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Abstract

We consider the problem of setting the optimal prices and promotions for a large number of
products when the firm lacks demand information. At each time, a customer arrives and chooses
a product based on a discrete choice model where each product’s utility depends on product
features, its price and promotion, and the customer’s features. Using a Thompson Sampling
approach, we develop a regret minimizing, alternatively profit maximizing, algorithm for the
retailer. We provide the first adaptive algorithm that simultaneously incorporates pricing and
promotions into a discrete choice model. To make our algorithm computationally feasible over an
infinite space of prices and promotions, we provide a novel method for learning the optimal price
and promotion given a set of demand parameters. We also provide theoretical justification for our
results and improve upon existing regret guarantees. Using simulations based on real-life grocery
store data, we show that our method significantly outperforms existing approaches. In addition,
we extend our methodology to a contextual setting, which allows for consumer heterogeneity and
personalized pricing and promotion. Compared to existing works, our approach is agnostic to
the parametric specification of the utility model and needs no assumptions on the underlying
distribution of customer features.
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1 Introduction

Modern online retailers typically sell a large number of brands/products in the same category. In this setting,
the two key decisions that these retailers make are – (1) pricing and (2) promotions/marketing mix variables,
i.e., they need to decide how to price and promote each product in the category so as to maximize category
profits. For example, in a digital setting, promotions could be decisions around which products to display
on the retailer’s main category page, which products to highlight in the search results for the category, and
how much (or if at all) should a product be featured in promotional mailers/emails sent to customers. In a
brick-and-mortar retail setting, the promotion variable can capture the standard display and feature variables.

The benefit of a digital (and/or modern retail) environments is that retailers have the ability to change
prices and adjust the marketing mix in a way that is customized to each segment or individual customer in
real-time. This gives them the opportunity to extract value in ways that were not previously possible. However,
to leverage these technological advances, they need to be able to jointly optimize for price and promotions
(and potentially personalize them based on customer features) over the entire category of products.

In principle, if the retailer has perfect information on the underlying demand model for each consumer-
product combination in a category, it could solve a joint-optimization problem to find the optimal price
and promotion vectors that maximize profit. However, in practice, firms lack such demand information.1
The two standard ways to learn the demand model are to use observational data or to run A/B tests, and
then use these data to estimate a category-level demand model (that may incorporate consumer attributes).
However, both of these approaches are problematic for different reasons. The former can lead to misleading
estimates unless the data satisfy certain exclusion restrictions, which are hard to verify/ensure in many
observational settings.2 Further, this approach does not work when the retailer has new categories, if we
have new products in existing categories, or if the demand parameters change. The latter approach does not
suffer from endogeneity problems but can be costly because it requires the firm to run A/B tests across a wide
range of price and promotion vectors, many of which would be far from the profit-maximizing prices and
promotions. Such experimentation can become exponentially costly with a large number of brands involved
and the data requirements necessary for inference can be challenging. Further, from a practical perspective,
fully randomizing prices is often practically infeasible since managers are reluctant to randomly assign prices
to a large batch of data since consumers may react adversely to large differences in prices due to fairness
concerns (Priester et al., 2020).

In this paper, we present a solution to the problem of joint optimization of prices and promotions for a
category with a large number of products, with unknown demand functions. We first discuss our approach for
the setting where consumers are homogeneous or the firm lacks consumer/segment-level features. Later we
will expand our approach to allow for consumer- and market-level heterogeneity i.e., consider a setting where
the firm has data on market characteristics, consumers’ demographics, past purchases, or browsing behavior,

1This could be due to a number of reasons such as entrance into a new category, entrance into new markets, the addition of new
products in the category, changes in demand and consumer preferences due to macroeconomic factors (Huang et al., 2022; Hitsch
et al., 2021). Note that in order to optimize category-level profits, the retailer needs a good understanding of not only price and
promotion elasticities for each brand, but also that of cross-price and cross-promotion elasticities, to capture substitution effects
within the category.
2A large literature in economics and marketing has focused on demand estimation to address the endogeneity issues prevalent in
observational data. We refer readers to Berry (1994) and Berry and Haile (2021) for an exhaustive discussion.
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that it can leverage to personalize prices and promotions.
Our solution builds on two canonical but separate streams of literature – (1) empirical demand estimation

in industrial organization (IO) and marketing (Berry and Haile, 2021), and (2) Multi-Arm Bandits, and in
particular Thompson sampling (Russo et al., 2018). Our solution concept and algorithm have two components.
First, we start with the standard multinomial demand model, commonly employed in empirical demand
estimation (McFadden, 1980). That is, we assume that consumers have latent utilities over each product which
depend on price, promotion, and product features (i.e., the random utility model), and choose the product that
maximizes their overall utility. With GEV (generalized extreme value) shocks, this gives rise to analytical
choice probabilities.

Under this paradigm, we derive the firm’s optimal price and promotion vector for a given parameter vector,
which has not previously been considered in the literature. In general, finding the global optima of the profit
function is non-trivial since the profit function is not convex. Past work has considered the problem of finding
the optimal price without promotions, and an approximate solution can be effectively found using a binary
search procedure (Hanson and Martin, 1996). However, to our knowledge, there is no general procedure to
find both the optimal price and promotion. To ensure that the promotion decisions are realistic, we consider
two types of constraints on promotion variables – box and simplex constraints – that map to the common
constraints faced by retailers when making promotion/advertising decisions. Given these constraints, we
develop a novel procedure to simultaneously derive the optimal promotions and prices. Effectively, we show
that the optimal choice of promotions is restrained to a finite set; so for each of these promotions, we can
learn the optimal price, and then choose the combination of promotion and price that has the highest revenue.

The above procedure works if the firm knows the true parameters of the demand model. However,
this is not true in practice. Therefore, the second component of our solution concept focuses on how to
simultaneously learn the demand parameters (i.e., exploring the parameter space) without incurring a large
experimentation cost (i.e., exploiting the information learned so far to price/promote effectively. Balancing
exploration vs. exploitation tradeoffs, often referred to as the multi-armed bandit framework (Lattimore
and Szepesvári, 2020), is a well-considered area in machine learning and adaptive experimentation. We
employ one of the most popular Bayesian-based methods, namely Thompson or Posterior Sampling (Russo
et al., 2017) for our solution. However, naively implementing Thompson sampling would discretize the
price–promotion space, and for each price and promotion would maintain a posterior distribution over the
possible demand values at that point. Thompson sampling explores by sampling a demand for each potential
price from the corresponding posterior and then presents a customer with the price–promotion combination
with the highest observed demand based on previous data. It then observes the item that the customer chooses
to purchase and updates it’s posterior distribution.

This approach of discretization is problematic for multiple reasons. Firstly, the set of potential price–
promotion combinations that need to be considered can be extremely large; exponentially increasing in
category size.3 Secondly and implicitly, the demand function should be smooth in prices and promotions and
hence information acquired about the demand function at any one point should inform points around it. Naively

3For example, if there are twenty different products, and twenty different prices (at .50 increments between $10 and $20), there are
already 200 arms/combinations to consider – which is prohibitive in any multi-armed bandit even without promotions.
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estimating the demand function at every single point separately will ignore this structure completely. In
addition, since we have no information about price-promotion combinations that have not yet been measured,
the algorithm will potentially spend a long time exploring every single combination before it can truly start
optimizing.

To overcome these obstacles, we develop a Thompson sampling approach that builds upon the structure
of the economic discrete choice model discussed earlier. Instead of doing Thompson sampling on top of
individual price–promotion pairs, we maintain a posterior distribution over the model parameters themselves.
As a result, each draw from the posterior corresponds to a realization of a demand curve, and the associated
price–promotion we choose maximizes this sampled demand curve (where the maximization is done based
on the procedure described earlier).

We now present some results on the theoretical properties and empirical performance of our method.
First, as is common in the adaptive experimentation literature (Lattimore and Szepesvári, 2020), we prove
a theoretical regret bound for our algorithm. The regret measures the loss in total profit due to playing
sub-optimal prices due to exploring price-promotion space. We show that our Thompson Sampling approach
has a regret that scales like O(K

√
κT ), where T is the time horizon, K is the number of products, and κ is

the inverse of the worst-case elasticity of demand. Intuitively, the dependence on κ measures how easy it is to
learn about the underlying parameter vectors when we vary prices. If the elasticity is very small, demand is
not very responsive to price or promotion changes which makes learning the underlying parameters more
challenging. This in turn, will increase our regret by slowing down the effectiveness of exploration.

Secondly, we present a comprehensive empirical evaluation of our approach based on parameter estimates
from the NielsenIQ Retail Measurement Services (RMS) data for the ground coffee category. For this exercise,
we use data from the largest store in King County, WA that has data on weekly brand-level purchases, prices,
feature, and display. This category has 10 brands (including an Other brand which encompasses many smaller
brands) and significant differences in prices and promotions across brands. We specify a latent utility demand
model at the user level, aggregate it to the brand level, and then estimate the underlying demand parameters
using the standard Berry-inversion technique (Berry, 1994; Berry et al., 1995). Using these estimates, we
then perform a series of counterfactual simulations, where we assume that the retailer does not know the
demand parameters and instead uses our approach to set prices and promotions.

We show that our method significantly outperforms a series of benchmarks. Firstly we consider a firm
that is using a pure exploitation strategy. Namely, they estimate demand in each time period and then play
prices–promotions according to the optimal value of this estimated demand curve. We show that our algorithm
outperforms this greedy benchmark. We also compare to the M3P algorithm of Javanmard et al. (2020) (only
designed for the setting of prices without promotions), where the firm forces exploration by playing random
prices for a proportion of the total time and see similar results.

In the second part of the paper, we extend the baseline homogeneous model to allow for settings where the
retailer has data on customer and/or market-specific variables that can be informative of consumer preferences
and demand. Prior research has shown that while retailers can benefit significantly by being able to customize
prices based on store- or customer-level demographics, there is not much user/store-level customization in
prices and promotions (Hoch et al., 1995; DellaVigna and Gentzkow, 2019; Hitsch et al., 2021). Many
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theories have been suggested for the lack of customization including managerial inertia, lack of tools and/or
the ability to differentiate and learn parameters at more granular levels, and brand image/fairness concerns.
We propose a contextual framework that can help alleviate the former two concerns since they allow the retailer
to automate the learning and customization of prices and promotions using adaptive sampling methodologies.

In our framework, at each time period, the retailer observes real-time customer and/or market features
that are incorporated into the demand model and learned over time. Note that customer- and market-level
features can be fairly general – they can be fine-grained and encapsulate demographic features or behavioral
browsing/purchase history often available to retailers, or they can be coarse and represent the segment-level
information rather than individual-level features. We incorporate these contextual features in our model by
allowing the demand parameters to vary as a function of the context vector. We then develop a methodology
to quantify the demand parameters as neural networks of the context and extend our Thompson sampling
approach to this setting.

We provide both novel theoretical results on regret bounds as well as extensive experimental benchmarks
for our contextual Thompson Sampling algorithm. First, in the setting where the demand parameters are
known to be linear functions of the context, we are able to theoretically establish a regret of O(dK

√
κT )

where d is the context dimension. We then perform a series of simulations where we consider two types of
contextual settings – (1) Orthogonal groups, where there each user belongs to an orthogonal segment and the
number of contexts is finite, and (2) Weighted average, where users are a weighted combination of orthogonal
contexts. The former can be interpreted as a setting where there is no information sharing between segments
and the latter is a setting where the population is very heterogeneous (and the number of contexts is infinite).
In each of these cases, we allow the retailer to learn the demand parameters using the neural network without
assuming that it is a linear function of the context. In both cases, our algorithm outperforms benchmark
approaches. We extend the simulations to a setting based on the NielsenIQ data for two stores from King
County WA. Similar to the homogeneous case, first we estimate demand parameters as functions of both
store and seasonality features (as context vectors), and then use parameters based on these estimates to run
simulations. Again, we show that our approach does well even when the distribution of the context vector
changes (e.g., due to seasonality). Finally, we consider a setting where demand parameters are non-linear
and unknown functions of the context vector and show that our approach outperforms Greedy and M3P
benchmarks. We also present some comparisons of different types of neural network architectures and their
relative performance in the non-linear setting.

Overall, our contextual Thompson Sampling approach is quite general and works for a wide range of
scenarios commonly faced by marketers and requires no specific assumptions on the form of the demand
parameters as functions of the context (user or market features). It works irrespective of – (1) whether the
underlying demand parameters are linear in contexts or non-linear, (2) whether the context distribution is
known ahead of time or not, and (3) whether the context distribution remains constant or changes over time.

In summary, our paper provides the following main contributions to the literature on adaptive experimen-
tation and demand estimation. We provide the first adaptive algorithm which: (1) sets prices and promotions
for a multi-product category, (2) utilizes a multinomial choice model to drive model-based exploration,
(3) incorporates customer- and market-level heterogeneity with minimal assumptions on user features and
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demand parameters. As part of accomplishing these goals, we provide a novel Thompson Sampling method
to simultaneously optimize for pricing and promotions which minimizes regret (or maximizes profits) given a
demand model and a constrained set of potential promotions. In addition, we give both strong theoretical
guarantees and empirical validation based on both synthetic and real-life inspired data sets. From a managerial
perspective, our solution is easy to deploy, can flexibly handle batched updates 4, and provides computationally
efficient model updates. As such, it can be directly adopted by retailers to set customized prices and promotions
at the consumer/segment/market-level and optimize profits for categories with a large number of brands.

2 Related Literature

Our work relates to two broad streams of literature – (1) the adaptive pricing work in operations research
and computer science literature (also referred to as dynamic pricing in this literature), and (2) the structural
demand estimation literature in economics and marketing. We now discuss how our work contributes to each
of these areas.

2.1 Adaptive Pricing

The work on adaptive pricing is extensive and the papers in this area consider the following common setup.
In the most common case, there is one retailer/seller who sells a single product for a fixed number of rounds.
In each round, the seller first chooses a price for the product and then observes an associated demand. This
demand is either a discrete variable representing a single purchase by a single customer, or a continuous
variable representing aggregate expected demand over a population. Finally, the seller receives a revenue,
which is simply the price times the observed demand. In general, the seller must learn the demand function
through price exploration and the goal is to bound the regret of the pricing policy, namely the total loss in
profit due to playing sub-optimal prices. The hope (in stochastic settings) is to establish pricing policies that
suffer no more than O(

√
T ) regret where T is the time horizon over which the game is played.

Table 1 summarizes existing work on adaptive pricing in the following dimensions:

• Single or Multi Product: Unsurprisingly, the complexity of adaptive pricing in the case of multiple
products can be much higher than in the case of a single product. Firstly, in the setting of multiple
products, depending on the choice of the model class, the practitioner may have to estimate more
parameters. For example, if a linear model is assumed, and there are K products, then K2 cross-
elasticities need to be estimated, and regret will scale with K2. However, if a multinomial model
is assumed, then the cross-elasticities can be implicitly computed and do not need to be explicitly
estimated. Secondly, in non-parametric settings, discretizing prices is practically impossible. If there
are K products, the size of a discretization of the set of prices will grow exponentially in K.

• Type of Demand model: In general, all demand functions can be derived from underlying user-level
choice models. However, the form of the demand function is up to the practitioner. Commonly used
demand model classes assume that demand is linear, log-linear, or logistic/multinomial function of the
underlying prices.

• Parametric or non-Parametric: The model classes mentioned above are all parametric demand models.

4i.e. model update after a batch of customer decisions rather than after each one
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Non-parametric estimation of demand functions has also been considered in the literature. To make this
feasible, other assumptions are introduced. For example, the demand function may be assumed to be
α-Hölder smooth and monotonic or be drawn from a bounded Gaussian Process with a known kernel.

• Continuous or Discrete Prices: In the non-parametric setting, it’s common to consider a discrete, finite,
and fixed set of prices. This is problematic for several reasons. Firstly, without assuming any structure
on the underlying demand function, information about one price may not inform the demand at other
prices. This could lead to a setting where the retailer has to experiment on each price to learn the
demand curve. Secondly, the regret obtained scales with the number of prices considered which can
force over-exploration and be extremely costly to the firm.

• Model-based exploration: As described above, the adaptive pricing depends the framework of
exploration v.s. exploitation. Many of the works in the pricing literature employ “forced/random
exploration” methods to ensure sufficient exploration. These methods ensure that the underlying model
parameters are sufficiently well learned by experimenting with sufficiently diverse sets of prices. In
practice, forced exploration methods are not employable by the firm. They require the firm to set
effectively random prices, for sufficiently long periods of time which is managerially infeasible. In this
work, we introduce the notion of “model-based exploration” which drives exploration intelligently by
leveraging gathered information and the underlying model structure. As we will see in our experiments,
model-based exploration leads to a far less erratic pricing schedule which is both managerially appealing
and leads to significantly less regret.

• Marketing Mix: In practice firms can drive customer preferences by not just manipulating price, but
also introducing marketing-mix variables such as promotions (e.g., display, feature) and advertising. As
far as we know, our model is the first to introduce marketing-mix explicitly in adaptive pricing literature.
As we will see in Section 4.1, optimizing marketing-mix variables introduces a new set of challenges.

• Customer Heterogeneity and Market Features: In practice, consumers’ decisions are heterogeneous
across a population and demand models should incorporate this heterogeneity to customize prices and
promotions across segments/individual users. In addition, pricing decisions should capture market
conditions that could be time-varying.

As we can see from this table, this is the first paper to provide a unified algorithmic framework that
addresses all of these dimensions. We now discuss the most salient of these works here while providing a
more extensive description of the works listed above and their contributions in Appendix A.

In particular, Javanmard et al. (2020); Miao and Chao (2021) are the closest to our work. Firstly Javanmard
et al. (2020), also assumes a multinomial response model, but unlike our setting where we assumed a fixed set
of items each round, they assume that the set of items changes each round and that the seller receives covariate
information for each item. Their proposed M3P algorithm for pricing in this setting alternates between rounds
of playing random prices and then greedily playing the optimal price according to the estimated demand
model at that time. The second work, Miao and Chao (2021) proposes an algorithm that runs in cycles, with
each cycle restarting when the outside option is selected. During a cycle, a hybrid Thompson Sampling and
price shock method is to choose the fixed prices played for the whole round. It is not clear how to extend their
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method to incorporate promotions, or for the batch settings we consider. All of these works rely on a degree
of forced exploration.

Three other works in the multi-product setting use Thompson sampling for price exploration, namely
Ganti et al. (2018); Ferreira et al. (2018); Bastani et al. (2021). The first considers a stylized demand model
that does not take product cross-elasticities into account and therefore may fail to properly capture demand in
settings with many products. The second considers a discrete set of prices and focuses on the problem of
effective inventory management. The final paper considers the case of a linear demand model and focuses
on the problem of prior misspecification where the definition of regret is with respect to an algorithm that
has a correctly specified prior. They provide a result for Thompson Sampling in the linear setting but rely
on various assumptions on the context distribution. None of these works consider the setting of multiple
products with promotions and none of them extend to a setting with non-linear utility.

