 6.81% 20.63%
Q -Learning: LASSO, cost=∞ 88.99% 0.00% 0.00%
Two Days After 88.99% 0.00% 0.00%

Note: The table reports the fraction of customers who receive the incentive 2 days,
10 days, or 30 days after their first purchase.

lift in the retention rate is 1.46% when the budget constraint is 30 JPY. The estimated cost of

the optimal DTR is 35.8 JPY.34 By contrast, for Q -learning, the uplift is just 0.76% and the cost

is 28.2 JPY when the budget is set at 30 JPY. For the third-time purchase, BOWL achieves an

uplift of 0.32%. Hence, the uplift is slightly lower for BOWL than the baseline (0.4%). Overall,

BOWL policies generate greater ROAS than Q -learning (401% or 388% vs. 342%) and the base-

line (342%). Thus, when there is a budget constraint, the constrained optimal DTR policies are

more cost-effective than other policies.

In Table 5, we show how each policy allocates incentives across days. First of all, the base-

line Two-days-after policy sends coupons to 89% of the first-time buyers on day 2 because 11%

of users have already purchased before they receive coupons. We find that the optimal DTRs

under BOWL and Q -learning send most of the coupons on day 2 when there is no budget ceil-

ing. When there is a budget constraint, it is no longer optimal to send all coupons on day 2.

Rather, the optimal policies, especially BOWL-based policies, send more coupons on day 30.

In sum, we find that the optimal DTR from BOWL under the budget constraint gives cost-

effective personalized retention strategies compared to other approaches.

6.2 Results of Extension

Next, we report the results of the offline policy evaluation for the dynamic model with the op-

tion of not sending the message. This extension allows us to separately estimate the effect of

34The reason why the estimated costs are sometimes bigger than the budget is that we use a holdout sample for
OPE.
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Table 6: Offline Uplift Performance (Extension)

2nd 3rd Total Cost ROAS

Constrained BOWL 8.04% 4.83% 116.21 877%
Two Days After 7.40% 4.61% 129.27 741%

Note: The table reports the uplift in the second and third purchases within three
months after the first purchase. Total costs are measured in JPY and ROAS is the
return on advertising spending.

sending appreciation emails and the effect of providing incentives on top of the email.

Since the extension of Q -learning to a multi-action setup is straightforward, and also BOWL

mostly performs better than Q -learning in the baseline model, we compare the constrained

BOWL with the baseline Two-days-after policy. The budget for the constrained BOWL is set at

130 JPY.35

Table 6 summarizes the OPE results. The first two columns report the uplift in retention

probabilities of the second and third purchases relative to the no-email policy within the three

months after the first purchase. The third column reports the per-user marketing cost includ-

ing the cost of coupons and the cost of sending messages. The last column reports ROAS.

We find that the constrained BOWL achieves a greater chance of retention. In terms of the

second purchase, the constrained BOWL leads to an uplift of 8.04% in the retention rate, which

is higher than the baseline Two-days-after policy. We also investigate longer-term effects and

find that even for the third purchase, the constrained BOWL achieves higher retention.

For the financial implications, the constrained BOWL leads to better performance. The

total marketing cost of the constrained BOWL is 116.21 JPY, while that of the Two-days-after

policy is 129.27 JPY, 11.2% higher. The cost difference translates into a huge difference in ROAS;

ROAS for the constrained BOWL is 136% greater than ROAS for the Two-days-after policy. Thus,

our approach generates more cost-effective targeting strategies to improve customer retention

not only in the short run but also in the long run.