Paper Multi-
Product

Multinomial
Demand model

Parametric Continuous
Prices

Model-Based
Exploration

Marketing
Mix

Consumer, Mar-
ket Features

Our Method Yes Yes Yes Yes Yes Yes Yes
Weaver and Kumar (2022) No No No No Yes No No
Miao and Chao (2021) Yes Yes Yes Yes No No No
Ban and Keskin (2021) No Yes Yes Yes No No Yes
Wang et al. (2021) No No No Yes Yes No No
Xu and Wang (2021) No Yes Yes Yes No No Yes
Bastani et al. (2021) Yes No Yes Yes Yes No Yes
Javanmard et al. (2020) Yes Yes Yes Yes No No No
Misra et al. (2019) No No No No No No No
Mueller et al. (2018) Yes No Yes Yes Yes No No
Ferreira et al. (2018) Yes No Yes No No No No
Trovo et al. (2018) No No No No Yes(UCB) No No
Ganti et al. (2018) Yes Yes Yes Yes Yes No Yes
Cheung et al. (2017) No No No Yes Yes No No
Javanmard (2017) No Yes Yes Yes No No Yes
Javanmard and Nazerzadeh
(2016)

No Yes Yes Yes No No Yes

Qiang and Bayati (2016) No No Yes Yes Yes No Yes
Besbes and Zeevi (2015) No No No Yes No No No
Besbes and Zeevi (2009) No Yes Both Yes No No No
Broder and Rusmevichien-
tong (2012)

No Yes Yes Yes No No No

Keskin and Zeevi (2014) Yes No Yes Yes Yes No No
den Boer and Zwart (2014) Yes Yes Yes Yes Some No No
Kleinberg and Leighton
(2003)

No No No Yes No No No

Table 1: Prior Literature on Adaptive Pricing

2.2 Structural Demand Estimation and Price, Promotion Customization

Our paper also relates to the large literature on structural demand estimation in economics and marketing.
Starting with the early work by McFadden et al. (1977) and Guadagni and Little (1983), researchers have
proposed and estimated structural demand models based on multinomial choice models. These models
have been shown to perform well empirically and have the ability to produce credible counterfactuals
(Berry and Haile, 2021). A key feature of these models is that they capture the substitution patterns within
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a product category reasonably well, without the need to explicitly model cross-price elasticities such as
linear or log-linear demand models (Train, 2009). In this paper, we build this literature to develop a
structural demand model and also consider extensions where we allow the model parameters to vary with user
features/demographics in a non-linear and high-dimensional fashion and learn this function using a neural
network.

Further, our work also relates to the marketing literature on the customization of prices and promotions
using empirical demand models. Starting with the seminal work by Rossi et al. (1996), marketers have
leveraged individual-level heterogeneity and purchase histories to customize and target pricing and/or
promotions such as coupons (Zhang and Krishnamurthi, 2004; Pancras and Sudhir, 2007; Zhang and Wedel,
2009; Johnson et al., 2013; Howell et al., 2016; Bradlow et al., 2017; Smith et al., 2022). Typically, these
papers use a Bayesian approach to modeling and estimation and then evaluate counterfactual targeting policies.
Recent work has also considered alternative demand specifications such as deep learning models (Gabel and
Timoshenko, 2022; Dubé and Misra, 2023). The consensus from this literature is that customizing prices and
promotions based on user demographics and behavioral purchase data can significantly increase profits. The
main difference between our work and this literature is that in our case, we consider a setting where the firm
can strategically explore prices and promotions to maximize profits. In contrast, the earlier literature either
relies on observational data, which may not have sufficient variation to arrive at optimal prices/promotions or
uses a fully randomized experiment, which can be extremely costly from a profit perspective.

Overall, our modeling approach leverages the strengths of the structural demand estimation literature,
such as employing a parsimonious demand model that does not require us to estimate cross-elasticities,
incorporating user demographics/features, and the ability to produce realistic demand curves. We combine
these merits with the adaptive pricing literature to develop a unified framework for effective experimentation
along the demand curve to optimize for profits.

3 Choice Based Demand Model

We first consider a setting where consumers have homogeneous preferences and as a result demand parameters
are constant across the population. In Section 6 we will extend this model to heterogeneous preferences.

3.1 Problem Formulation

Consider an e-commerce firm or retailer (e.g., Amazon, Instacart, WayFair) that stocks multiple products in
each category. In each period, the firm has to decide how to price each of these products as well as how to
promote them. These promotions could include:

• Feature and Display Promotions: For example, highlighting a product on a search ranking, or on the
front page of an e-commerce website, placing products on end-of-the-aisle displays in physical grocery
stores, or promoting products in mailers/emails sent to customers.

• Advertising: If the retailer has a fixed advertising budget they must spend, they need to decide what
products to spend the budget on, and how to allocate this budget across items.

Our model is also rich enough to capture price promotions. We think of these as being constituted of two
parts – a direct reduction of the price which is captured through a price decision variable, and a featuring
effect from the promotion itself. Throughout the rest of the paper, we use the terms promotions and marketing
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mix variables synonymously. Further, we also use the terms firm, seller, and retailer synonymously.
A common paradigm in the demand estimation literature in economics and marketing is to assume that

the firm knows the parameters of the underlying demand function and has optimally chosen the prices to
maximize some measure of category profits (Berry et al., 1995; Kadiyali et al., 2001; Sudhir, 2001). However,
this may not always be true in practice, especially since today’s retailers deal with a large number of products
in dynamic market conditions, where many new products are added to the inventory regularly. Our goal is to
solve the problem from the perspective of a firm that does not know the true demand parameters but has to
choose prices and promotions to optimize category profits over a time horizon.

Formally, suppose that a firm has a set of K products (in a given category) that it offers to a buyer
in each of T rounds.5 In each round t, 1 ≤ t ≤ T , the firm has to choose a price and a marketing
mix variable (e.g., promotion) for each of the K products in the category. Let the price vector be
pt = (p1t, · · · , pKt) ∈ P := [ℓ, u]K where ℓ, u ∈ R≥0 are lower and upper bounds on the prices respectively.
The marketing mix allocation is xt := (x1t, · · · , xKt) ∈ X , where the possible set of marketing mix
allocations is X . In general, we will see that without loss of generality we can take X to be finite. The
buyer then chooses an item It ∈ {0, 1, · · · ,K} (with the index 0 corresponding to a no-purchase option).
Furthermore, we assume that for each item i there is an associated marginal cost, mi ≥ 0, for the seller. Thus,
in round t, the seller receives reward/profit rt equivalent to pIt −mIt if It ∈ [K] and otherwise receives a
reward of 0.

We assume that the seller’s policy is adaptive. That is, if Ht is the sigma algebra generated by the
historical filtration {(ps,xs, Is, rs)}t−1

s=1 then we assume that pt,xt isHt−1 measurable. In other words, the
seller’s choice of pt,xt is allowed to depend on the history of prices and promotions selected up to time t.

Consistent with the large literature on demand estimation, we assume that the probability that the user
chooses item i is determined by a multinomial random utility model (McFadden, 1980; Dubé, 2019). That
is, there is a parameter vector θ = [α1, · · · , αK , β1, · · · , βK , γ1, · · · , γK ] ∈ RK × RK

>0 × RK
>0 so that the

utility that the consumer receives from purchasing product i given a price p and marketing mix variable x is:

U(pit, xit) = αi − βipit + γixit + ϵit, (1)

where ϵit is a random shock that follows a Type-1 extreme value distribution.6 Thus, the probability that the
buyer buys item i in period t given by:

Pθ(It = i|pt,xt,Ht−1) = exp(αi − βipit + γixit)
1 +

∑K
k=1 exp(αk − βkpkt + γkxkt)

(2)

where Pθ,Eθ are the probability law and expectation induced by the filtration with parameter θ.7Therefore,

5Assuming a market size or a mass of buyers does not change any theoretical results. In our numerical experiments, we work with
batches of potential buyers.

6We allow consumers’ price sensitivity (β) and response to promotions (γ) to vary by products. From a purely theoretical perspective,
one would expect consumers’ (dis)utility from changes in prices and promotions to be independent of the product. However, this
may not be true in practice; therefore, we adopt a fully general specification.

7Note that we allow both price and marketing mix variables such as display and feature to directly enter the latent utility or choice
probability, which is the standard practice in the literature (Rossi et al., 1996; Pancras and Sudhir, 2007; Hitsch et al., 2021). It
is possible to identify consideration sets using exclusion restrictions, i.e., by restricting a subset of these variables to influence
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we can define the expected profit in round t as:

Rθ(pt,xt) = Eθ[rt|pt,xt,Ht−1] =
K∑

i=1

(pit −mi) exp(αi − βipit + γixit)
1 +

∑K
k=1 exp(αk − βkpkt + γkxkt)

(3)

Note that the promotions considered are assumed to have fixed costs, and as such do not affect the profit
equation. This formulation is consistent with most types of promotion in standard digital environments
discussed earlier (e.g., which products to feature on the category page, which products to highlight in search
rankings or emails) which typically do not have marginal costs. In Section 4.1, we provide a more detailed
discussion of the types of promotions and the constraints on the promotion variables considered. Finally,
we assume that our parameters are bounded, αi ∈ [−M,M ], βi ∈ [0,M ], and γi ∈ [0,M ] for a known
M > 0. The positivity assumption on β captures the fact that our utility should decrease in price, and the
assumption on γ captures our assumption that advertising/promotion has a positive effect on utility. We define
the constraint region on the parameters as Ω = [−M,M ]K × [0,M ]2K .

3.2 Firm’s goal

The goal of the retailer/seller is to design an algorithm that effectively learns the vector of optimal prices
and marketing mix variables for the set of K products. To balance the trade-off between exploration and
exploitation, the seller attempts to minimize their expected regret, which is the cumulative difference between
their expected profit from using the optimal price and marketing mix variable versus the policy that they play.
To be precise, for any fixed set of demand parameters, θ, we define the optimal profit-maximizing price and
marketing mix allocation as:

p∗,x∗ := arg max
p∈R,x∈X

Rθ(p,x). (4)

Without loss of generality we will assume that p∗ ∈ P = [ℓ, u]K .
We take a Bayesian perspective and assume that there exists a prior distribution Π0 and that θ ∼ Π0.

The prior can be totally uninformative, i.e. Π0 ∼ N(0, I), or can encapsulate any previous information or
background knowledge the firm has. We will not place any restrictions on the prior.

Our goal is to minimize the total loss in profits due to the exploration of the pricing and promotion space.
In the bandit literature, this is known as regret minimization. The time T Bayesian-cumulative regret is
defined as

RegB
T := Eθ∼Π0

[
T∑

t=1
Rθ(p∗,x∗)−Rθ(pt,xt)

]
= Eθ∼Π0

[
TRθ(p∗,x∗)−

T∑
t=1

Rθ(pt,xt)
]
. (5)

We will casually refer to the Bayesian regret through the rest of our work as the regret.8 We also consider
the simple regret. The simple regret at time t is defined as the gap between the optimal revenue and the

consideration but not utility, e.g., price affects consideration but not purchase conditional on consideration (Goeree, 2008). Our
approach can be easily extended to such two-step models as long as the researcher is willing to make such exclusion assumptions.

8We quickly point out that bounds on the Bayesian regret are weaker than bounds on the cumulative regret,
∑T

t=1 Rθ(p∗, x∗) −
Rθ(pt, xt). Indeed, a bound on the latter (for any θ) provides a bound on the former, but not vice-versa. For a more in-depth
discussion, please see Lattimore and Szepesvári (2020).
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revenue obtained at time t:
srt(θ) := Rθ(p⋆,x⋆)−Rθ(pt,xt). (6)

Simple regret measures the loss in profit due to the exploration strategy of the learner in a given time period.
At any fixed time, we can hope for a policy for which the simple regret is low. However, just considering
the simple regret may not be sufficient. Indeed, a learner could randomly explore prices for a long time,
incurring a large profit loss before any time for which their simple regret is low. This is why we mostly study
cumulative Bayesian regret.

As mentioned above, the regret represents the total profit loss of the firm over T rounds of the game. A
successful algorithm will be able to ensure that limT →∞ RegB

T (θ)/T = 0, that is RegB
T (θ) grows at a rate

which is much smaller than the time horizon. In the next section, we will design an algorithm for which
RegB

T = O(
√
T ).

To summarize, the firm’s problem can be defined as follows.
Problem Statement: Play a sequence of price-promotion combinations {(pt,xt)} to minimize the expected
Bayesian cumulative regret RegB

T .

4 Solution Concept

To solve the problem statement in Section 3.2 we focus on two components. Firstly, assuming that we have a
true demand model, we discuss how to compute the optimal price and promotion variables. Secondly, we
discuss our exploration strategy and demonstrate that it achieves O(K

√
T )-regret.

4.1 Characterizing the Optimal Solution

As discussed above, the goal is to learn a policy that is playing close to the optimal price and marketing mix
allocation:

p∗,x∗ ∈ arg max
p∈P,x∈X

Rθ(p,x).

In this section we characterize this optimum.
In general, the profit function Rθ(p,x) is challenging to optimize since it is not strictly concave or

quasi-concave in (p,x). Therefore, to solve for the optimal (p∗,x∗), we adopt a two-step approach. In the
first step, we derive the optimal price vector given x. Next, we show that only a finite set of xs are feasible in
our setting. This allows us to search for the optimal price and marketing mix combination over a finite set of
x in the second step (which significantly simplifies the problem since we lack global concavity). We describe
our approach in detail below.

First, we can show that, for a fixed value of x, there exists a unique global optimum characterized by a
fixed point equation.

Lemma 1. For a fixed value of x, the optimal price p∗(x) := arg minp∈RK
≥0
Rθ(p,x) satisfies ,

p∗,i = 1
βi

+R+mi
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where R is the solution of the fixed point equation

R =
K∑

i=1

1
βi
e−(1+βiR+βimi)eαi+γixi (7)

Proof: See Web Appendix B.1.

Lemma 1 implies that we can obtain the optimal price vector (conditional on x if we can solve for R in
Equation (7). Notice that the function on the right-hand side of Equation (7) is strictly decreasing in R, while
the left-hand side is increasing. So their difference is monotonic and crosses zero. This immediately gives
rise to an algorithm for finding the optimum through binary search on the revenue as the solution to a fixed
point problem. In Web Appendix B.2, we present the pseudocode of the binary search algorithm that we use
to solve for R in Equation (7). We quickly remark that this approach is not unique and has been observed
previously (Aydin and Ryan, 2000; Li and Huh, 2011).9

So far, we have taken the marketing mix variables as given. However, for the full solution, we need to find
the vector of optimal marketing mix allocations as well. To do so, we consider two types of constraints on
x that map to the common constraints faced by firms when making promotion/advertising decisions. First,
we consider a box constraint, which implies that each element of the marketing mix vector (xi) lies within a
range [0, B]. This constraint captures many different practical settings, e.g., where the marketing mix variable
can represent which products are featured in the store or promoted in online/offline displays and by how
much. In these cases, B represents the upper bound on how much a single product can be featured/promoted.
Second, we consider a simplex constraint such that X = △B

K = {x ∈ RK
≥0 :

∑K
i=1 xi = B}. This constraint

maps to settings where the firm has a total budget (B) for the marketing mix variable (e.g., advertising spend,
promotional spend, or a fixed amount of real-estate space on the front page of a website/mailer) and it has to
choose how much of this budget to allocate to each product. Note that the box constraint represents a setting
where our promotion budget is limited on each item, but we do not have to use it all up, whereas the simplex
constraint is a setting where our promotion budget must be fully used up each round.

Theorem 1. For a fixed p ∈ P consider the problem x∗(p) := arg minx∈X R(p,x). Assume that pi ̸= pj

for some i, j ∈ [K] and that γi > 0 for all i ∈ [K]. Then R(p,x), as a function of x, has no critical points
in the interior of B. In addition,

1. if X = [0, B]K , x∗ ∈ {0, B}K;

2. if X = △B
K , x∗ ∈ {Bei : i ∈ [K]} where ei is the i-th standard basis vector in RK .

Proof: See Web Appendix C.

This result says that, for any given price vector, the optimal promotion is always a corner solution for
both types of constraints. In the simplex case, this means that the firm should put all of its marketing budget
on one of the products. In the case of the box constraint, it suggests that for each product the firm should
completely maximize the amount of promotion or do no promotion at all. To gain some intuition for this
result, imagine the case where p is fixed and B →∞. In this setting, assuming all the γi > 0, to maximize

9Different approaches towards optimization have been taken by Dong et al. (2009) who notice that the revenue is concave as a
function of the underlying market shares, and Hanson and Martin (1996) who uses a pathfinding approach.
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profits, we should place as much promotion as possible on the product with the highest price and 0 promotion
on all the other items. Thus, intuitively, our profit is maximized at a promotion choice that guarantees the
highest possible price. The formal proof of this result in the appendix makes this result precise by showing
that the profit function has no critical points with respect to the promotion variables x.

However, for a finite B, the optimal promotion may not necessarily be a full allocation to the product with
the highest price. For the case of the simplex constraint, Figure 1 illustrates this result using a three-product
example at three different price vectors p. The parameters for this demand setting and the price vectors
considered are shown in Table 2. The Figure shows the heatmap of the revenue function for different
possibilities of the promotion vector x for three price configurations. As we can see, the Figure shows that the
firm should completely use the promotion on one of the products, where the choice of the product depends on
the price vector of the products. In particular, the promotion does not need to be on the product with the
highest price; e.g., for the price vector p = (3, 9, 20) the optimal promotion is x = (0, 1, 0).

Theorem 1 is an important and fundamental result about optimal promotions in choice models that we
have not seen previously in the literature and may be of independent value to choosing optimal promotions.
It also greatly aids our algorithm. Essentially, it constrains the set of x vectors that we have to consider
when solving for the optimal p. As such, from an algorithmic perspective, this theorem makes the solution
computationally feasible. For instance, in the case of a simplex constraint, to solve for the optimal price and
marketing mix combination, we simply need to consider K vectors of x∗, solve for the optimal price at each
x∗ using Equation (7), and then pick the combination of (p,x) that maximizes profit. Note that even in this
case, the number of times we have to solve for optimal prices using binary search is linear in K. Nevertheless,
it is still finite and feasible to solve for a large assortment of products.

An attractive feature of our solution concept is that it is quite general and allows us to easily consider
other settings not represented by the box or simplex constraint. For instance, suppose that the retailer has a set
of rank-ordered spots (say on the front page of their website) where they can feature a subset (say K ′ ≤ K) of
the products, and they have to decide which products to feature in each spot. This setting can be expressed as
a case where there are a set of finitely many promotion vectors which we need to consider when searching for
the optimal price. In summary, any setting that can be mathematically represented using a finite set of X
vectors is compatible with our proposed solution concept.

We remark that our solution also provides a link to the literature on selection assortment (). There, the
goal of the firm is to construct a choice set of K ′ items, where K ′ may be much less than K, for the user to
choose from. This approach may be overly constraining – in practice, users could consider a much larger set
of items than we present; as a result, choosing K ′ may be difficult. Nevertheless, retailers may want to select
a subset of K ′ items that are promoted and account for those promotions in the customer’s choice decision.
Theorem 1, provides a solution to find a good subset of items to promote while not making any assumptions
about the users’ choice behavior over that subset.

Finally, note that our solution concept allows the firm to optimize marketing mix variables. However,
in many cases, these variables may be outside the control of the firm (e.g., national advertising set by the
manufacturer, coupons provided by the manufacturer, or promotions run directly by the manufacturer). In
such cases, the marketing mix variable can be treated as a contextual variable i.e., product or customer feature
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Figure 1: Heatmap of revenue for each possible promotion vector in a simplex over three products (B = 1). Parameters of the model
are given in Table 2.

Parameters Product 1 Product 2 Product 3
α 1 1 1
β .1 .2 .3
γ .8 .3 .5

Case 1 p $16 $2 $9
x∗ 1 0 0

Case 2 p $3 $9 $20
x∗ 0 1 0

Case 3 p $4 $14 $8
x∗ 0 0 1

Table 2: Model parameters and optimal promotions at three different choices of prices. Note that all the marginal costs are set to zero.

that is given. We consider this alternative setting in detail in Section 6.

4.2 Thompson Sampling for Adaptive Pricing and Marketing Mix Allocation

Now that we have an algorithm to solve for the optimal (p∗,x∗) given a parameter vector, we return to the
main problem of how to dynamically choose prices and marketing allocations recognizing that exploration is
costly but can lead to better decisions in the future. To this end, we propose the following Thompson Sampling
approach for a general multinomial demand model that includes both prices and marketing mix variables.

Algorithm 1 Thompson Sampling for Multinomial Demand Model
Input: P × X , Π0 - prior distribution for θ

for t = 0, 1, 2, · · · , do
Sample θ̃t ∼ Πt

Set pt,xt = arg maxp∈P,x∈X R
θ̃t

(p,x)
Observe It and rt := pIt −mIt

Update Πt+1 ← P(θ ∈ ·|Ht)
end for

Thompson Sampling is a popular framework to navigate the explore vs. exploit tradeoff problems in
sequential decision making problems (Chapelle and Li, 2011; Russo et al., 2018). In Thompson sampling,
the learner assumes a prior distribution over the unknown problem parameters (θ in our case). By mapping
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parameters to their optimal actions (P × X in our case) this induces a density over the space of each possible
action. Thompson sampling then draws an action from this resulting distribution and plays it. In the case of
finitely many actions, this procedure is often referred to as probability matching, since each action is played
according to the probability of it being the best action (Russo et al., 2018). Thompson sampling has a rich
history in the multi-armed bandits literature, and we refer the reader to the excellent survey Russo et al. (2017)
for more details. In the marketing literature, Thompson sampling-based methods have been applied to a
variety of settings successfully, including ad recommendations (Schwartz et al., 2017; Aramayo et al., 2022).
More broadly, adaptive experimentation techniques and bandits for website design and learning consumer
preferences have been considered in the marketing literature; please see Hauser et al. (2009) and Liberali and
Ferecatu (2022).

In practice, there are two challenges to implementing Thompson Sampling in this setting. Firstly, given a
posterior distribution over the parameters, computing the density over actions is a potentially in-tractable
multi-dimensional integral. Though this might be possible for finitely many actions (Russo, 2016), in our
case the problem is further compounded since our action space P × X is infinite. In practice, posterior
sampling avoids the need to compute this integral. Posterior sampling uses the realization that sampling from
the induced density on actions is equivalent to sampling θ̃t from the posterior distribution Πt, computing the
price, and marketing mix variable assuming that θ̃t is the true parameter and then playing these actions.

The second main challenge of implementing Thompson Sampling is computing the posterior update
Πt+1. In general, there is no closed-form expression for Πt+1 in the multinomial setting we describe. Hence,
we have to resort to techniques that do approximate Posterior sampling. We consider two methods, firstly
Laplace approximation (Chapelle and Li, 2011; Russo et al., 2018; Kveton et al., 2020), and secondly the
MCMC method of Langevin Dynamics.
Laplace Approximation: To motivate this, consider a regularized log-likelihood function,

Lt({(ps,xs, Is)}ts=1, θ) =
t∑

s=1
log(Pθ(Is|ps,xs)) + λ

2 ∥θ∥
2
2

and the Maximum Likelihood Estimate (MLE)

θ̂t = arg min
θ∈Θ
−Lt({(ps,xs, Is)}ts=1, θ).

Here λ is our regularization parameter and ∥ · ∥2 is the L2 norm. By the Delta Method (Casella and Berger,
2021), asymptotically in distribution

√
t(θ̂ − θ∗) t→∞→ N(0, V −1

t ) where Vt = ∇2
θLt({(ps,xs, Is)}ts=1, θ).

This allows us to approximate the posterior distribution as a multivariate normal distribution Πt ≈ N(θ̂t, V
−1

t ).
We sample from this approximate posterior in Thompson sampling in lieu of the true posterior.

Langevin Dynamics When the true posterior is not well approximated by a Gaussian, which may be true after
a small number of samples, Thompson sampling using Langevin Dynamics has been shown to achieve smaller
regret empirically compared to a Laplace approximation (Russo et al., 2017; Mazumdar et al., 2020; Xu et al.,
2022). Langevin dynamics, also referred to as Langevin Monte Carlo in some works, is a Markov Chain
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Monte Carlo (MCMC) method whose stationary distribution is the true posterior. Updates can be performed
via gradient descent on the negative log-likelihood of the posterior plus injected Gaussian noise (Roberts and
Tweedie, 1996; Bakry et al., 2014). It can be shown that in the limit, Langevin dynamics produces exact
samples according to the posterior. As we will see in Section 7.3, Langevin dynamics can also generalize to
non-linear models such as neural networks allowing us to apply Thompson sampling to contextual settings.
Our precise formulation of Thompson Sampling with Langevin dynamics is given in Algorithm 2.

Algorithm 2 Langevin-based Thompson Sampling with Multinomial Demand Model
Input: P × X , Π0 - prior distribution for θ, step sizes {ηt}t≥1, inverse temperature parameters {ψt}t≥1
θ1,0 ← [0, . . . , 0] ∈ RK

for t = 1, 2, · · · , do
θt,0 = θt−1,N

for n = 1, . . . , N do
Sample ϵt,n ∼ N (0, I)
θt,n ← θt,n−1 − ηt∇Lt({(ps,xs, Is)}ts=1, θt,n−1) +

√
2ηtψ

−1
t ϵt,n

end for
Set pt,xt = arg maxp∈P,x∈X Rθt,N

(p,x)
Observe It and rt := pIt −mIt

end for

Langevin dynamics is fairly straightforward to implement. In each round, Langevin dynamics consists
of N steps of gradient descent with additional noise whose variance is proportional to the product of the
learning rate ηt with the inverse of the temperature parameter. In practice, the learning rate is chosen to either
be constant or decay as 1/t. The inverse temperature parameter allows us to scale the variance of the noise
independently from the learning rate. It is normally set to a constant.

4.3 Theoretical Guarantees

Our main result of this section is the following guarantee bound on the regret of our Thompson sampling
algorithm for dynamic pricing with marketing mixes. To begin, define the demand function,

µℓ(θ,p,x) := Pθ(It = i|pt,xt,Ht−1) = exp(αi − βipit + γixit)
1 +

∑K
k=1 exp(αk − βkpkt + γkxkt)

,

to denote the probability that item i is purchased. A critical problem parameter is

κ := 1
minθ∼Π0,p,i∈[K] µi(θ,p,x)(1− µi(θ,p,x))

where µi(θ,p,x)(1 − µi(θ,p,x)) can be interpreted the elasticity of the demand function along the ith

direction and captures the difficulty of learning αi, βi, γi. Hence, κ represents a pessimistic lower bound on
the elasticity of demand valid for any set of parameters θ and any price and marketing mix vectors p,x.

The full statement and proof of the following theorem are in Appendix D. We now present a simplified
result that captures the key dependencies on the problem parameters.
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Theorem 2. Assume that maxx∈X ∥x∥∞ ≤ B, the largest price is bounded by u, and ∥θ∥ ≤ S. Then the
regret of Algorithm 1 is bounded in expectation by Õ

(
SuK

√
κT
)

where Õ(·) consists of constants and
doubly logarithmic factors. Proof: See Appendix D.

As far as we know, this is the first theoretical guarantee for Thompson Sampling in the setting with both
prices and promotions. The result implies that the Bayes regret of the algorithm is of order Õ(SuK

√
κT ).

The dependence on κ intuitively implies that if the demand function is particularly “flat” for some parameter
vector, then that underlying parameter is more difficult to learn which may impact our regret.

Remark. This matches existing results due to Javanmard et al. (2020) in the case of pricing only (without
promotions). The algorithm of Miao and Chao (2021) is able to achieve a Bayesian regret of O(

√
KT ). Their

paper focuses on the problem of simultaneously choosing an optimal assortment and pricing, and does not
take promotions into account. Their method is a hybrid of Thompson sampling and forced exploration and
does not take promotion variables into account. In contrast, our method uses model-based exploration (as
discussed in Section 2, can handle promotions, and extends to a contextual setting as we will see in Section 6.
In general, Thompson sampling is known to have an optimal regret in terms of T but potentially be loose in
terms of the underlying parameter dimension. For more on this topic, we refer the reader to (Abeille and
Lazaric, 2017; Hamidi and Bayati, 2020). We also believe that the dependence on κ may not be necessary.
Recent work in the bandits literature has removed the dependence on κ for UCB style algorithms (Faury et al.,
2020). It is an open problem to remove it in the case of Thompson sampling.

Finally, we remark that most of the considerations in this remark are theoretical. In particular, they do not
impact the resulting algorithm - just the analysis. This is very unlike other methods such as ILS (Keskin and
Zeevi, 2014) or UCB (Faury et al., 2020), where the amount of exploration or the form of confidence bounds
is very tied to the underlying problem statement and the theoretical guarantees desired. This plug-and-play
nature of Thompson sampling lends to its popularity in practice. As we will see in the next section, our
Thompson Sampling approach has excellent empirical performance in our setting.

5 Numerical Experiments

We now present a series of simulations that validate our proposed method. In Section 5.1, we consider a
stylized setting to ground ideas and explain the advantage of exploration. Next, in Section 5.2, we follow up
with experiments that demonstrate the performance of our method using parameter estimates from a real-life
setting that consists of retail purchase data on a commonly purchased product category (ground coffee).

5.1 Motivating Price and Promotion Exploration

Consider a retailer in a market with three products (K = 3), who is deciding how to set prices and promotions for
these products. In each period t, the firm can set prices in the range pit ∈ [0, $30.00] ∀ 1 ≤ i ≤ K and choose
a binary promotion variable xit that satisfies a simplex constraint, i.e.

∑3
i=1 xit = 1, xit ∈ {0, 1} ∀ t ≥ 1.

More simply said, the firm can choose to promote at most one of the products or none at all.
The demand for each product follows the choice model outlined in Section 3.1, the parameters for the

demand parameters are shown in the top panel of Table 3, and the marginal cost is set to zero. We also
record the optimal price and promotion for each product and the market share for each product under the set
of optimal prices/promotions. Then, the optimal revenue of the firm, i.e., the revenue if it plays prices and
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Parameters Product 1 Product 2 Product 3
α 1 1 1
β .1 .2 .3
γ .8 .3 .5
p∗ $20.50 $15.50 $13.83
x∗ 1 0 0

Table 3: Parameters and outcomes at the optimal pricing/promotion for the three-product setting. The optimal revenue R(p∗, x∗) =
$10.5.
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Figure 2: We compare the performance of Thompson Sampling and a myopic Greedy baseline for 50000 purchase decisions in a
setting with three products over 40 simulations. Each line in the top row represents the average over the 40 simulations and 95%
confidence regions on the average are shown. In the second row, we plot the played price distributions for product 1 for three time
horizons (for each run). Finally, in the last row, we show the proportion of time that we promoted each product.

promotions optimally, is $10.50.
We now consider two different strategies that the firm could play – (1) Thompson Sampling (TS) and (2)

Greedy. The first strategy uses the approach sketched out in the previous section. However, Greedy is a more
myopic approach: under this strategy, in any given period, the firm estimates the parameters of the demand
model based on the prices/promotions and corresponding market shares (choice outcomes) observed up to
that point. Then, the price and promotion variables are chosen by optimizing the revenue associated with this
empirically estimated demand model. Thus, Greedy does not actively explore new prices or marketing mix
allocations; rather it simply exploits the observed data.
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We run 40 replications of a Monte Carlo simulation with 50,000 purchase decisions each, average the
results over these replications, and present the results from this exercise in Figure 2. The optimal revenue at
time t that the firm would have earned playing the optimal price and promotion is $10.5× t. In Figure 2a, we
plot the percentage of the optimal revenue that the firm recovers under each strategy at any given time period t.
We see that there is roughly a 6% difference between the two methods, after t = 50, 000 periods/purchases. At
face value a 6% profit loss may not seem large; however, this loss is being observed at each time. To make this
clearer, we plot the cumulative regret of both methods in Figure 2b. Practically, this is the total revenue lost
by each method over the time horizon. Notice that TS has more or less constant regret, matching, or perhaps
exceeding the guarantees of Theorem 2. In contrast, the regret of Greedy appears linear. To understand why
this is the case, in Figure 2c we plot the simple regret for both methods, that is the loss in revenue at each
period. The simple regret of TS is an order of magnitude smaller than that of Greedy. In addition, whereas
the simple regret flatlines for Greedy, the exploration of TS allows it to continuously improve its simple
regret. This discussion highlights the main managerial takeaway of this work – the exploration of Thompson
Sampling allows it to more effectively play the optimal prices and promotions.

In the second row of Figure 2, we dive a bit deeper into the prices played by each method. We show the
distribution of prices played for the first product over the 40 runs during the first 2000 time steps, then from
step 10,000 to 20,000, and then from time step 40,000 to 50,000. As can be seen, initially both Thompson
Sampling and Greedy play fairly uniformly over the acceptable price range10. However, we already start
to see a difference in behavior between time steps 10,000 and 40,000 samples. The distribution of prices
Thompson sampling plays is centered around the optimal price of $20.50, whereas the distribution of prices
that Greedy plays seems to have several peaks, and does not vary smoothly. This phenomenon is exacerbated
by time 40,000 – instead of recovering, Greedy doubles down on its bad pricing choices in Figure 2f including
noticeable spikes at prices close to $24, and $30. On the other hand, the distribution of Thompson sampling
is just more peaked around the optimal price. A similar phenomenon happens in the case of promotions. In
the last row of the figure, we see that TS chooses to consistently promote Product 1 by 10000 time steps.
However, the distribution of products promoted by Greedy does not change in any real way over the whole
run. Greedy chooses what to promote early on, and then just sticks with it throughout.

Effectively, the lack of strategic exploration in prices for Greedy renders it unable to escape sub-optimal
prices and promotions. As a result, the data it gathers is not as informative. We emphasize that the histograms
in Figure 2 are not of a specific replicate, but rather accumulate the data from all 40 replicates of the simulation.

5.2 Simulations based on Nielsen Data

Next, we run simulations based on parameter estimates for the ground coffee category using NielsenIQ Retail
Measurement Services (RMS) data. In Section 5.2.1, we briefly describe the dataset and the parameter
estimation task, and then in Section 5.2.2 and 5.2.4, we describe our simulation framework and present our
simulation results.
10We discuss implementation details more thoroughly in the next section, but if an algorithm chooses to play a price which is larger

than $30 (the maximum acceptable price in this simulation), we round it down to $30.
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5.2.1 Parameter Estimation

We focus on the ground coffee category for our empirical exercise because it has a few nice features. First, it
is a regularly purchased product with a sufficiently large volume. Secondly, it has a number of well-known
brands and we expect significant differences in brand preferences and price sensitivities across brands. Finally,
because the product sizes are in ounces, we are able to pool data across all UPCs within a brand, obtain the
price per ounce for each brand, and perform the estimation exercise at the brand level.

We use NielsenIQ weekly retail scanner data for 2019. The data set contains weekly prices, quantity,
and product characteristics for all the ground coffee products sold across a number of stores in the US. The
data are aggregated at the store-week-UPC level, i.e., each observation consists of a product UPC code, the
brand and size (ounces) of the product, and whether the product was featured/displayed that week. For our
analysis, we use data from the largest store in King County, WA that has data on prices, as well as feature
and display information. We start by selecting top 9 brands out of 50 that had the most revenue in that store
(∼ 90% of revenue) and group all the remaining brands under an Other brand. This gives us a total of 10
brands and one outside option (no purchase). Next, using weekly sales and average price data for each UPC,
we obtain the average weekly price per ounce (pit) and the average weekly feature and display variables (wit

and oit), as well as the total quantity sold (in ounces) for each of the 10 brands. Table A1 in Appendix G.1
shows the summary statistics of the weekly prices, feature, display, and sales for the 10 brands we consider.
We see that the top five brands in this market (based on total volume over the one year period) are Peet’s
Coffee, Starbucks, Seattle’s Best, Stumptown, and Tony’s Coffee, which together account for approximately
70% of the sales. Next, we find that Seattle’s Best has the lowest price per ounce among the top five brands,
whereas Stumptown has the highest. There is also significant across-brand variation in the feature and display
variables. While products under brands such as Peets and Starbucks are featured and displayed quite often,
many of the brands in the data are never featured or displayed (e.g., Zoka, Lavazza). Overall, we see both
within- and across-brand variation in prices, and sufficient across brand-variation in the promotion variables.

We specify the latent utility model at the brand level as:

Ui(pit, wit, oit) = αi − βipit + γwwit + γooit + γtI(week = t) + ϵit.

We allow the price sensitivity parameters to vary across brands but only estimate one parameter each for
feature and display on the whole data instead of having brand-level parameters. This is because the data for
feature/display promotions is sparse and many brands are never featured/displayed (as discussed above). We
also add a week-fixed effect since we see significant seasonality in coffee purchases (e.g., coffee is more
popular in Fall/Winter but less so in the hot summer months). The above specification implies that the
probability that the buyer purchases brand i in period t is:

Pθ(It = i|pt,wt,ot,Ht−1) = exp(αi − βipit + γwwit + γooit + γtI(week = t))
1 +

∑K
k=1 exp(αk − βkpkt + γwwkt + γookt + γtI(week = t))

.