In Table 7, we describe how the optimal policy sends incentives at different timings. The

constrained BOWL sends the incentives to 62.40% of users 2 days after the first purchase,

17.34% 10 days after, and 6.28% 30 days after. Hence, the optimal strategy assigns incentives to

35The budget for the second experiment is bigger than the first one because, after the first experiment, the plat-
form tried to encourage users to spend more points.
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Table 7: Offline Treatment Allocation (Extension)

2 day 10 day 30 day

Email with incentives
Constrained BOWL 62.40% 17.34% 6.28%
Two Days After 90.54% 0.00% 0.00%

Email without incentives
Constrained BOWL 20.29% 50.60% 49.36%
Two Days After 9.46% 100.00% 100.00%

Note: The table reports the fraction of customers who receive an email
with or without incentives 2 days, 10 days or 30 days after their first pur-
chase.

later days. For emails without incentives, the constrained BOWL sends 50% and 49.4% of users

10 days and 30 days after. Hence, it is not necessary to send emails to all users, which can save

the cost of targeting through messages. Moreover, the optimal policy can save money because

it does not send incentives for those who would have purchased even without incentives.36

6.3 Online Evaluation

Finally, the company tested the optimal policies that we developed for both the baseline model

and the extension model. The company runs an A/B test for each model by randomly allocating

first-time buyers to each candidate policy to see its effects on retention. More precisely, for the

baseline model, the test considers four candidates: BOWL (without constraints), Q -learning

(without constraints), static OWL, and BOWL with constraints as well as the control group with

no offers. For the extended model, the test considers only the constrained BOWL (due to the

company’s policy). The first test was implemented in the winter of 2022, and the second one

was implemented in the fall of 2022. The duration of each test is a few months.

Table 8 reports the uplift in the retention rate and ROAS for each policy for the baseline

model. Overall, the online test results show that all targeting policies perform better than

the offline test results even though the control group (no offer) sees slightly lower retention

rates during the online test period. Among the policies without any budget constraints, BOWL

36Note that the Two-days-after policy does not send a coupon to all users. That is because some customers make
their second purchase before receiving the coupon. The Two-days-after policy does not send coupons to those
customers.
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Table 8: Online Uplift Performance (Baseline Model)

2nd 3rd Cost ROAS

BOWL (no constraint) 5.87% 2.23% 120.9 401%
Q -Learning (no constraint) 5.16% 1.84% 107.2 310%
Constrained BOWL 4.55% 1.76% 94.4 550%
Two Days After 5.97% 2.16% 122.8 409%

Note: The table reports the results of the online evaluation.

Table 9: Online Uplift Performance (Extension)

2nd 3rd Cost ROAS

Constrained BOWL 3.41% 2.00% 94.0 306%

Note: The table reports the results of the online evaluation of the extension
model.

achieves a higher retention rate and better ROAS than Q -learning. Our proposed constrained

BOWL can also achieve a high retention rate, and importantly, much better ROAS than any

other strategies. Therefore, we confirm that our approach works for both offline and online

settings.

Lastly, Table 9 reports the online test results of the extension model. For this online test,

the company was willing to test only the constrained BOWL against the control group who re-

ceived neither emails nor incentives. The online test was conducted from July 2022 to October

2022. The uplift in the second purchase is 3.41% and ROAS is 306%, which are smaller than

the offline evaluation results. We suspect this is because the Japanese economy went back to

normal during this period and hence users tend to spend less.

7 Conclusion

This paper proposes a method to infer the optimal dynamic targeting policy for customer reten-

tion management when there is a budget constraint. Dynamic policies are crucial for customer

retention management as the states of consumers such as an intention for future purchases

inherently evolve over time. Moreover, since most marketing campaigns have certain budget

ceilings, it is practically important to consider a cost-efficient way to target consumers.

To do so, we extend the existing methods of estimating dynamic treatment regimes to ac-
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count for inter-temporal budget constraints. In particular, we examine Q -learning and Back-

ward Outcome Weighted Learning methods, which we incorporate into constrained optimiza-

tion problems. We provide the algorithms to find the optimal DTR under budget constraints

for both Q -learning and BOWL.

Our empirical application is a large online e-commerce platform in Japan. The company

sends “thank you” messages to those who make their first purchase to urge second purchases,

and we personalize it by adding coupons. The company runs a series of large-scale randomized

experiments with more than 100,000 monthly new buyers. The experimental data allow us to

estimate the optimal DTR in the offline setting before the company actually implements the

dynamic personalized policies for the entire population.

The results show that the estimated DTRs are highly effective. With budget constraints,

we can derive cost-effective optimal policies with almost the same level of customer retention

relative to non-constrained policies. Hence, the return on advertising spending, the company’s

main KPI, can be as high as 800%, which is much higher than typical marketing campaigns.
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Online Appendix

A Mathematical Appendix

In this section, we provide a detailed discussion on the solution to the constrained optimization

problem in Section 5.3.1 and the proof of Proposition 1 in Section 5.3.2.

A.1 Single-period Optimization

Consider the single-period constrained maximization problem:

max
d

Ed [Y ] s.t. Ed [C ]≤ B , (A.1)

where C is the cost variable and B is the budget per person.

Let β (h ) = E [Y |H = h , A = 1]− E [Y |H = h , A = 0] and γ(h ) = E [C |H = h , A = 1]− E [C |H =

h , A = 0]. That is, β (h ) and γ(h ) are the conditional average treatment effects of action A on the

outcome Y and cost C , respectively, given H = h . Now, define DTR d (·;λ) by

d (h ;λ) = 1[β (h )≥λγ(h )], h ∈H .

We show the following proposition.

Proposition 2. Suppose that a deterministic solution to the maximization problem (A.1) exists.

Suppose also that there exists λ∗ ≥ 0 such that Ed (·;λ∗)[C ] = B . Then d (·;λ∗) solves (A.1).

Proof. Observe that for any DTR d ,

Ed [Y ] = E [E [Y |H , A = 0]] +E [d (H )β (H )], Ed [C ] = E [E [C |H , A = 0]] +E [d (H )γ(H )].

The problem (A.1) is then equivalent to

max
d

E [d (H )β (H )] s.t. E [d (H )γ(H )]≤ B̄ ,
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where B̄ = B −E [E [C |H , A = 0]]. Let d ∗ be a deterministic solution to (A.1). Also, let

S1 = {h ∈H : d (h ;λ∗) = 0, d ∗(h ) = 1}, S0 = {h ∈H : d (h ;λ∗) = 1, d ∗(h ) = 0}.

Observe that

E [d ∗(H )γ(H )] = E [d (H ;λ∗)γ(H )]+E [1[H ∈ S1]γ(H )]−E [1[H ∈ S0]γ(H )].

Since E [d ∗(H )γ(H )] ≤ B̄ and E [d (H ;λ∗)γ(H )] = B̄ , it follows that E [1[H ∈ S1]γ(H )] ≤ E [1[H ∈

S0]γ(H )]. We then obtain that

E [d ∗(H )β (H )] = E [d (H ;λ∗)β (H )]+E [1[H ∈ S1]β (H )]−E [1[H ∈ S0]β (H )]

≤ E [d (H ;λ∗)β (H )]+λ∗(E [1[H ∈ S1]γ(H )]−E [1[H ∈ S0]γ(H )])

≤ E [d (H ;λ∗)β (H )],

where the second line holds since d (H ;λ∗) = 1[β (H )≥ λ∗γ(H )]. Therefore, d (·;λ∗) is a solution

to (A.1). �

Note that the condition about the existence of ∗ is not a strong assumption. When C and B

are both continuous, there always exists such λ.

A.2 Multi-period Optimization

Next, we consider Proposition 1 in Section 5.3.2. We consider a more general model than the

two-period model in the main text. Consider the T -period constrained maximization problem:

max
d

Ed[Y ] s.t. Ed[C ]≤ B , (A.2)

where d= (d1, ..., dT ), C is the cost variable and B is the budget per person.

We introduce some notation. Given a DTR d, let dt = (d1, ..., dt ) and d̄t = (dt , ..., dT ). Also,

let QT (hT , aT ) = E [Y |HT = hT , AT = aT ], Q C
T (hT , aT ) = E [C |HT = hT , AT = aT ], βT (hT ) =

QT (hT , 1) −QT (hT , 0), and γT (hT ) = Q C
T (hT , 1) −Q C

T (hT , 0). In addition, for t = 1, ..., T − 1,

let Qt (ht , at ; d̄t+1) = Ed̄t+1
[Y |Ht = ht , At = at ], Q C

t (ht , at ; d̄t+1) = Ed̄t+1
[C |Ht = ht , At = at ],
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βt (ht ; d̄t+1) =Qt (ht , 1; d̄t+1)−Qt (ht , 0; d̄t+1), and γt (ht ; d̄t+1) =Q C
t (ht , 1; d̄t+1)−Q C

t (ht , 0; d̄t+1).