Following Berry (1994), we then specify the outside good as the decision to not buy ground coffee (no
category purchase), take the log of the market/volume share (in ounces) for each brand, and subtract from it
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the log of the outside option share.11 This transformation gives us the following linear relationship between
the log market share ratio of the brands and brand dummies, brand prices, marketing mix variables, and week
fixed effects:

log(Qi,t)− log(Qoutside,t) = αi − βipit + γwwit + γooit + γtI(week = t), (8)

where Qi,t is the market share (in volume) for brand i in week t and Qoutside,t is outside option market share.
We then estimate Equation (8) using a least squares model and present the parameter estimates in Table

A2 in Web Appendix G.2. We find significant differences in the brand-specific intercept terms as well as
the price sensitivity parameter across brands. Among the top five brands, consumers are most sensitive to
the price of Seattle’s Best and least sensitive to that of Stumptown and Tony’s Coffee. Next, we see that
coefficient for feature (γfeature) is insignificant and only the display coefficient is significant. Therefore, in
Section 5.2.4, we only consider display in our analysis. Overall, all the parameter estimates seem reasonable
and form the basis of our simulation results in Section 5.2.4.

5.2.2 Algorithms Compared

We now describe the algorithms that we consider – (1) Thompson Sampling, (2) Greedy method, and (3) M3P
based on Javanmard et al. (2020). Precise descriptions of these algorithms are given in Web Appendix F.

• Thompson Sampling We considered two variants of Thompson Sampling as described in Section 4.2
– posterior sampling using Laplace approximation and Langevin dynamics. In the case of Laplace
approximation, at each round, we sample a price from N(0, aV −1

t ), where Vt is the Hessian of the
MLE up to time t and a is a tunable exploration bonus which we set as a = .5. For Langevin dynamics,
we set the number of Langevin steps it takes as N = 200. We also set the learning rate to be ηt = .01/t
and ψt = ψ = .5. These choices were based on a grid search over the values.

• Greedy, the simplest algorithm, initially plays some random prices for a period τexplore. At each time
after this, it estimates the model based on the data up to that point and then plays the optimal price and
marketing mix according to the estimated model. Thus, Greedy does not actively explore new prices or
marketing mix allocations; rather it simply exploits the observed data. The main problem with this
approach is that it could get stuck in a sub-optimal region since new data points don’t necessarily add
information about the parameters. In general, a greedy policy may lead to an estimation strategy that
is not O(T−1/2) consistent, and as a result, could lead us to incur a linear regret (Keskin and Zeevi,
2014). This is precisely the phenomenon we observed in Figure 2b.

• M3P method builds on greedy and allows for more systematic exploration. The method divides the
time horizon into a series of blocks with increasing length. In block b, the method first does random
forced exploration for K periods (where K is the number of products), which is followed by b periods
of exploitation for a total of b+K time steps in block b. In the exploitation periods, the method simply
plays the optimal action from the current estimated model (analogous to Greedy). Since the method
increases the number of exploitation rounds in each iteration, (in fact in a time horizon of T it achieves

11We use 1.2 times the maximum weekly observed demand (in ounces) during the one-year observation period as the total market
size. This allows us to quantify the share of outside option in each week.
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O(
√
T ) exploration steps), it is able to achieve a O(K

√
T +K) regret (Javanmard et al., 2020).

Even though M3P does not consider the setting of costs and promotions, and has no theoretical
guarantees for this setting, modifying it for our setting is fairly straightforward and we include it in our
simulations.

5.2.3 Simulation and Implementation Description

Using the parameter estimates from the NielsenIQ data for the ground coffee category, we now conduct
simulations comparing our Thompson sampling approach to the baseline algorithms discussed above. We
consider a setting where, at each time, a customer arrives with the intent to buy 32 ounces (2lb bags) of
coffee from the brands we consider. At this point, we decide on the price for each brand and then observe the
customer’s choice (which is one of the brands or the outside option). The parameters and optimal prices and
promotions for this setting are discussed in Appendix G.3.

Before we show our simulation results, we describe several implementation details.
• Batch Size In practice, it is extremely difficult for firms to do real-time updates of adaptive experimentation

algorithms due to computational and engineering costs (Jamieson et al., 2015). Instead, it’s common to
do updates in fixed time-intervals or in fixed batches. For example, if the batch size is 200, we assume
that there are 200 purchase decisions made per period, and all the parameter estimates and the {pt,xt}
are updated at the start of each batch and then fixed for the rest of the batch. Depending on the retailer’s
volume, each time period could translate to a few hours, a day, or a week. We consider two settings, a
batch size of 10 (frequent updating) and a batch size of 200.
• Range of decision variables: In all our simulations, we allow the price of a two-pound bag of coffee to

range from ℓ = $0.0 to u = $35.12 This large range ensures that we are exploring over a sufficiently
large range of prices and gives us conservative estimates of regret (since exploration far from the optimal
prices is costly). Next, we assume that the display variable is constrained to be in the simplex i.e.
X = {x ∈ RK

≥0 :
∑K

i=1 xi = 1}, where here, K is the number of brands. Theorem 1 implies that
the optimal promotion will be a vertex of the simplex. Therefore, in our simulations, we restrict to
X = {ei : 1 ≤ i ≤ K} ∪ {0}. Again, this corresponds to a setting where we can choose to promote one
item or promote none at all. Note that we set all marginal costs to zero since it was not observed in the
data. However, they are very easy to include when the retailer has access to them. As a result revenue and
profits are the same in all of our results and plots.
• Initial Exploration Phase (τexplore): For each algorithm, we begin training them with 10 price and

promotion vectors uniformly chosen. In practice, if historical data has sufficient variation, this data could
be used to initialize models.
• Parameter Ranges: As described in Section 3.1, we assume that the true parameters are bounded in

absolute value by some constant M . In general, we have not made any assumptions on our prior or
posterior distributions when specifying Algorithm 1. However, our theory needs both of these distributions
to be supported on Ω. In practice, after enough samples, since the posterior concentrates to a normal
distribution with almost all of its mass on a small region around θ, it is not necessary to restrict to

12The maximum optimal price is $27.28; see Table A3 in the Web Appendix G.3. Thus, this range covers the optimal prices for all
the products in this setting.
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distributions that are supported on Ω. If we want to ensure that samples from the posterior lie in Ω in
early time steps, we can solve a constrained MLE and use Laplace approximation with rejection sampling.
However, we use a simpler approach. Essentially, we sample a set of parameters. If the sampled βi < 0
for any product, we set the βi for this product to a small positive constant (namely .01). Otherwise we
compute the optimal price and clip it to the range [ℓ, u] for each product.
• Number of runs: We perform 40 replications of each algorithm in each simulation and we display the

average performance in all our plots.

5.2.4 Simulation Results

Figure 3 shows the summary of our results. In the first row, we consider the setting with a batch size of 200 and
plot the regret for our algorithm, using Thompson Sampling implemented with both Laplace approximation
(TS-Laplace) and Langevin Dynamics (TS-Langevin), Greedy and M3P. For each algorithm, we show the
mean and 95%-confidence bands on the mean cumulative regret for each batch (as defined in Equation (5))
based on 40 runs. Both versions of Thompson Sampling consistently perform better than all the benchmarks.
Interestingly, though Greedy shows improved performance initially, it eventually loses out to Thompson
Sampling. M3P does particularly poorly. Recall that the extent of exploration here is directly proportional
to the dimensionality of the choice set: the bth block of M3P is b + K long, where K is the number of
products/brands. Thus, as K increases, the algorithm spends a significant amount of time in exploration,
which contributes significantly to the regret (especially since prices in these exploration rounds are chosen
randomly). This demonstrates an important practical point, though the regret guarantee of M3P matches ours,
i.e. O(K

√
T ), the theoretical guarantee is not reflected in actual performance. We will return to this point

when discussing contextual models.
To put the gains of Figure 3a in perspective, in Figures 3b we consider the percentage of revenue recovered

relative to playing the optimal price/promotion of the true demand model in each customer interaction. As
can be seen, by the end of the experiment, Thompson Sampling performs ≈ 3% better than Greedy and about
5% better than M3P.

Next, in Figure 3c we plot a smoothed version of the simple regret (Equation (6)), i.e., per period regret
for the three algorithms. Again, we find that Thompson Sampling performs well. Finally, we remark that
the simple regret of M3P has high variance because it involves periods of completely random exploration
even much later in the horizon (these periods are not shown due to our smoothing). From a practical
perspective, this makes M3P a poor choice in real empirical applications (quite apart from the high regret for
high dimensional settings) – wildly varying prices can be challenging to implement and lead to customer
confusion/dissatisfaction. Further, since this leads to largely unpredictable profits/revenues, firms and
managers may be wary to adopt it. In contrast, we see that Thompson sampling has low variance in addition
to low regret, which makes it appealing from both profitability and practicality standpoints (i.e., acceptable in
real business settings).

In the second row of Figure 3, we consider the setting of a batch size of 10 and we consider Thompson
Sampling with the Laplace Approximation (TS-Laplace), and Thompson Sampling with Langevin Dynamics
(TS-Langevin), and Greedy. We did not test against M3P, since it is a method that fundamentally batches
on a fixed schedule, and can’t be adapted for smaller batch sizes. Most of our observations in the case of a
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(a) Cumulative Regret (b) Percentage of Optimal Revenue (c) Simple Regret

(d) Cumulative Regret (e) Percentage of Optimal Revenue (f) Simple Regret

(g) Cumulative Regret (h) Cumulative Regret

Figure 3: We compare the performance of Thompson Sampling (TS-Laplace and TS-Langevin), M3P, and a myopic Greedy baseline
for the top ten products with the highest market share on the Nielsen MarketIQ dataset. In the top row we consider a setting with a
batch size of 200 and the second row shows a batch size of 10. Finally, in the last row we compare the Greedy/Thompson Sampling
algorithms at the two different batch sizes. All plots show the mean over 40 simulations with 95% confidence intervals on the mean.

batch size of 200 also hold in this setting where we are updating more frequently. In addition, the proportion
of revenue recovered is more than 2.7% for our adaptive methods (Figure 3e). In the last row, we compare
Greedy and Thompson Sampling for the two different batch sizes.

We remark that the computationally cheaper Langevin dynamics performed comparably to Laplace
approximation in all our plots at a batch size of 10. At higher batch sizes, we found that Langevin dynamics
with few gradient steps (the choice of N in Algorithm 1) did very poorly and we required a much larger
number of steps. Hence we did not include Langevin dynamics at higher batch sizes.

6 Learning Optimal Prices and Promotions in Contextual Settings

In the previous sections, we only considered settings where all consumers and markets were homogeneous or
a case where the retailer did not have data on customer-specific features (e.g., segment, demographics, or
behavioral variables) or market-level features. However, in most realistic settings, retailers have additional
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information about the consumer and the market that can be informative of their brand preferences (αs),
and price/promotion sensitivities (βs and γs). For instance, retailers typically have zip-code, store-level,
or individual-level information on the demographics of consumers. More recently, online retailers have
access to a large amount of user-level behavioral features, e.g. prior-browsing data, purchase data, consumer
location, and device/browser type. Prior research has shown that both demographic and behavioral features
can affect users’ preference parameters. For example, higher-income customers may have lower price
sensitivity compared to lower-income customers (Allenby and Rossi, 1998; Horsky et al., 2006). Similarly,
we know that user-level behavioral and contextual features are predictive of user behavior in digital settings
(Yoganarasimhan, 2020). In addition, retailers often have data on market conditions and/or seasonality, that
can be informative of consumer behavior. Henceforth, we use the term contextual features to refer to both
consumer-specific and market-specific variables that can be informative of demand.13

Ideally, the retailer should use these contextual variables to customize prices and promotions at the
individual-, or market-level since doing so can increase profits. However, these features may be high-
dimensional, and it is difficult to a priori. specify a model of how these features will affect the user-level
demand parameters. Thus, the problem becomes one of learning to serve personalized prices and promotions,
when the firm is simultaneously learning the demand model. Note that prior research has considered the
problem of personalizing prices after the firm has run a large-scale experiment to learn the demand parameters
(Kallus and Zhou, 2021; Dubé and Misra, 2023). In contrast, we consider a setting where the firm is
simultaneously learning the demand parameters and optimizing pricing and promotions. Further, in Section 7,
we expand our analysis to cases where the demand parameters are unknown and potentially non-linear
functions of the context.

In Section 6.1, we describe the demand model and the corresponding algorithm in the contextual setting,
and in Section 6.2, we provide a regret bound for the linear contextual setting.

6.1 Demand Model and Algorithm in Contextual Settings

To incorporate user and market features, we consider the following model referred to as the contextual setting.
At each time t, we receive a context vector ct ∈ Rd capturing information about the customer who arrives
at time t. The context vector can capture user demographics, past purchase and behavioral history, and
even the time of day, the day of the week, or the macroeconomic conditions at which the customer arrives.
As discussed earlier, incorporating these features into the demand model can improve the firm’s ability to
customize prices and promotions per user.

Therefore, we now assume that the parameters α : Rd → RK , β : Rd → RK , and γ : Rd → RK are
functions of the user-level context vector (ct). Then, the probability that a customer chooses item i is:

Pα,β,γ(It = i|pt,xt, ct) = eαi(ct)−βi(ct)pti+γi(ct)xti

1 +
∑K

j=1 e
αj(ct)−βj(ct)ptj+γj(ct)xtj

, (9)

13Prior research in marketing often refers to contextual features as non-user-level variables that are informative of user-behavior, e.g.,
time of the day, seasonality, location, etc. (Rafieian and Yoganarasimhan, 2021). However, for simplicity, here we use the phrase
contextual features to denote any user/market-level variable that can be informative of user preferences. As such, it can also include
user-level behavioral features.
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where for context c, αi(c), βi(c), and γi(c) are the ith coordinates of α(c), β(c), and γ(c). This formulation
has previously been considered in Goli et al. (2021) to model the heterogeneous effect of ad-load sensitivity
as a function of user attributes, and in Dubé and Misra (2023) to model demand in A/B testing. Notably,
neither of these papers considers active data collection; rather they first run an A/B test and then use this
formulation for off-policy design.

The case where α, β, γ are constant functions of the context c recovers the demand model considered in
Section 5. As discussed in Section 2, prior work in the dynamic pricing case (i.e. without promotion) has
considered the setting where α, β are linear functions of the context and that the contexts come from a fixed
known distribution.14 As far as we know, we are the first to consider setting optimal prices and promotions,
when α, β, γ are unknown and potentially non-linear functions of the context. Furthermore, we make no
distributional assumptions on the context or its stationarity.

The main advantage of our formulation is that we allow α, β, γ to be arbitrary and as a result, we can
handle more expressive models and are more robust to model misspecification. However, allowing for more
general classes of functions comes with its own challenge. Firstly, we need a way to estimate the underlying
model. To do so, we express α, β, γ as arbitrary neural networks that are functions of the underlying customer
features ct. To learn these neural networks, we can use standard packages such as PyTorch. The second,
and more interesting question is how to conduct exploration in the price and promotion space. Given the
theoretical and experimental success of our Thompson sampling approach in non-contextual settings, ideally,
we would be able to extend it to the contextual setting. However, Laplace approximation cannot be easily
implemented for arbitrary neural networks. Indeed, computing and sampling from the Hessian of the MLE
(i.e. Fisher information) can be computationally difficult if the number of parameters of the neural network is
high. Fortunately, our Langevin dynamics approach (see Section 4.2) is still computationally feasible and
does not require difficult computation beyond the ability to conduct a gradient step, a computation easily
implemented in PyTorch by use of automatic differentiation. Such an approach has recently been employed in
the contextual bandit literature, and allows us to extend our Thompson sampling approach to a non-parametric
setting. Though there is still a lack of theoretical results for this approach, it has shown empirical promise
(Xu et al., 2022; Mazumdar et al., 2020).

Our precise formulation of Langevin dynamics is similar to that of Algorithm 2 with two changes. Firstly,
we observe the context ct in each round, and secondly, θ is a set of parameters representing our parametrization
of α, β, γ. Define the regularized log-likelihood function,

Lt({(ps,xs, cs, Is)}ts=1, θ) =
t∑

s=1
log(Pθ(Is|ps,xs, cs)) + λ

2 ∥θ∥
2
2.

Then our extension of Langevin dynamics is given in Algorithm 3.

14Ban and Keskin (2021) considers the single product setting with linear demand and Javanmard and Nazerzadeh (2016) considers
the multiproduct multinomial setting. We remark that Javanmard and Nazerzadeh (2016) considers a setting where the firm has
additional demand information at each round for each product (which is interpreted as product or market features) which enters the
linear utility function – however, they do not see customer features. Though these problems may seem different at first glance,
mathematically our framework (assuming no promotions) can capture their model and we have modified M3P for our setting (see
Section H for details). As we will demonstrate, we perform empirically better than M3P consistently.
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Algorithm 3 Langevin-based Contextual Thompson Sampling with Multinomial Demand Model
Input: P ×X , step sizes {ηt}t≥1, inverse temperature parameters {ψt}t≥1, Langevin stepsN , regularization

factor λ
θ1,0 ← [0, . . . , 0] ∈ RK

for t = 1, 2, · · · , do
θt,0 = θt−1,N

Observe context ct.
for n = 1, . . . , Nt do

Sample ϵt,n ∼ N (0, I)
Define Lt({(ps,xs, cs, Is)}ts=1, θ) =

∑t
s=1 log(Pθ(Is|ps,xs, cs)) + λ

2∥θ∥
2
2

θt,n ← θt,n−1 − ηt∇Lt({(ps,xs,xsIs)}ts=1, θt,n−1) +
√

2ηtψ
−1
t ϵt,n

end for
Set pt,xt = arg maxp∈P,x∈X Rθt,Nt

(p,x, ct)
Observe It and rt := pIt −mIt

end for

6.2 Theoretical Guarantees for Linear Contextual Setting

In this section, we focus on the case where αi(c), βi(c), γi(c) are linear functions of c. That is, there exist
vectors αi, βi, γi ∈ Rd, 1 ≤ i ≤ K (abusing notation slightly) such that

αi(c) = ⟨αi, c⟩, βi(c) = ⟨βi, c⟩, γi(c) = ⟨γi, c⟩, (10)

and so α, β, γ have K × d matrix representations as linear functions of the context c,

α(c) = [α1, α2, · · · , αK ]⊤c, β(c) = [β1, β2, · · · , βK ]⊤c, γ(c) = [γ1, γ2, · · · , γK ]⊤c

Define θ = (α1, β1, γ1, · · · , αK , βK , γK) ∈ R3dK .