Lastly, for each λ ∈RT
+ , let λ̄t = (λt , ...,λT ) and define DTR d(λ) = (dt (·; λ̄t ))Tt=1 recursively as

dT (hT ;λT ) = 1
�

βT (hT )≥λT γT (hT )
�

, hT ∈HT

and for t = T −1, ..., 1,

dt (ht ; λ̄t ) = 1
�

βt (ht ; d̄t+1(λ̄t+1))≥λt γt (ht ; d̄t+1(λ̄t+1))
�

, ht ∈Ht .

Proposition 3. Suppose that a deterministic solution to the maximization problem (A.2) exists,

and let d∗ denote a solution. Suppose also that there exists λ∗ ∈ RT
+ such that Ed(λ∗)[C ] = B and

that Ed∗t ,d̄t+1(λ̄
∗
t+1)
[C ] = B for all t = 1, ..., T −1. Then d(λ∗) solves (A.2).

Proof. Given the optimal DTR d∗, we show by induction that d(λ∗) solves (A.2).

First, consider period T . Since d∗ is optimal, d ∗T solves

max
dT

Ed∗T−1,dT
[Y ] s.t. Ed∗T−1,dT

[C ]≤ B . (A.3)

Since Ed∗T−1,dT (·:λ∗T )[C ] = B , using the argument in the proof of Proposition 2 shows that dT (·;λ∗T )

solves (A.3). Therefore, (d∗T−1, dT (·;λ∗T )) solves (A.2).

Now consider period t ≤ T − 1, and suppose that (d∗t , d̄t+1(λ̄
∗
t+1)) solves the problem (A.2).

We show that (d∗t−1, d̄t (λ̄
∗
t )) solves the problem (A.2), where we interpret (dt−1, d̄t ) as d when

t = 1. Since (d∗t , d̄t+1(λ̄
∗
t+1)) is optimal, d ∗t solves

max
dt

Ed∗t−1,dt ,d̄t+1(λ̄
∗
t+1)
[Y ] s.t. Ed∗t−1,dt ,d̄t+1(λ̄

∗
t+1)
[C ]≤ B . (A.4)

Observe that for any dt ,

Ed∗t−1,dt ,d̄t+1(λ̄
∗
t+1)
[Y ] = Ed∗t−1

[Qt (Ht , 0; d̄t+1(λ̄
∗
t+1))+dt (Ht )βt (Ht ; d̄t+1(λ̄

∗
t+1))],

Ed∗t−1,dt ,d̄t+1(λ̄
∗
t+1)
[C ] = Ed∗t−1

[Q C
t (Ht , 0; d̄t+1(λ̄

∗
t+1))+dt (Ht )γt (Ht ; d̄t+1(λ̄

∗
t+1))].
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The problem (A.4) is then equivalent to

max
dt

Ed∗t−1
[dt (Ht )βt (Ht ; d̄t+1(λ̄

∗
t+1))] s.t. Ed∗t−1

[dt (Ht )γt (Ht ; d̄t+1(λ̄
∗
t+1))]≤ B̄ ,

where B̄ = B −Ed∗t−1
[Q C

t (Ht , 0; d̄t+1(λ̄
∗
t+1))]. Let

S1 = {ht ∈Ht : dt (ht ; λ̄
∗
t ) = 0, d ∗t (ht ) = 1},

S0 = {ht ∈Ht : dt (ht ; λ̄
∗
t ) = 1, d ∗t (ht ) = 0}.