Theorem 3. Assume that maxx∈X ∥x∥∞ ≤ B, the largest price is bounded by u, ∥θ∥ ≤ S with probability
1. With probability at least 1− δ, the regret of our Thompson Sampling algorithm in the contextual setting is
bounded by Õ

(
SudK

√
κT
)

where Õ(·) hides constants and doubly logarithmic factors.
Proof: See Appendix E.

We make a few points about this theorem. Firstly, in the case where d = 1 and ct = 1 for all t ≥ 1, this
result generalizes Theorem 2. Secondly, we do not make the assumption that the contexts are drawn i.i.d.
from a fixed distribution at each time. Or in other words, we are not assuming that the context distribution is
stochastic. Indeed, the context distribution could be changing at each time, or even potentially adapt to past
actions of the firm. In the bandits literature, a setting with arbitrary contexts is referred to as an adversarial
setting (Lattimore and Szepesvári, 2020). Such adversarial settings are common in marketing. For example,
the company could use a promotion strategy that causes the underlying population of customers to change
over time. Alternatively, depending on the season we could have different types of customers with varying
preferences. We believe that this is the first result in this setting that allows for arbitrary, and even potentially
adversarial, contexts. Past works in the contextual setting such as Javanmard et al. (2020); Ban and Keskin
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(2021) relied on stochastic contexts. As a result, our theory is strictly more general than past guarantees.

7 Numerical Experiments in Contextual Settings

We now present three sets of numerical simulations for the contextual setting. The goal of these simulations
is to demonstrate the flexibility of our methodology in different but natural marketing settings. Throughout
the following, we use Langevin dynamics to approximate posterior sampling for our Thompson Sampling
implementation. First, in Section 7.1, we construct a series of synthetic experiments under the linear contextual
setting where we see the impact of different context distributions. In Section 7.2, we apply our algorithm to
the NielsenIQ dataset in a setting where the context distribution shifts over time. Finally, In Section 7.3, we
extend our model to non-linear choice-based demand models.

7.1 Synthetic Experiments for the Linear Contextual Setting

In this section, we consider a set of synthetic experiments that demonstrate that our algorithm leads to a
lower regret compared to non-contextual baselines, and other natural baselines in the contextual setting. We
consider a setting with 9 products where the context vectors are four-dimensional, i.e. each ct ∈ R4 for all
t ≥ 1. As a result, the parameters are four-dimensional as well, i.e. αi, βi, γi ∈ R4.

7.1.1 Context Vectors

We consider two different context distributions that capture two different types of customer populations.
1. OrthogonalGroups: At each time the context ct ∈ R4 is uniformly drawn from the set of standard

basis vectors in R4, that is ct ∈ {e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1)}.
Intuitively, this corresponds to a setting where we have four segments of consumers, where the
population within each segment is homogeneous in its preferences. For each segment 1 ≤ j ≤ 4,
and product 1 ≤ i ≤ 9 there is an unknown set of parameters αij := ⟨αi, ej⟩, βij := ⟨βi, ej⟩ and
γij := ⟨γi, ej⟩. The underlying demand model for segment j is given by Equation (2) in Section 3.1.
Notice that since the contexts are orthogonal, there is no information sharing between the segments -
namely, in each context, our goal is to find the set of prices and promotions that optimize the revenue
for the corresponding segment. If the firm, a priori, knew the context distribution was orthogonal, it
could run a different instance of our Thompson Sampling algorithm designed for the non-contextual
case (Algorithm 1) for each group. However, since the firm may not have this information it needs an
algorithm that is general-purpose and can naturally adapt to this specific setting. Furthermore, as we
will see if the firm incurs significantly more regret if it ignores contexts altogether.

2. WeightedAverages: This setting generalizes the one above. In this setting we select context vectors
uniformly from the unit simplex of R4 space, that is ct ∼ Unif(∆4), with ∆4 = {x ∈ R4

≥0 :
∑4

i=1 xi =
1}. Intuitively, this extends the above model where we now allow for users to be weighted combinations
of the four contexts above. In particular, unlike the previous example, this allows for a population with
very heterogeneous preferences. In particular, since the number of possible contexts is infinite, it’s not
possible to run a separate algorithm for each context.
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7.1.2 Model

The values of the parameters αi, βi, γi ∈ R4, 1 ≤ i ≤ 9 were chosen to extend the example in Section 5.1 and
are given in Table A4 in Web Appendix I.1. We omit them here for brevity. In addition to these parameters, the
implementation details (such as the batch size or range of prices considered) are detailed in Web Appendix I.2.
Finally, for our baseline algorithms, we considered Greedy and M3P, which are similar to those described in
Section 5.2.2. The Greedy method plays the optimal prices and promotions for each product based on the
current estimated model. For M3P, we follow the algorithm of Javanmard et al. (2020).

7.1.3 Results

We now discuss the experiment results for the settings described above. Our first set of plots provides insight
into the impact of including contextual information. Figure 4 compares the performance of Algorithm 3,
Thompson Sampling in the linear contextual setting, (i.e. using the demand model from Section 6.2) to
Algorithm 2, Thompson Sampling in the non-contextual setting. Note that the non-contextual variants learn
models that are misspecified. Namely, by not considering the context distribution, the non-contextual model
assumes that consumers are homogeneous, and as a result, can only optimize at a population level. In contrast,
contextual-TS is able to learn how demand changes with contexts and customize prices and promotions
accordingly. On the left (Figure 4a), we show the regret plot for the OrthogonalGroups context distribution,
and on the right we have the regret plot for the WeightedAverages contexts (Figure 4b). We can see that in
both settings, ignoring the contexts results in significantly worse regret.

(a) OrthogonalGroups (b) WeightedAverages

Figure 4: We compare the cumulative regret of the contextual versions of Thompson Sampling (TS Contextual) with its non-contextual
counterparts (TS Non-Contextual) for two context distributions –(1) OrthogonalGroups and (2) WeightedAverages. In this
example, the 95% confidence intervals are shown, but they are very small and so can’t be seen easily.

Now we compare Algorithm 3, the contextual version of Thompson Sampling, to other contextual
baselines, Greedy and M3P (Figure 5); see Web Appendix H for details. The first row shows the results
for OrthogonalGroups, and the second row shows the results for WeightedAverages. Both Greedy
and Thompson Sampling perform better than M3P in this time horizon. After 20,000 steps, when the
context distribution is OrthogonalGroups, Thompson Sampling recovers 15% more of the optimal revenue
compared to Greedy, whereas in the WeightedAverages case, it recovers 2.23% more than Greedy. This
behavior is also captured in the simple regret plot where we can see that the simple regret for Greedy does not
improve, and by time 20,000, the simple regret of Greedy is more than three times larger than the TS simple
regret. We remark that Greedy is more competitive in early rounds in the OrthogonalGroups setting than
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(a) Cumulative Regret (b) Percentage of Optimal Revenue (c) Simple Regret

(d) Cumulative Regret (e) Percentage of Optimal Revenue (f) Simple Regret

Figure 5: Comparison of the performances of three contextual methods – Thompson Sampling, M3P, and Greedy. The first row
shows the results for OrthogonalGroups, and the second row shows the results for WeightedAverages.

in WeightedAverages. As described above, the former setting is basically a different bandit for each of the
four groups with no information sharing. In the latter setting, the information is shared since each customer is
a mixture of the four groups. As a result, we believe that this allows Greedy to gain more information about
the parameters in the early time steps. However, eventually, we see that Greedy has worse regret due to its
inability to effectively explore. To investigate this further, we introduce another context vector distribution,
namely Box context distribution, in Web Appendix I.3 and compare the methods’ performance in this setting.

In Figure 6, we investigate the methods further by comparing the distribution of prices played by Thompson
Sampling and Greedy.15 The first row shows the histogram of the prices played for a randomly chosen product
from the set of products (product seven) for the OrthogonalGroups setting in different time frames for
time periods where the context vector ct is e1. The green line “Optimum” vertical line shows the optimum
price for the product in this context, and the histograms show the distribution of prices played by Greedy and
TS methods. We could see that while initially (T < 1000), TS is exploring the feasible price range more,
by the end (19, 000 ≤ T ), the distribution of prices played is centered at the optimum price of $12.94. In
comparison, the distribution of prices played by Greedy at the final stage has a peak near $11, explaining the
high regret incurred. We show the distribution of the prices played by the M3P method and compare it to the
distributions of Thompson Sampling and Greedy methods in Web Appendix I.4.

The second row shows the distribution of prices played for the WeightedAverage contexts. In this case,
“Optimum” denotes the histogram of optimal prices for the sequence of contexts observed in all 20 replicates
of the algorithm. We have also plotted histograms of the prices played by TS and Greedy. We again see that
TS has more exploration at the beginning stages and in later time steps, the peak of the distribution of prices
played by TS is farther to the left, approaching that of the optimum distribution.

15We do not include M3P in this comparison, since its performance is weaker than Greedy’s.
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(a) Prices T < 1000 (b) Prices 5, 000 ≤ T ≤ 6000 (c) Prices 19, 000 ≤ T

(d) Prices T < 1000 (e) Prices 5, 000 ≤ T ≤ 6000 (f) Prices 19, 000 ≤ T

Figure 6: We compare the distribution of prices played for a randomly chosen product (product seven) by Thompson Sampling and
Greedy. In the first row, we show the distribution of the prices for the OrthogonalGroups when the context vector is the first basis
vector (c = e1). The green line shows the optimum price point for this context. The second row shows the marginal distribution over
different contexts for the WeightedAverages case, and the green histogram shows the distribution of optimum prices. Each of the
three columns captures different timeframes (early stage, middle stage, final stage).

To conclude, Thompson Sampling with Langevin Dynamics is a competitive method in the linear
contextual setting, regardless of any knowledge of the context distribution or the specific distribution itself.

7.2 Experiments based on NielsenIQ Data in a time-varying Linear Contextual Setting

In this section, we present a set of linear contextual experiments based on parameters estimated from the
NielsenIQ dataset. Though there are no specific user-level contextual variables in the dataset, we construct a
contextual setting that assumes demand parameters depend on which quarter of the year and the store where
the purchase was in. In particular, due to the quarter variable, unlike the settings in the synthetic experiments
above, our customer context distribution will be allowed to shift over time. As we will see, our algorithm
effectively adapts to the shifts without prior knowledge of the distribution and achieves a significantly lower
regret than other benchmarks.

We use the NielsenIQ weekly retail scanner dataset from 2019 as described in Section 5.2. While
Section 5.2.1 used data from only one store, in this section, we select the top two stores (by ground coffee
revenue) in King County, WA that have data on weekly prices, features, and displays. This allows us to capture
the variation in demand across the two stores and use the store identity as a contextual feature. Similarly to
Section 5.2, we considered the 9 ground coffee brands with the highest revenue (after combining data from
both stores) and grouped all the remaining brands under an Other category.

We consider a demand model where the utility parameters are assumed to depend on the store where
the purchase happens and the quarter of the year. Notice that we are implicitly assuming consumers are
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(a) Cumulative Regret (b) Percentage of Optimal Revenue (c) Simple Regret

Figure 7: We compare the performance of Thompson Sampling, M3P, and Greedy baseline in a setting with shifting context
distribution. The model and contexts are based on the NielsenIQ data in the ground coffee category. The context vectors represent
the quarter of the year and store. The jumps in simple regret are due to the model learning the demand parameters in each quarter.

not choosing the store where they make the purchase or the quarter when they make a purchase. Instead,
the store and quarter variables are treated as contextual variables. To that end, we specify a 6-dimensional
context vector, with four dimensions representing quarter dummies (quarter ∈ {Q1, Q2, Q3, Q4}) and
two dimensions representing store dummies (store ∈ {1, 2}). Thus, the demand parameters for brand
i ∈ {1, · · · , 10} are given by:

αi(c) =αiQ1I(Q1) + αiQ2I(Q2) + αiQ3I(Q3) + αiQ4I(Q4) + αiS1I(store = 1) + αiS2I(store = 2)

βi(c) =βiQ1I(Q1) + βiQ2I(Q2) + βiQ3I(Q3) + βiQ4I(Q4) + βiS1I(store = 1) + βiS2I(store = 2)

γi(c) =γiQ1I(Q1) + γiQ2I(Q2) + γiQ3I(Q3) + γiQ4I(Q4) + γiS1I(store = 1) + γiS2I(store = 2).

The utility for a customer at time t with context vector ct with a price vector pt and promotion xt for product
i is given by

Ui(ct,pt,xt) = α(ct)− β(ct)pit + γi(ct)xit + ϵit. (11)

We estimate a demand model based on the utility specification above on weekly data using a procedure
similar to Section 5.2.1. We then lightly modify the estimated parameters to handle some issues arising from
missing/insufficient data for certain store-brand combinations. The details of the estimation procedure, the
modifications, and the parameters used in the experiments are described in detail in Web Appendix J.

Next, we describe how the context variable is generated at each time in the simulation exercise. For
quarter dummies, we divide the total time horizon T = 40000 into four equal time intervals with each interval
corresponding to one of the quarters. In each such interval, the associate quarter dummy variable is 1, and all
other quarter dummies are zero. Next, to set the store dummies, we make a random draw at each time step,
with probabilities that mimic the ratio of store market shares in the data. In the estimation data, the total
market sizes are 669,193, and 355,307 ounces respectively for each of the stores. Based on these, we assign a
probability of 0.65 for the first store and 0.35 for the second store.

Figure 7 shows the simulation results. First, in the left panel, we see that our TS approach has the lowest
regret, followed by Greedy, while M3P performs significantly worst. The regret plot demonstrates that TS has
49.49% less regret at the end of the time horizon compared to Greedy. In terms of the percentage of optimal
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revenue recovered that is shown in the middle panel, Thompson Sampling can recover 4.20% more of the
optimal revenue than Greedy.

Finally, we see that whenever we switch quarters (namely at times t ∈ {10000, 20000, 30000}), there is a
jump in the regret. This is especially prominent in the last panel, where we show simple regret, i.e., per-period
regret. These jumps happen because the model needs some time at the start of a quarter to learn the parameters
corresponding to that quarter. Overall, we find that even when contexts are changing, our contextual-TS
algorithm is able to learn the demand model sufficiently well to personalize prices and promotions for each
context.

7.3 Experiments in Non-Linear Contextual Settings: Clustered Customer Groups

We now extend our approach to settings where the demand parameters are non-linear functions of the context.
More precisely, in the notation of Section 6.1, we assume that α, β, γ are unknown and non-linear functions
of the context vector ct and model them using a neural network.

We consider a setting where our customer population can be clustered into a set of groups with similar
characteristics. However, the firm does not know that the context vectors have this underlying group structure
and instead only observes a four-dimensional context vector representing each customer. We furthermore
assume that the underlying demand model for a set of products in each group is constant for all customers in
that group, and is given by demand formulation of Equation (2) for group-specific demand parameters. We
first describe the context distribution arising from these groups and then how the parameters for each group
were chosen.

To define our context distribution, we consider a clustered setting where each user is represented by a
four-dimensional context vector c ∈ R4. The underlying distribution is a Gaussian Mixture Model (GMM)
over eight centers in four dimensions. More precisely, ct ∼ 1

8
∑8

g=1N (Cg, 0.12I4), for all t ≥ 1 where the
cluster centers {Cg}8g=1 ⊂ R4 are given in the Web Appendix in Table A7. We chose the covariance matrix
to ensure that with high probability the clusters are non-overlapping. A sample of 1,000 contexts drawn from
this distribution is shown in Figure 8. As we can see, this setting can be interpreted as one where there are
eight segments of well-separated consumers.

We consider a setting with nine products. We use the notation from Section 6.1 and define the functions
α : R4 → R9, β : R4 → R9, γ : R4 → R9 as non-linear functions that map the contexts to demand
parameters as defined in Equation (9). Our specific choice of the true α, β, γ exploits the cluster structure
discussed above. To achieve this, we define eight regions and utilize a piecewise constant function that
outputs a set of parameters for contexts coming from each region. Specifically, we divide R4 into eight
regions S1, · · · ,S8, where Sg = {c ∈ R4 : ∥c − Cg∥ ≤ minc′∈{1,··· ,8} ∥c − Cg′∥}, i.e. Sg is the set of
points whose closest cluster center is Cg. For each region 1 ≤ g ≤ 8 we define a set of parameters, namely
ᾱg, β̄g, γ̄g ∈ R9 (the precise values of these are given in Table A8). Using these regions S1, · · · ,S8 and
parameters ᾱg, β̄g, γ̄g ∈ R9, we define our demand parameter functions α, β, γ as a piecewise constant
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functions in each region:

α(c), β(c), γ(c) =



ᾱ1, β̄1, γ̄1 c ∈ S1

ᾱ2, β̄2, γ̄2 c ∈ S2...
ᾱ8, β̄8, γ̄8 c ∈ S8

(12)

Figure 8: Illustration of the context distribution in the GMM contextual setup. We generated 1000 points from this distribution and
plotted them above. Each plot shows a pair of selected dimensions from the 4-dimensional points. The color of the points indicates
the region to which each point belongs. Note that in R4 the regions are non-overlapping.

Of course, in practice, the firm certainly does not know the parameters ᾱi, β̄i, γ̄i, 1 ≤ i ≤ 8 and they may
not even know that the underlying demand is driven by the clusters. Furthermore, if the firm has just entered a
market or has not collected extensive customer data, it may not even be aware of the underlying clustering of
customer contexts. Thus, it needs to model α, β, γ in a sufficiently general way to capture arbitrary functional
forms. In our simulation, we compare the regret incurred if the firm were to try two different neural network
models against a linear baseline.

For our simulation, we estimate α, β, γ using three different models:
• Linear model: This model follows the formulation of Equation (10) using a linear mapping from

context vector c ∈ R4 to the parameter space α, β, γ.

• Two-Layer Neural Network with Separate Hidden Layers: In this model, we have three separate two-layer
neural networks for each of the parameters α, β, γ. Each network maps from a four-dimensional input
to a nine-dimensional output and has a hidden layer of size four along with sigmoid activation functions
(Figure 9b).

• Two-Layer Neural Network with Shared Hidden Layer: This is similar to the previous model, except
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(a) Neural Network With Shared Hidden Layer (b) Neural Network With Separate Hidden Layers

Figure 9: The two neural network architectures used for estimating the non-linear parameter function.

that the neural network representations use a shared hidden layer (Figure 9a). This network has fewer
parameters to learn, and therefore less expressive; however, it may also require less data to train.