Observe that

Ed∗t−1
[d ∗t (Ht )γt (Ht ; d̄t+1(λ̄

∗
t+1)]

= Ed∗t−1
[dt (Ht ; λ̄

∗
t )γt (Ht ; d̄t+1(λ̄

∗
t+1))]+Ed∗t−1

[1[Ht ∈ S1]γt (Ht ; d̄t+1(λ̄
∗
t+1))]

−Ed∗t−1
[1[Ht ∈ S0]γt (Ht ; d̄t+1(λ̄

∗
t+1))].

Since Ed∗t−1
[d ∗t (Ht )γt (Ht ; d̄t+1(λ̄

∗
t+1)] ≤ B̄ and Ed∗t−1

[dt (Ht ; λ̄
∗
t )γt (Ht ; d̄t+1(λ̄

∗
t+1))] = B̄ , it follows

that Ed∗t−1
[1[Ht ∈ S1]γt (Ht ; d̄t+1(λ̄

∗
t+1))]≤ Ed∗t−1

[1[Ht ∈ S0]γt (Ht ; d̄t+1(λ̄
∗
t+1))]. We then obtain that

Ed∗t−1
[d ∗t (Ht )βt (Ht ; d̄t+1(λ̄

∗
t+1)]

= Ed∗t−1
[dt (Ht ; λ̄

∗
t )βt (Ht ; d̄t+1(λ̄

∗
t+1))]+Ed∗t−1

[1[Ht ∈ S1]βt (Ht ; d̄t+1(λ̄
∗
t+1))]

−Ed∗t−1
[1[Ht ∈ S0]βt (Ht ; d̄t+1(λ̄

∗
t+1))]

≤ Ed∗t−1
[dt (Ht ; λ̄

∗
t )βt (Ht ; d̄t+1(λ̄

∗
t+1))]+λ

∗
t (Ed∗t−1

[1[H ∈ S1]γt (Ht ; d̄t+1(λ̄
∗
t+1))]

−Ed∗t−1
[1[H ∈ S0]γt (Ht ; d̄t+1(λ̄

∗
t+1))])

≤ Ed∗t−1
[dt (Ht ; λ̄

∗
t )βt (Ht ; d̄t+1(λ̄

∗
t+1))],

where the first inequality holds since dt (Ht ; λ̄
∗
t ) = 1

�

βt (Ht ; d̄t+1(λ̄
∗
t+1))≥λ

∗
t γt (Ht ; d̄t+1(λ̄

∗
t+1))

�

.

Therefore, (d∗t−1, d̄t (λ̄
∗
t )) solves the problem (A.2).

By induction, d(λ∗) solves (A.2). �
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B Supplemental Figures on Heterogeneity in Treatment Effects

This section provides supplemental figures on the heterogeneity in the treatment effects. In

Section 4.2, we report in Figure 4 some evidence of heterogeneity in treatment effects of finan-

cial incentives. In this subsection, we provide more detailed results in Figure 5.

In the figure, we provide treatment effects across deciles of two variables, the customer’s

total spending and the number of messages they receive before the delivery of their first pur-

chase. The figure shows a similar pattern of heterogeneity in the treatment effects of three types

of treatment. In the left panels, the treatment effects largely decline as the user’s spending in-

creases. In the right panels, the treatment effects vary as the number of messages changes,

where the effects are highest at the 90-100 percentile range.

C Details of the Second Experiment

C.1 Experimental Design

In addition to the experiment we discuss in the main text, the company conducted another

experiment to learn the optimal DTR of the model in Section 5.4, which includes not sending

incentives. The experimental design is similar to the original experiment and looks like Figure

6. Other features of the experimental design, including the timing and the number of treat-

ments, the amount of financial incentive, and the user-level randomization, are the same as

the first experiment.

Table 10 reports the summary statistics of the subset of the variables we use, computed

from the data of the second experiment. Note that there are two types of incentives: coupon

and appreciation email. To save space, we do not report the summary statistics for all possi-

ble treatment conditions, but we report the summary statistics only for the conditions where

coupons are sent. The control group includes the users who do not receive incentives or emails.