We describe further implementation details of this experiment in Web Appendix K. The results are shown
in Figure 10. We focus on the first row, which demonstrates that using a neural network model leads to
significantly less regret compared to a linear model. This is perhaps not surprising since the true demand
parameters α, β, γ are non-linear functions of the context vectors. Thus a linear model is misspecified, and
hence our estimates of the demand model will poorly approximate the true demand model. In contrast, both
neural network models can better learn the demand function and incur significantly less regret. Furthermore,
the model without parameter-sharing performs better and achieves a slightly smaller regret. This is due to the
additional level of flexibility of this model over the model with a shared hidden layer. In the second row,
we compare the neural network with separate hidden layers version of our method with the neural network
versions of the Greedy and M3P baselines with shared hidden layers. Consistent with our previous results, we
can see that Greedy has a simple regret which is almost twice the simple regret of TS. By the end of the time
horizon, TS has a 7.83% increase in the percentage of optimal revenue recovered compared to Greedy and
4.31% compared to M3P.

Overall, our approach is robust and can easily be applied to a variety of contextual settings that are
commonly faced by marketers. Specifically, we show that the approach works irrespective of – (1) whether
the underlying demand parameters are linear in contexts or non-linear, (2) whether the context distribution is
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(a) Cumulative Regret (b) Percentage of Optimal Revenue (c) Simple Regret

(d) Cumulative Regret (e) Percentage of Optimal Revenue (f) Simple Regret

Figure 10: We compare the performances of different methods in the non-linear contextual setting. The first row compares the
linear versions of Thompson Sampling (TS Linear) to variants that use a two-layer neural network; namely, TS NN Shared Hidden
(Figure 9a) and TS NN Non-Shared Hidden (Figure 9b). In the second row, we compare Thompson Sampling to Greedy and M3P
baselines, where all three methods use the architecture of Figure 9b for estimating demand parameters.

known ahead of time or not, (3) whether the context distribution remains constant or changes over time.
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8 Conclusion

In conclusion, this study provides an effective approach to adaptive pricing and promotions with discrete
choice models. Using a Thompson Sampling approach, we develop a regret minimizing, alternatively profit
maximizing, algorithm for the retailer. Using simulations based on real-life grocery store data, we show
that our method significantly outperforms existing approaches. We also extend our methodology to settings
where the demand parameters are functions of customer features and show that our approach can be used to
customize prices and promotions in realtime while simultaneously learning the demand model.

Further, we note that our method allows managers to optimize promotions and marketing mix variables,
even when price alterations are not feasible. We identify a finite set of optimal promotions that managers
can experiment with, utilizing well-established multi-armed bandit techniques such as UCB (Lattimore and
Szepesvári, 2020). Future research can build on this foundation by focusing on pure exploration strategies or
by incorporating market dynamics into the model, further enhancing the understanding and optimization of
adaptive pricing.

From a practical perspective, we give extensive empirical proof that a O(
√
T ) regret algorithm (e.g.,

Javanmard et al. (2020)) does not necessarily translate to empirical success. We illustrate the advantages of
using the model-based approach of Thompson sampling in optimizing pricing and promotional strategies. By
moving away from forced exploration—which proves to be counterproductive in terms of regret minimization
and managerial implications, we successfully extend model-based exploration to adaptive pricing and
promotion.

Finally, we primarily considered a setting where the context represents customer and market features
at any time. However, we remark that it is straightforward to also incorporate information about product
features at each time, e.g., manufacturers may engage in national advertising or provide seasonal promotions
(which would be constant across consumers for a given product in a given time period). An almost identical
Thompson algorithm with a similar theoretical guarantee would effectively optimize prices and promotions in
such cases.
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Appendices

A Additional Details for Related Work
We now present a more detailed discussion of the work on adaptive pricing. The related works on this topic
are extensive and the papers in this area consider the following common setup. In the most common case,
there is one retailer/seller who sells a single product for a fixed number of rounds. In each round, the seller
first chooses a price for the product and then observes an associated demand. This demand is either a discrete
variable representing a single purchase by a single customer, or a continuous variable representing aggregate
expected demand over a population. Finally, the seller receives a revenue, which is simply the price times the
observed demand. In general, the seller must learn the demand function through price exploration and the
goal is to bound the regret of the pricing policy, namely the total loss in profit due to playing sub-optimal
prices. The hope (in stochastic settings) is to establish pricing policies that suffer no more than O(

√
T ) regret

where T is the time horizon over which the game is played
Beyond this stylized model, many variations arising from different assumptions on the number of products,

the nature of the price exploration and demand function, and the type of customers have been considered. A
majority of papers in this area consider single-product non-parametric demand models (Wang et al., 2021;
Besbes and Zeevi, 2015, 2009; Kleinberg and Leighton, 2003; Weaver and Kumar, 2022). To make the analysis
tractable, these papers typically include assumptions on the concavity, Lipschitzness, smoothness, modality of
the profit function, or that the demand function is drawn from a Gaussian process. The non-parametric setting
also includes works which apply multi-armed bandit techniques to setting with just a finite set of prices or
potential demand functions as in Cheung et al. (2017); Misra et al. (2019) or Kleinberg and Leighton (2003).
A potential downside of naively pursuing this approach is that it leads to regret which can scale with the size
of discretization which could be potentially large (Misra et al., 2019).16

A separate line of work (also with a single product), closer to this paper, considers settings where an
explicit parametric form on the demand is assumed. Most often, the demand observed follows a generalized
linear model of the price (den Boer and Zwart, 2014; Besbes and Zeevi, 2009). This level of generality allows
the observed demand to be either a binary random variable which represents whether the customer purchased
the product or not (Broder and Rusmevichientong, 2012; Kleinberg and Leighton, 2003), or a continuous
random variable representing aggregate expected demand over a population (Keskin and Zeevi, 2014; Mueller
et al., 2019; den Boer and Zwart, 2014). We also refer the reader to the survey (Den Boer, 2015) which
discusses several older works.

Fewer works have considered the setting of multiple possible products available to a given user at any
time. Notable among them are Keskin and Zeevi (2014); Mueller et al. (2018); Javanmard et al. (2020);
Miao and Chao (2021) and Goyal and Perivier (2021). Even fewer works have considered the problem of
adaptively setting pricing under a multinomial model. In particular, Javanmard et al. (2020); Goyal and
Perivier (2021); Miao and Chao (2021) are the closest to our work. Firstly Javanmard et al. (2020), also
assumes a multinomial response model, but unlike our setting where we assumed a fixed set of items each
round, they assume that the set of items changes each round and that the seller receives covariate information
for each item. Their proposed M3P algorithm for pricing in this setting alternates between rounds of playing
random prices and then greedily playing the optimal price according to the estimated demand model at that
time. We quickly remark that the algorithm of Goyal and Perivier (2021) parallels MLE-Cycle algorithm
of Broder and Rusmevichientong (2012). The second work, Miao and Chao (2021) proposes an algorithm
that runs in cycles, with each cycle restarting when the outside option is selected. During a cycle, a hybrid
Thompson Sampling and price shock method is to choose the fixed prices played for the whole round. It is

16A notable exception to this is Kleinberg and Leighton (2003) which uses a discretization adapted to the time horizon and obtains a
regret bound independent of the size of the discretization.
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not clear how to extend their method for the case of promotion, or for the batch settings we consider. As we
discuss next, both of these works rely on a degree of forced exploration.

Forced exploration is often used in the pricing literature to guarantee sufficient exploration to learn the
underlying parameters of the pricing problem. In general, forced exploration algorithms come in two forms.
In the first method the exploration is done through totally uniform prices or a fixed set of prices (Broder and
Rusmevichientong, 2012; Javanmard et al., 2020). In the second approach, the Hessian of the log-likelihood
of the pricing problem is computed and then, price exploration is designed to ensure that the minimum
eigenvalue of the Hessian grows at a rate of Ω(

√
T ) (Keskin and Zeevi, 2014; den Boer and Zwart, 2014; Miao

and Chao, 2021). From a computational perspective, computing the minimum eigenvalue of the Hessian can
be computationally expensive. In addition, from an algorithmic design perspective, changes in the underlying
model can lead to a change in the computation of the Hessian, which then leads to a change in the choice
of prices. As a result, these methods are less flexible and may require onerous computation to modify. In
contrast to these works, our Thompson Sampling algorithm relies on model-based exploration. As we will
see, our approach avoids explicit Hessian computation and as a result, is far more plug-and-play.

Finally, a recent line of work considers the linear parametric contextual setting, where at each time
additional covariate information about products, customers, or market information is revealed (Javanmard and
Nazerzadeh, 2016; Qiang and Bayati, 2016; Ban and Keskin, 2021; Xu and Wang, 2021; Javanmard, 2017;
Javanmard et al., 2020; Shah et al., 2019). This additional information is allowed to affect the underlying
utility obtained through an additive shift or multiplicatively on the price sensitivity by a linear function of
the context. One common feature of all these works is that (with the exception of Javanmard et al. (2020),
discussed below) they consider a setting with a single product. In contrast, in this paper, we consider a
more general case, where we allow the utility function to potentially be an unknown non-linear function
of the context. We adapt our Thompson sampling approach to this setting and show promising empirical
performance modeling the unknown utility as a neural network.

We quickly point out three other works in the multi-product setting that use Thompson sampling for price
exploration, namely Ganti et al. (2018); Ferreira et al. (2018); Bastani et al. (2021). The former considers a
stylized demand model that does not take product cross-elasticities into account. The second considers a
discrete set of prices and focuses on the problem of effective inventory management. The final paper considers
the case of a linear demand model and focuses on the problem of prior misspecification where the definition
of regret is with respect to an algorithm that has a correctly specified prior. None of these works consider the
setting of multiple products with promotions and none of them extend to a setting with non-linear utility.

B Appendix for Section 4.1
B.1 Proof of Lemma 1
The proof here follows the same procedure as Proposition 3.1 in Javanmard et al. (2020). Let’s denote
ei = exp(αi − βipi + γixi) and G(e) =

∑
i∈[K] ei. In this notation we could rewrite Equation (3) as

Rθ(p,x) =
K∑

ℓ=1
(pℓ −mℓ)

eℓ

1 +G(e) ,

taking derivatives with respect to pi we would get

∂Rθ(p⋆,x)
∂pi

= ei − βiei(p⋆,i −mi)
1 +G(e) + (

∑K
ℓ=1(p⋆,ℓ −mℓ)eℓ)eiβi

(1 +G(e))2

= βiei

1 +G(e)

(
1
βi

+ (p⋆,i −mi) +
∑K

ℓ=1(p⋆,ℓ −mℓ)eℓ

1 +G(e)

)
= 0

ii



Because ei is non-zero, the expression inside the brace should be zero. We could also use the fact that∑K

ℓ=1(p⋆,ℓ−mℓ)eℓ

1+G(e) = Rθ(p⋆,x). Together we get

p⋆,i −mi = 1
βi

+Rθ(p⋆,x).

For simplicity we use R = Rθ(p⋆,x), then multiply the previous equation by ei and sum over all i ∈ [K].
We will get

K∑
i=1

(p⋆,i −mi)ei =
K∑

i=1

ei

βi
+R

K∑
i=1

ei =⇒

R(1 +G(e)) =
K∑

i=1

ei

βi
+RG(e) =⇒

R =
K∑

i=1

ei

βi
=

K∑
i=1

exp(αi − βipi + γixi)
βi

=
K∑

i=1

1
βi
e

αi−βi(mi+ 1
βi

+R)+γixi

=
K∑

i=1

1
βi
e−(1+Rβi+miβi)eαi+γixi ,

which is the fixed point (Equation (7)). This equation has a unique solution because the left-hand side is
increasing and starts from zero, and the right-hand side is positive at R = 0 and decreasing.
B.2 Algorithm for Fixed Point
We now provide the algorithm used to find the fixed point of Equation (7).

Algorithm 4 Method for finding the fixed point of Equation (7)
Input: ϵ the accepted error in the result

Find an Rm where Rm >
∑K

i=1
1
βi
e−(1+βiRm+βimi)eαi+γixi

Set Rm = 1
while Rm <

∑K
i=1

1
βi
e−(1+Rmβi+miβi)eαi+γixi do

Rm = Rm ∗ 2
end while

Find the solution between 0 and Rm with maximum ϵ error using binary search
Set l = 0, r = Rm

while r − l > ϵ do
m = r+l

2
if m <

∑K
i=1

1
βi
e−(1+mβi+miβi)eαi+γixi then

l = m
else

r = m
end if

end while
return l
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C Proof of Theorem 1
We first prove that there is no critical point in the interior. For a positive constant c > 1 define

Rc(p,x) =
K∑

i=1

(pit −mi) exp(αi − βipit + γixit)
c+

∑K
k=1 exp(αk − βkpkt + γkxkt)

(A1)

In particular, R1(p,x) = R(p,x). Again, let’s denote ei = exp(αi − βipi + γixi) and G(e) =
∑

i∈[K] ei.
The partial derivative of Rc(p,x) with respect to xi is

∂Rc(p,x)
∂xi

= (pi −mi)γiei

c+G(e) − (
∑K

ℓ=1(pℓ −mℓ)eℓ)γiei

(c+G(e))2

= γiei

c+G(e)

(
pi −mi −

∑K
ℓ=1(pℓ −mℓ)eℓ

c+G(e)

)
= γiei

c+G(e) (pi −mi −Rc(p,x))

Now firstly we claim thatRc(p,x) has no critical points. For there to be a critical point, by the assumption
we have γi > 0 that gives pi −mi = Rc(p,x) for each i. In particular this implies,

Rc(p,x) =
K∑

i=1

(pi −mi)ei

c+G(e)

=
K∑

i=1

(pi −mi)ei

c+G(e)

= Rc(p,x)
K∑

i=1

ei

c+G(e)

= Rc(p,x) G(e)
c+G(e)

< Rc(p,x)

which is a contradiction.
Now we show the box constraint. Denoting the extremum as x∗ := x∗(p) and let x∗ = (x∗

1, · · · , x∗
K).

We use proof by contradiction. Suppose at a maximum there exists some i ∈ [K] such that x∗
i ∈ (0, B).

Then,

Rc(p,x) =
K∑

k=1

(pk −mk)ek

c+G(e)

=
∑K

k ̸=i(pk −mk)ek + (pi −mi)ei

c+
∑K

k ̸=i ek + ei

.

Let ã =
∑K

k ̸=i(pk −mk)e∗
k and c̃ = c+

∑K
k ̸=i e

∗
k. Consider

f(xi) = Rc(p, (x∗
1, · · · , x∗

i−1, xi, x
∗
i+1, · · · , x∗

K)) = ã+ (pi −mi)ei

c̃+ ei
= pi −mi + ã− (pi −mi)c̃

c̃+ ei
.

This is a monotonic function of ei and thus xi. Therefore, x̃i := arg maxxi∈[0,B] f(xi) ∈ {0, B}. Then,
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let x̃ := (x∗
1, · · · , x∗

i−1, xi, x
∗
i+1, · · · , x∗

K), we have f(x̃i) > f(x∗
i ) and so Rc(p, x̃) > Rc(p,x∗), which

contradicts with the fact that x∗ is the maximum.
Now we would like to show the simplex case. Denoting the extremum as x∗ ∈ △K and let x∗ =

(x∗
1, · · · , x∗

K). Without loss of generality, we could assume mi = 0 for all i, since we could always shift
the prices pit and αi to incorporate mi, and we omit the dependence on t. Then, let x̃i = xi + αi−βipi

γi
.

Since {xi}Ki=1 ∈ ∆K , we have that
∑

i xi ≤ 1, and so
∑

i x̃i ≤ 1 +
∑

i
αi−βipi

γi
. Then, we write down the

Lagrangian of Rc(p,x) as

Lc(p,x) =
K∑

i=1

pi exp(γix̃i)
c+

∑K
k=1 exp(γkx̃k)

+ λ
( K∑

i=1
x̃i −

(
1 +

∑
i

αi − βipi

γi

))
. (A2)

Let g(x) =
∑K

i=1 xi−
(
1+
∑

i
αi−βipi

γi

)
. By primal feasibility, a critical point must satisfiy that∇xLc(p,x) =

0. Let ei and G(e) be defined as before, a computation shows

∂Lc(p,x)
∂xi

= γiei

c+G(e)(pi −Rc(p,x)) + λ.

Setting all of them equals zero implies that γiei(pi −Rc(p,x)) = −λ for all i. We first show that λ < 0 and
so −λ > 0. If −λ < 0, we have pi < Rc(p,x) for all i, so

Rc(p,x) =
K∑

i=1

piei

c+G(e)

< Rc(p,x)
K∑

i=1

ei

c+G(e)

= Rc(p,x) G(e)
c+G(e)

< Rc(p,x)

which is a contradiction. Then we consider the Hessian at a critical point. Note that

∂2Rc(p,x∗)
∂x2

i

= γ2
i ei(1 +G(e))− γiei · γiei

(1 +G(e))2 (pi −Rc(p,x∗)) + γiei

1 +G(e) ·
γiei

1 +G(e)(Rc(p,x∗)− pi)

and

∂2Rc(p,x∗)
∂xi∂xj

= −γiei · γjej

(1 +G(e))2 (pi −Rc(p,x∗)) + γiei

1 +G(e) ·
γjej

1 +G(e)(Rc(p,x∗)− pj).

Let the Hessian be H . Plugging in the critical point condition gives us

Hii = −λ
(1 +G(e))2

(
γi(1 +G(e))− 2γiei

)
,

Hij = −λ
(1 +G(e))2

(
− γiei − γjej

)
.
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Therefore, for some direction a ∈ RK ,

a⊤Ha =
∑

i

∑
j

aiHijaj

=
∑

i

a2
i γi(1 +G(e)− 2ei)−

∑
i

∑
j ̸=i

aiaj(γiei + γjej)

=
∑

i

a2
i γi(1 +

∑
k ̸=i

ek)−
∑

i

∑
j

aiaj(γiei + γjej).

Assume that K ≥ 2 and consider a = (a1, a2, 0, · · · , 0). Then

a⊤Ha = a2
1γ1
(
1 +

K∑
k=2

ek

)
+ a2

2γ2
(
1 + e1 +

K∑
k=3

ek

)
− a2

1γ1e1 − a2
2γ2e2 − 2a1a2(γ1e1 + γ2e2).

If a1 = 1, a2 = −1, then the above becomes

γ1
(
1 +

K∑
k=2

ek

)
+ γ2

(
1 + e1 +

K∑
k=3

ek

)
+ γ1e1 + γ2e2 > 0.

Then, by Taylor expansion,

Lc(p,x∗ + a) = Lc(p,x∗) + a⊤∇xLc(p,x∗) + a⊤∇2
xLc(p,x∗)a +O(∥a∥3).

Let a = (1,−1, 0, · · · , 0). Note that ∇xLc(p,x∗) = 0 and ∇2
xLc(p,x∗) = ∇2

xRc(p,x∗), we have that
Lc(p,x∗ + a) > Lc(p,x∗). Also, by complementary slackness, λg(x∗) = 0 and so λg(x∗ + a) = 0.
Therefore, Rc(p,x∗ + a) > Rc(p,x∗). Also, by definition of a, (x∗ + a) ∈ △K . Therefore, any critical
point cannot be the global maximum.

Then we prove the statement by contradiction. Without loss of generality, assume that x∗
1 ≥ x∗

2 ≥ · · · ≥
x∗

K ≥ 0. Assume x∗
1 ≥ x∗

2 ≥ · · · ≥ x∗
m > 0 = x∗

m+1 = · · · = x∗
K for m ≥ 2. Let x∗

m = (x1, · · · , xm).

Then, x∗
m = arg maxxm∈△m Rc(p, (x∗

m,0)). LetGm(e) =
∑m

i=1 ei andRc,s(p,xm) = s+
∑m

i=1 piei

c+Gm(e) . Then,

∂Rc,s(p,xm)
∂xi

= − (s+
∑m

i=1 piei) γiei + piγiei · (c+Gm(e))
(c+Gm(e))2

= γiei

c+Gm(e)

(
pi −

s+
∑m

i=1 piei

c+Gm(e)

)
= γiei

c+Gm(e) (pi −Rc,s(p,xm)) .

It can be shown that the Hessian of Rc,s(p,xm) is of the same form as Rc(p,xm). In particular, let H̃ be the
Hessian of Rc,s(p,xm), we have

H̃ii = −λ
(1 +Gm(e))2

(
γi(1 +Gm(e))− 2γiei

)
,

H̃ij = −λ
(1 +Gm(e))2

(
− γiei − γjej

)
.

Then, by above argument, there exists some direction that increases the function value, which contradicts with
the fact that x∗ is the maximum. Therefore, the maximum must be attained at the boundary.
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Algorithm 5 Procedure for finding the best price and promotion given a parameters θ
Input: θ,X

Set Rmax = −1
for all x ∈ X do

Find the revenue maximizing price p using Lemma 1 and get revenue Rx for this x
if Rmax < Rx then

x⋆ = x
p⋆ = p

end if
end for
return p⋆, x⋆

D Proof of Theorem 2
We state a full version of Theorem 2 that includes specific constants.

Theorem 4. Assume that maxx∈X ∥x∥∞ ≤ B, the largest price is bounded by u, ∥θ∗∥ ≤ S with probability
1, and the regularization in Algorithm 1 is λ. With probability at least 1 − δ, the regret of Algorithm 1 is
bounded by

RegB
T ≲ Su

(
√
λ+ 1√

λ
log

(
T (λ+ T/3)1.5Kλ1.5K

δ

)
+ K√

λ

)√
κKT log

(
λ+ T (u2 +B2 + 1)

λ1/K

)
.

Corollary 1. In the same setting as Theorem 4, if Algorithm 1 is run with regularizationλ = O
(
K log

(
KT (u2 +B2 + 1)

))
and δ = 1/T . Then the regret of Algorithm 1 is bounded in expectation by

Õ
(
SuK

√
κT log

(
KT (u2 +B2 + 1)

))
where Õ(·) hides constants and doubly logarithmic factors.

Confidence Interval: We begin by formally defining the λ-regularized maximum likelihood estimator at time
t, θ̂λ

t . Given a dataset {ps,xs, Is}ts=1 where ps denotes the price vector played at time s, xs the marketing
mix, and Is ∈ {0, 1, . . . ,K} is the item selected,

θ̂t
λ := arg min

θ∈R3K

t∑
s=0

K∑
i=0

1{Is = i} log (µi (θ,ps))− λ

2 ∥θ∥
2
2 (A3)

where ps = [1,ps,xs] ∈ R3K , and µi is the multinomial probability of item i

µi(θ,p) = Pθ(I = i|p,x) = exp(αi − βipi + γixi)
1 +

∑K
k=1 exp(αk − βkpk + γkxk)

. (A4)

We have the following concentration result.

Lemma 2 (After Lemmas 5, 12 from Agrawal et al. (2020)). Let θ̂λ
t solve Equation (A3). Fix δ > 0, λ > 0

and T <∞. Let ∥θ∥2 ≤ S. Define the event E as

E :=
T⋂

t=1
{∥θ̂λ

t − θ∗∥Vt(θ̂λ
t ) ≤ ψt(δ)}.
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E holds with probability at least 1− δ, where

Vt(θ) :=
t−1∑
s=1

µ̇i(θ,ps)psp⊤
s + λI

for µ̇i := ∇θµi(θ,p) and

ψt(δ) := 2(1 + 2S)
(√

λ

2 + 2√
λ

log
(
T (λ+ t/3)1.5Kλ1.5K

δ

)
+ 6K√

λ
log(2)

)
.

Remark 1. While Agrawal et al. (2019) assume that xt is i.i.d. from a context distribution, we note that the
same bound holds for adaptively chosen sequences as they do in Faury et al. (2020).

Upper bound using the confidence interval:
For the following, we fix some time t and suppress the dependence on t to simplify notation. Define the

following upper bound on the revenue at time t as

U(θ̂λ
t ,p,x) =

K∑
i=1

pi

exp
(
(θ̂λ

t )⊤pi + ψt(δ)∥pi∥Vt(θ̂λ
t )−1

)
1 +

∑K
j=1 exp

(
(θ̂λ

t )⊤pj + ψt(δ)∥pi∥Vt(θ̂λ
t )−1

)

Ut(p,x) = max
θ∈Ct

K∑
i=1

pi

exp
(
θ⊤pi

)
1 +

∑K
j=1 exp

(
θ⊤pj

)
where we recall p is a function of both p and x, and we define pi to be (1, psi, xsi) for the ith set of 3 entries
and zero elsewhere. We may decompose the regret at time t ≤ T conditioned on the filtration Ft−1 as

E[Regret(t)− Regret(t− 1)|Ft−1]
= E[R(p∗,x∗, θ∗)−R(pt,xt, θ∗)|Ft−1]
= E[R(p∗,x∗, θ∗)− U(p∗,x∗, θ̂

λ
t )|Ft−1] + E[U(p∗,x∗, θ̂

λ
t )− U(pt,xt, θ̂

λ
t )|Ft−1]

+ E[U(pt,xt, θ̂
λ
t )−R(pt,xt, θ∗)|Ft−1]

= E[R(p∗,x∗, θ∗)− U(pt,xt, θ̂
λ
t )|Ft−1] + E[U(pt,xt, θ̂

λ
t )−R(pt,xt, θ∗)|Ft−1]

where the final inequality holds by noting that E[U(p∗,x∗, θ̂
λ
t ) − U(pt,xt, θ̂

λ
t )|Ft−1] = 0 since θ̂λ

t is
deterministic conditioned on Ft−1 and p∗ and pt as well as x∗ and xt are identically distributed since pt and
xt are sampled according to the posterior at time t. Therefore,

E[Regret(T )] =
T∑

t=1
E[Regret(t)− Regret(t− 1)|Ft−1]

=
T∑

t=1
E[R(p∗,x∗, θ∗)− U(p∗,x∗, θ̂

λ
t )|Ft−1] + E[U(pt,xt, θ̂

λ
t )−R(pt,xt, θ∗)|Ft−1]

=
T∑

t=1
E[R(p∗,x∗, θ∗)− U(p∗,x∗, θ̂

λ
t )|Ft−1] +

T∑
t=1

E[U(pt,xt, θ̂
λ
t )−R(pt,xt, θ∗)|Ft−1].

We refer to the first summation as R1 and the second as R2 and bound them independently.
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Bounding R1: On the good event E defined in Lemma 2 we have that

θ⊤
∗ pi ≤ (θ̂λ

t )⊤pi + ψt(δ)∥p∥Vt(θ̂λ
t )−1 , for all i ∈ [K], t ≥ 1

Thus by Lemma 3 we have that R(p∗,x∗, θ∗)− U(p∗,x∗, θ̂
λ
t ) ≤ 0. Thus,

T∑
t=1

E[R(p∗,x∗, θ∗)− U(pt,xt, θ̂
λ
t )| ∩ Ft−1] ≤ uP(Ec) ≤ uδ ≤ O(u)

where u is an upper bound on the largest price.
Bound R2: As in the bound on R1,

T∑
t=1

E[U(pt,xt, θ̂
λ
t )−R(pt,xt, θ∗)|Ft−1] =

T∑
t=1

E[1(E)(U(pt,xt, θ̂
λ
t )−R(pt,xt, θ∗))|Ft−1]

+
T∑

t=1
E[1(Ec)(U(pt,xt, θ̂

λ
t )−R(pt,xt, θ∗))|Ft−1]

≲ u+
T∑

t=1
E[1(E)(U(pt,xt, θ̂

λ
t )−R(pt,xt, θ∗))|Ft−1].

Let E[·|Ft−1] =: Et[·] for brevity. Then we apply the Lipschitz property from Lemma 3 to show that

T∑
t=1

Et[1(E)(U(pt,xt, θ̂
λ
t )−R(pt,xt, θ∗))] ≤ u

T∑
t=1

Et[1(E) max
ℓ
|p⊤

ℓ (θ̂λ
t − θ∗)|]

= u
T∑

t=1
Et[1(E) max

ℓ
p⊤

ℓ (θ̂λ
t − θ∗)]

where the final inequality holds due to E since

θ⊤
∗ pi ≤ (θ̂λ

t )⊤pi + ψt(δ)∥p∥Vt(θ̂λ
t )−1 , for all i ∈ [K], t ≥ 1

on E . Then by Cauchy-Schwarz,

u
T∑

t=1
Et[1(E) max

ℓ
p⊤

ℓ (θ̂λ
t − θ∗)] ≤ u

T∑
t=1

Et[1(E) max
ℓ
∥pℓ∥Vt(θ̂λ

t )−1∥θ̂λ
t − θ∗∥Vt(θ̂λ

t )]

≤ u
T∑

t=1
ψt(δ)Et[max

ℓ
∥pℓ∥Vt(θ̂λ

t )−1 ]

≤ uψT (δ)
T∑

t=1
Et[max

ℓ
∥pℓ∥Vt(θ̂λ

t )−1 ]

where the penultimate inequality follows from the definition of E and the final inequality holds since ψt(δ) is
an increasing sequence in t. By second application of Cauchy-Schwarz,

uψT (δ)
T∑

t=1
Et[max

ℓ
∥pℓ∥Vt(θ̂λ

t )−1 ] ≤ uψT (δ)

√√√√T T∑
t=1

Et[max
ℓ
∥pℓ∥2Vt(θ̂λ

t )−1 ]
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Next, note that

Vt(θ̂λ
t ) =

t−1∑
s=1

µ̇i(θ̂λ
t ,ps)psp⊤

s + λI ⪰ κ−1
t−1∑
s=1

psp⊤
s + λI =: κ−1Wt.

for κ = 1/minp µ̇i(θ,p). Hence, Vt(θ̂λ
t )−1 ⪯ κW−1

t for Wt :=
∑t−1

s=1 psp⊤
s + λI which implies

uψT (δ)

√√√√T T∑
t=1

Et[max
ℓ
∥pℓ∥2Vt(θ̂λ

t )−1 ] ≤ uψT (δ)

√√√√κT T∑
t=1

Et[max
ℓ
∥pℓ∥2W −1

t

].

Next, note that pℓ can be written as Pℓp where Pℓ : R3 → R3K projects onto the ℓth set of 3 coordinates.
Hence the above is bounded by

uψT (δ)

√√√√κT T∑
t=1

Et[max
ℓ
∥Pℓp∥2W −1

t

] = uψT (δ)

√√√√κT T∑
t=1

Et[∥p∥2W −1
t

] = uψT (δ)

√√√√κTE [ T∑
t=1
∥p∥2

W −1
t

∣∣Ft−1

]

Finally, we rely on the standard elliptical potential lemma (cf., Lemma 19.4 of Lattimore and Szepesvári
(2020)) to show that

E
[

T∑
t=1
∥p∥2

W −1
t

∣∣Ft−1

]
≤ 6K log

(
3λ+ T (u2 +B2 + 1)

3λ1/3K

)

where we recall that we have assumed maxx∈X ∥x∥∞ ≤ B. Plugging this in alongside the definition of
ψT (δ) completes the proof.

Lemma 3. Let pℓ ≤ U for all ℓ ∈ [K]. For θ = [α1, β1, γ1, . . . , αK , βK , γK ] ∈ R3K and θ′ =
[α′

1, β
′
1, γ

′
1 . . . , α

′
K , β

′
K , γ

′
K ] ∈ R3K , price vector p, and marketing mix x

R(θ′,p,x)−R(θ,p,x) ≤ U max
ℓ
|(1, pℓ, xℓ)⊤(α′

ℓ − αℓ, β
′
ℓ − βℓ, γℓ − γ′

ℓ)|

In particular, if αℓ − βℓpℓ − γℓxℓ ≥ α′
ℓ − β′

ℓ − γ′
ℓxℓpℓ then

R(θ′,p)−R(θ,p) ≤ U max
ℓ

(1, pℓ)⊤(α′
ℓ − αℓ, β

′
ℓ − βℓ, γℓ − γ′

ℓ)

Proof of Lemma 3. Let θ = [α1, β1, γ1 · · · , αK , βK , γK ] ∈ R3K , p = (p1, · · · , pK) ∈ RK , and x =
(x1, · · · , xK) ∈ RK . Define θℓ = (αℓ, βℓ, γℓ)⊤ and pℓ = (1, pℓ, xℓ)⊤, and functions

qℓ(θ, p, x) := eθ⊤
ℓ pℓ

1 +
∑K

i=1 e
θ⊤

i pi

R(θ, p, x) :=
∑K

i=1 pie
θ⊤

i pi

1 +
∑K

i=1 e
θ⊤

i pi

By the mean value theorem, for some θ̄ on the line between θ′, θ

R(θ′,p,x)−R(θ,p,x) = ∇θR(θ̃,p,x)⊤(θ′ − θ)

x



Let’s now compute the righthand side. Note that

∇θℓ
R(θ,p,x) = pℓe

θ⊤
ℓ pℓ(1 +

∑K
i=1 e

θ⊤
i pi)− (

∑K
i=1 pie

θ⊤
i pi)eθ⊤

ℓ p̄ℓ

(1 +
∑K

i=1 e
θ⊤

i pi)2
pℓ

So then

(∇θR(θ̃,p,x))⊤(θ′ − θ) =
∑K

ℓ=1[pℓe
θ̃⊤

ℓ pℓ(1 +
∑K

i=1 e
θ̃⊤

i pi)− (
∑K

i=1 pie
θ̃⊤

i pi)eθ̃⊤
ℓ pℓ ]p⊤

ℓ (θ′
ℓ − θℓ)

(1 +
∑K

i=1 e
θ̃⊤

i pi)2

=
K∑

l=1
pℓqℓ(θ̃, p, x)p⊤

ℓ (θ′
ℓ − θℓ)−R(θ̃,p,x)

K∑
ℓ=1

qℓ(θ̃, p, x)p⊤
ℓ (θ′

ℓ − θℓ)

=
K∑

l=1
(pℓ −R(θ̃,p,x))qℓ(θ̃, p, x)p⊤

ℓ (θ′
ℓ − θℓ)

In general, we can bound

≤ U
K∑

ℓ=1
qℓ(θ̃, p)|p⊤

ℓ (θ′
ℓ − θℓ)|

≤ U max
ℓ
|p⊤

ℓ (θ′
ℓ − θℓ)|

where the final inequality holds since qℓ defines a probability distribution. If p⊤
ℓ (θ′

ℓ−θℓ) ≥ 0 (component-wise)
the previous inequality is still true.

E Proof of Theorem 3
Theorem 5. Assume that maxx∈X ∥x∥∞ ≤ B, the largest price is bounded by u, ∥θ∥ ≤ S with probability
1. With probability at least 1− δ, the regret of Algorithm 1 in the contextual setting is bounded by

RegB
T ≲ O

(
SudK log(dKT/δ)

√
κT log (3κ+ T (u2 +B2 + 1))

)
.

Proof. Let µi denote the multinomial probability of item i

µi(θ,pt) = Pθ(I = i|p,x, ct) = exp(⟨αi, ct⟩ − ⟨βi, ct⟩ pi + ⟨γi, ct⟩xi)
1 +

∑K
k=1 exp(⟨αk, ct⟩ − ⟨βk, ct⟩ pk + ⟨γk, ct⟩xk)

. (A5)

We begin by formally defining the λ-regularized maximum likelihood estimator at time t, θ̂λ
t . Given a

dataset {ps,xs, Is}ts=1 where ps denotes the price vector played at time s, xs the marketing mix, and
Is ∈ {0, 1, . . . ,K} is the item selected,

θ̂λ
t := arg min

θ∈R3dK

t∑
s=0

K∑
i=0

1{Is = i} log (µi (θ,ps))− λ

2 ∥θ∥
2
2 (A6)

where pt,i = [ct, pict,xt] ∈ R3dK and θ∗ := [α, β, γ] ∈ R3dK . We define the confidence set as

Ct(δ) :=
{
θ ∈ Θ : ∥θ − θ̂λ

t ∥Vt(θ̂λ
t ) ≤ ψt(δ)

}

xi



where

Vt(θ) :=
t−1∑
s=1

µ̇i(θ,ps)psp⊤
s + λI

for µ̇i := ∇θµi(θ,p) and

ψt(δ) := 2(1 + 2S)
(√

λ

2 + 2√
λ

log
(
T (λ+ t/3)1.5dKλ1.5dK

δ

)
+ 6dK√

λ
log(2)

)
.

Also define the UCB given some p and x as

Ut(p, x) = max
θ∈Ct(δ)

K∑
i=1

pi exp(θ⊤pi)
1 +

∑K
j=1 exp(θ⊤pj)

.

We let RegT denote the cumulated regret at time T . Then

E[Regt−Regt−1 |Ft−1]
= E[Rθ∗(p∗,x∗)−Rθ∗(pt,xt)|Ft−1]
= E[Rθ∗(p∗,x∗)− Ut(p∗,x∗)|Ft−1] + E[Ut(p∗,x∗)− Ut(pt,xt)|Ft−1]

+ E[Ut(pt,xt)−Rθ∗(pt,xt)|Ft−1]
= E[Rθ∗(p∗,x∗)− Ut(p∗,x∗)|Ft−1] + E[Ut(pt,xt)−Rθ∗(pt,xt)|Ft−1]

where the second term has expectation zero since (pt,xt) follows the same distribution as (p∗,x∗) given
Ft−1. Therefore, the cumulated regret

E[RegT ] =
T∑

t=1
E[Regt−Regt−1 |Ft−1]

=
T∑

t=1
E[Rθ∗(p∗,x∗)− Ut(p∗,x∗)|Ft−1] + E[Ut(pt,xt)−Rθ∗(pt,xt)|Ft−1]

=
T∑

t=1
E[Rθ∗(p∗,x∗)− Ut(p∗,x∗)|Ft−1] +

T∑
t=1

E[Ut(pt,xt)−Rθ∗(pt,xt)|Ft−1].