For both demographic and behavioral variables, we do not find any significant differences

across conditions. Also, we do not find any significant difference between Table 10 and Table

2.
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Figure 5: Heterogeneous Treatment Effects of 2, 10, and 30-day treatment

Treatment effects across deciles of the
total spending (2 day)

Treatment effects across deciles of the
number of messages sent (2 day)

Treatment effects across deciles of the
total spending (10 day)

Treatment effects across deciles of the
number of messages sent (10 day)

Treatment effects across deciles of the
total spending (30 day)

Treatment effects across deciles of the
number of messages sent (30 day)

Note: The figures show the average treatment effects of the 2, 10, and 30-day treatments against the total spending for the
first purchase (left panels) and the number of messages sent since the delivery of the first item (right panels). The total
spending and the number of messages are split into deciles.
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Figure 6: Experimental Design: Extension

Note: The figure shows the experimental design of the second experiment where there are three actions, no email, email only, and
email with coupon.

Table 10: Summary Statistics (Second Experiment)

Variable 2 day 10 day 30 day Control
mean sd mean sd mean sd mean sd

Female 0.632 0.482 0.631 0.483 0.628 0.483 0.632 0.482
Age 32.18 18.23 32.21 18.25 32.05 18.21 31.97 17.98
Quantity: first buy 1.013 0.179 1.013 0.172 1.014 0.221 1.015 0.252
Sales: first buy 4057 4187 4090 4298 4063 4082 4070 4090
# of sessions/day (pre 1st buy) 0.777 2.108 0.769 2.067 0.779 2.129 0.759 2.032
# of PVs/day (pre delivery) 12.81 28.34 12.75 29.30 12.96 29.38 12.60 27.27
# of favorites/day (2-10 day) 0.155 0.805 0.128 0.911 0.135 0.824 0.119 0.640
# of messages sent (10-30 day) 5.145 17.389 5.167 17.941 5.192 18.177 5.260 19.651

Note: The first six columns report the mean and standard deviation of each variable for each of the three treatment groups
who receive incentives 2, 10, and 30 days after their first purchase. The last two columns are for the control group with no
emails.

C.2 Average Treatment Effects

Next, we estimate the average treatment effects with the second experiment data. Notice that

there are two treatments, i.e., emails with coupons and emails without coupons. To save space,

we report the results of the regression with the outcome measured for 8 weeks.

Table 11 reports the results. The estimation results show that the appreciation email with-

out coupons can increase retention. The 2-day treatment effect of emails on retention is 2.2%
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Table 11: Average Treatment Effect (Second Experiment)

Retention Sales Order

Panel (A): Financial incentive
2 day 0.066∗∗∗ 364.865∗∗ 0.160∗∗∗

(0.002) (57.363) (0.017)
10 day 0.055∗∗∗ 255.669 0.117∗∗∗

(0.002) (42.484) (0.013)
30 day 0.046∗∗∗ 204.958 0.095∗∗

(0.002) (28.086) (0.011)

Panel (B): Only appreciation email
2 day 0.022∗∗∗ 260.748∗∗ 0.108∗∗∗

(0.004) (106.041) (0.033)
10 day 0.024∗∗∗ 110.355 0.076∗∗∗

(0.004) (72.875) (0.025)
30 day 0.003 45.196 0.011

(0.003) (48.195) (0.014)
Note: The first column reports the treatment effects on

whether a customer makes any purchases within 8 weeks
since their first purchase. The second column reports the
treatment effects on total sales and the third column reports
the treatment effects on the number of items purchased. The
table does not report the constants as the constants reveal
the baseline retention rates, sales, and orders, but the NDA
does not allow us to do so.

and the 10-day treatment effect is 2.4%. Sales also increase by 260 JPY by emails for the 2-day

treatment, but not for 10 days or 30 days.

The results also reveal that the coupons in addition to the appreciation emails further

increase retention, sales, and the number of items purchased. Hence, by comparing the

treatment effects in Panel (A) and the ones in Panel (B), we can back out the pure effect of

coupons. For the effect on retention, the coupons themselves increase the retention by 4.4%

(= 6.6%−2.2%) if users receive them after 2 days, and sales increase by 100 JPY.
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