We will bound the two terms together. Define the good event E as

E := {∀t ≥ 1, θ∗ ∈ Ct(δ)}.

First, by Lemma 11 from Agrawal et al. (2020), we have P(E) ≥ 1− δ. Also, for any p, x, we have

T∑
t=1

E[Ut(p,x)−Rθ∗(p,x)|Ft−1] =
T∑

t=1
E[1(E)(Ut(p,x)−Rθ∗(p,x))|Ft−1]

+
T∑

t=1
E[1(Ec)(Ut(p,x)−Rθ∗(p,x))|Ft−1]

≲ uδ +
T∑

t=1
E[1(E)(Ut(p,x)−Rθ∗(p,x))|Ft−1].
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Consider some time t and some θ ∈ Ct(δ). First,

∥θ − θ∗∥Vt(θ̂λ
t ) ≤ ∥θ − θ̂

λ
t ∥Vt(θ̂λ

t ) + ∥θ̂λ
t − θ∗∥Vt(θ̂λ

t )

≤ 2ψt(δ)

since both θ and θ∗ are in the confidence set. Then, by the Lipschitz property from Lemma 3, we have that
under E ,

Rθ(p,x)−Rθ∗(p,x) ≤ umax
ℓ
|p⊤

ℓ (θ − θ∗)|]

≤ umax
ℓ
∥pℓ∥Vt(θ̂λ

t )−1∥θ − θ∗∥Vt(θ̂λ
t )

≤ 2uψt(δ) max
ℓ
∥pℓ∥Vt(θ̂λ

t )−1 .

Note that the right-hand side is a quantity independent of θ, by taking maximum over θ ∈ Ct(δ), we have that

Ut(p,x)−Rθ∗(p,x) ≤ 2uψt(δ) max
ℓ
∥pℓ∥Vt(θ̂λ

t )−1 .

Let E[·|Ft−1] =: Et[·] for brevity. Therefore,

T∑
t=1

Et[1(E)(Ut(p,x)−Rθ∗(p,x))] ≤ 2u
T∑

t=1
ψt(δ)Et[max

ℓ
∥pℓ∥Vt(θ̂λ

t )−1 ]

≤ 2uψT (δ)
T∑

t=1
Et[max

ℓ
∥pℓ∥Vt(θ̂λ

t )−1 ].

where the final inequality holds since ψt(δ) is an increasing sequence in t. By a second application of
Cauchy-Schwarz,

uψT (δ)
T∑

t=1
Et[max

ℓ
∥pℓ∥Vt(θ̂λ

t )−1 ] ≤ uψT (δ)

√√√√T T∑
t=1

Et[max
ℓ
∥pℓ∥2Vt(θ̂λ

t )−1 ]

Next, note that

Vt(θ̂λ
t ) =

t−1∑
s=1

µ̇i(θ̂λ
t ,ps)psp⊤

s + λI ⪰ κ−1
(

t−1∑
s=1

psp⊤
s + κλI

)
=: κ−1Wt.

for κ = 1/minp µ̇i(θ,p). Hence, Vt(θ̂λ
t )−1 ⪯ κW−1

t for Wt :=
∑t−1

s=1 psp⊤
s + κλI which implies

uψT (δ)

√√√√T T∑
t=1

Et[max
ℓ
∥pℓ∥2Vt(θ̂λ

t )−1 ] ≤ uψT (δ)

√√√√κT T∑
t=1

Et[max
ℓ
∥pℓ∥2W −1

t

].

Next, note that pℓ can be written as Pℓp where Pℓ : R3 → R3K projects onto the ℓth set of 3 coordinates.
Hence the above is bounded by

uψT (δ)

√√√√κT T∑
t=1

Et[max
ℓ
∥p∥2

W −1
t

] = uψT (δ)

√√√√κT T∑
t=1

Et[∥p∥2W −1
t

] = uψT (δ)

√√√√κTE [ T∑
t=1
∥p∥2

W −1
t

∣∣Ft−1

]
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Finally, we rely on the standard elliptical potential lemma (cf., Lemma 19.4 of Lattimore and Szepesvári
(2020)) to show that

E
[

T∑
t=1
∥p∥2

W −1
t

∣∣Ft−1

]
≤ 6dK log

(
3κλ+ T (u2 +B2 + 1)

3κ1/3dKλ1/3dK

)

where we recall that we have assumed maxx∈X ∥x∥∞ ≤ B. Plugging this in alongside the definition of
ψT (δ) completes the proof.

F Baseline Algorithms’ Descriptions

Algorithm 6 Greedy for Multinomial Demand Model
Input: P × X , τ - Number of initial random samples

for t = 0, 1, 2, · · · , do
if t < τ then

Sample pt,xt uniformly from P × X
else

Set θt = arg maxθ Lt(θ|Ht−1)
Set pt,xt = arg maxp∈P,x∈X Rθt(p,x)

end if
Observe It and rt := pIt −mIt

end for

Algorithm 7 M3P for Multinomial Demand Model
Input: P × X

Set K = dim(P)
Set tnext = 0
for b = 1, 2, · · · , do

Set lb = K + b as the number of periods in the b-th block
for t = tnext, tnext + 1, · · · , tnext + lb − 1 do

Select pt as follows
Exploration: For the first K periods (t− tnext < K) sample pt,xt uniformly from P × X
Learning: After these K exploration samples find θk = arg maxθ Lt(θ|Ht−1)
Exploitation: For the remaining b−K periods set pt,xt = arg maxp∈P,x∈X Rθk

(p,x)
In each period t, observe It and rt := pIt −mIt

end for
Set tnext = tnext + lb

end for

G Appendix for Numerical Experiments based on Nielsen Data for Non-Contextual Settings
G.1 Descriptive Statistics of Coffee Category in NielsenIQ Data
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Brand Mean Std. Dev. Min Max No. Obs.

Price per ounce

Peet’s Coffee 0.6423 0.1168 0.4739 0.8998 52.0
Starbucks 0.6432 0.0871 0.5225 0.8231 52.0
Seattle’s Best 0.4542 0.0664 0.3298 0.6109 52.0
Stumptown 1.1608 0.0964 0.9602 1.2951 52.0
Tony’s Coffee 0.8126 0.0389 0.6685 0.8325 52.0
Folgers 0.3311 0.0396 0.2568 0.4099 52.0
Cutters Point 0.8000 0.0277 0.7446 0.8325 52.0
CTL BR 0.3857 0.0678 0.2626 0.6424 52.0
Gevalia Kaffe 0.5942 0.0304 0.5183 0.6991 52.0
Other 0.7494 0.0544 0.5787 0.8509 52.0

Feature per ounce

Peet’s Coffee 0.3905 0.4325 0.0 1.0000 52.0
Starbucks 0.3833 0.3919 0.0 1.0000 52.0
Seattle’s Best 0.2079 0.3652 0.0 1.0000 52.0
Stumptown 0.0577 0.2354 0.0 1.0000 52.0
Tony’s Coffee 0.0000 0.0000 0.0 0.0000 52.0
Folgers 0.0408 0.1679 0.0 0.8324 52.0
Cutters Point 0.0000 0.0000 0.0 0.0000 52.0
CTL BR 0.0136 0.0774 0.0 0.5451 52.0
Gevalia Kaffe 0.0596 0.2119 0.0 0.9126 52.0
Other 0.0225 0.0774 0.0 0.4982 52.0

Display per ounce

Peet’s Coffee 0.2377 0.2070 0.0 0.6990 52.0
Starbucks 0.2114 0.1662 0.0 0.5784 52.0
Seattle’s Best 0.0546 0.1366 0.0 0.5562 52.0
Stumptown 0.0846 0.2449 0.0 1.0000 52.0
Tony’s Coffee 0.0301 0.1230 0.0 0.5714 52.0
Folgers 0.0000 0.0000 0.0 0.0000 52.0
Cutters Point 0.1184 0.2346 0.0 0.6667 52.0
CTL BR 0.0784 0.1261 0.0 0.5451 52.0
Gevalia Kaffe 0.0000 0.0000 0.0 0.0000 52.0
Other 0.0346 0.0775 0.0 0.4582 52.0

Ounces sold

Peet’s Coffee 3060.4519 1324.0975 923.00 5883.50 52.0
Starbucks 2892.1919 1065.3690 1245.00 5978.00 52.0
Seattle’s Best 2032.7692 878.0696 740.00 4056.00 52.0
Stumptown 544.3846 253.8145 228.00 1464.00 52.0
Tony’s Coffee 443.7692 114.9156 264.00 792.00 52.0
Folgers 763.3038 220.1129 357.00 1431.40 52.0
Cutters Point 286.8462 83.6888 132.00 456.00 52.0
CTL BR 557.2779 150.3929 322.90 846.60 52.0
Gevalia Kaffe 318.8846 111.8244 82.00 628.00 52.0
Other 1969.2338 452.0854 1328.42 3954.21 52.0

Table A1: Summary statistics of the weekly data used in Section 5.2 for the nine top brands and other brands aggregated to Other.
We show the statistics on price, feature, and display per ounce, and total ounces sold.

G.2 Parameter Estimates for Single Store in King County
Table A2 shows the α, β, γ parameters estimated for coffee demand in one of the stores in King County. The
estimation procedure is discussed in Section 5.2.1.
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coef std err t P> |t| [0.025 0.975]

αP eet′sCoffee 1.4967 0.173 8.659 0.000 1.158 1.835
αStarbucks 1.2047 0.257 4.685 0.000 0.701 1.709
αSeattle′sBest 1.4439 0.195 7.417 0.000 1.062 1.825
αStumptown 1.6104 0.171 9.423 0.000 1.275 1.945
αT ony′sCoffee -0.9526 0.262 -3.641 0.000 -1.465 -0.440
αF olgers -0.5087 0.111 -4.602 0.000 -0.725 -0.292
αCuttersP oint 2.1615 0.375 5.768 0.000 1.427 2.896
αCT LBR -1.9331 0.093 -20.705 0.000 -2.116 -1.750
αGevaliaKaffe 0.9966 0.273 3.645 0.000 0.461 1.533
αOther -0.2887 0.203 -1.423 0.155 -0.686 0.109
βP eet′sCoffee 4.1954 0.210 19.963 0.000 3.783 4.607
βStarbucks 3.7477 0.330 11.361 0.000 3.101 4.394
βSeattle′sBest 6.5896 0.395 16.683 0.000 5.815 7.364
βStumptown 3.8422 0.146 26.289 0.000 3.556 4.129
βT ony′sCoffee 2.4883 0.321 7.747 0.000 1.859 3.118
βF olgers 5.8400 0.250 23.381 0.000 5.350 6.330
βCuttersP oint 7.0085 0.465 15.071 0.000 6.097 7.920
βCT LBR 2.1558 0.175 12.324 0.000 1.813 2.499
βGevaliaKaffe 7.3040 0.403 18.114 0.000 6.514 8.094
βOther 1.5894 0.238 6.682 0.000 1.123 2.056
γfeature 0.0742 0.070 1.060 0.289 -0.063 0.211
γdisplay 0.2195 0.055 4.009 0.000 0.112 0.327
Number of Observations: 520
R-squared: 0.958
Adjusted R-squared: 0.951
Log-Likelihood: 100.81

Table A2: Parameter estimates for ground coffee category for a large store in King County, WA. Week dummies are not shown and
the standard errors are clustered at the brand-level.

G.3 Parameters and Optimal Prices and Promotions for the Experiments
Table A3 show the α, β, γ parameters used in the experiments, alongside the optimal price and promotion for
each brand. The estimated α, β, and γ values from Table A2 are used here, and to adopt the 32-ounce coffee
bag size, the values of β are divided by 32. This is because our estimated β values are for prices per ounce,
and with a bag size of 32, the final prices for 32 ounces would be 32 times the price per ounce. Hence, to
keep the demand model the same as in the estimation, we should divide the β by 32.

Peet’s Coffee Starbucks Seattle’s Best Stumptown Tony’s Coffee Folgers Cutters Point CTL BR GevaliaKaffe

α 1.497 1.205 1.444 1.610 -0.953 -0.509 2.162 -1.933 0.997
β 0.131 0.117 0.206 0.120 0.078 0.182 0.219 0.067 0.228
γ 0.386 0.237 0.256 0.112 0.324 0.239 0.062 0.307 0.192
p∗ 20.071 20.982 17.300 20.772 25.304 17.923 17.010 27.288 16.825
x∗ 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A3: Parameters and Optimal Prices and Promotions used for Numerical Experiments based on Nielsen Data. Note that these
parameters are for the 32-ounce coffee bags; hence we have divided the estimated β parameters by 32.

H Equivalence of Linear Models
A common model considered for linear contextual pricing in the literature Ban and Keskin (2021); Javanmard
et al. (2020) is as follows. At each time we assume that we observe a context cti ∈ Rd for product i. The
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utility of product at time t is given by

Uit(pt, cti) = ⟨cti, α⟩ − ⟨cit, β⟩pti (A7)

for some fixed parameter vectors α, β ∈ Rd. We claim that this model captures our setting above:
• In the case where we have no context (Section 4.2), we can set cti = ei ∈ RK , and α, β above. That is,

the context that arrives is constant in each round.
• In our setting of the contextual case (Section 6.1), we set cti = ct⊗ei ∈ RdK , and α = [α1, · · · , αk] ∈
RdK and similarly for β.

As M3P (Javanmard et al., 2020) uses the utility model stated in Equation (A7), in the case of contextual
pricing it should have exploration phases equal to the dimension of cti which is d×K. Algorithm 8 shows
our adaptation of the M3P algorithm for the contextual setting with promotions. We point out again, that
M3P has no theoretical guarantee when promotions are included.

Algorithm 8 M3P for Linear Contextual Pricing with Multinomial Demand Model
Input: P × X , dimension of the context vectors d, regularization factor λ

Set K = dim(P)
Set tnext = 0
for b = 1, 2, · · · , do

Set lb = dK + b as the number of periods in the bth block
for t = tnext, tnext + 1, · · · , tnext + lb − 1 do

Select pt as follows
Exploration: For the first dK periods (t− tnext < dK) sample pt,xt uniformly from P × X
Learning: After dK exploration samples, learn the parameters:

Define Lt({(ps,xs, cs, Is)}ts=1, θ) =
∑t

s=1 log(Pθ(Is|ps,xs, cs)) + λ
2∥θ∥

2
2

Find θb = arg maxθ Lt({(ps,xs, cs, Is)}ts=1, θ)
Exploitation:

For the remaining b periods observe context ct and set

pt,xt = arg max
p∈P,x∈X

Rθb
(p,x, ct).

In each period t, observe It and rt := pIt −mIt

end for
Set tnext = tnext + lb

end for

I Supplementary Materials for Synthetic Linear Contextual Experiments Section 7.1
I.1 Linear Contextual Model Parameters
In this Appendix we first explain how our parameters αi, βi, γi ∈ R4, 1 ≤ i ≤ 9 were chosen. The first
column of Table A4 captures the first dimension of each parameter. The second, third, and fourth column
are just three randomly chosen permutations of the first column, i.e. as an example β12, · · · , β92 are just a
permutation of β11, · · · , β91. In particular if at time t the context vector observed is ct = (1, 0, 0, 0) then the
underlying parameters of the underlying demand model are given by the first column of Table A4 and for
ct = (0, 0, 0, 1) the set of parameters given by the fourth column. Table A5 shows the optimal price and
promotion for each of the products in the case where ct = (1, 0, 0, 0). The optimal prices and promotions
for each of the other contexts in the OrthogonalGroup case are just permutations of these values. Since
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Parameter Feature 1 Feature 2 Feature 3 Feature 4
α1 1.00 1.00 1.00 1.00
α2 1.00 1.00 1.00 1.00
α3 1.00 1.00 1.00 1.00
α4 1.00 1.00 1.00 1.00
α5 1.00 1.00 1.00 1.00
α6 1.00 1.00 1.00 1.00
α7 1.00 1.00 1.00 1.00
α8 1.00 1.00 1.00 1.00
α9 1.00 1.00 1.00 1.00
β1 0.10 0.25 0.50 0.50
β2 0.15 0.45 0.15 0.45
β3 0.20 0.15 0.20 0.40
β4 0.25 0.10 0.30 0.35
β5 0.30 0.20 0.25 0.30
β6 0.35 0.30 0.35 0.25
β7 0.40 0.35 0.10 0.20
β8 0.45 0.40 0.45 0.15
β9 0.50 0.50 0.40 0.10
γ1 0.80 0.20 0.10 0.10
γ2 0.30 0.20 0.30 0.20
γ3 0.50 0.30 0.50 0.50
γ4 0.20 0.80 0.80 0.30
γ5 0.80 0.50 0.20 0.80
γ6 0.30 0.80 0.30 0.20
γ7 0.50 0.30 0.80 0.50
γ8 0.20 0.50 0.20 0.30
γ9 0.10 0.10 0.50 0.80

Table A4: Table of model parameters for linear contextual setting with 9 products and 4 context dimensions.

each context distribution is a positive vector and in addition, the parameters are positive, this ensures that the
demand function is always monotonically decreasing.

α 1 1 1 1 1 1 1 1 1
β 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
γ 0.8 0.3 0.5 0.2 0.8 0.3 0.5 0.2 0.1
p∗ $20.44 $17.10 $15.44 $14.44 $13.77 $13.29 $12.94 $12.66 $12.44
x∗ 1 0 0 0 0 0 0 0 0

Table A5: Setting of Nine Demand Parameters Used for Linear contextual setting in the case where the context vector is
ct = (1, 0, 0, 0). The optimal revenue R(p∗, x∗) = $10.44.

I.2 Implementation Details
We also set the following:

• Batch Size: We chose the batch size for retraining our models to be 1 in both OrthogonalGroup and
WeightedAverages cases. That is we retrain our models after each sample.

• Range of decision variables: For simulations in this section we use ℓ = $0 to u = $30 for prices and
display variables are constrained to be in the simplex, i.e. X = {x ∈ R9

≥0 :
∑9

i=1 xi = 1}, where K is
the set of brands considered.

• Initial Exploration Phase (τexplore): For each algorithm, we begin their training with 10 random
context vectors uniformly chosen.

• Number of runs: We perform 20 replications of each algorithm.
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• Langevin Parameters: We set ηt = .03/t, ψt = ψ = 1, and Nt = 100.

I.3 Box Context Vector Distribution
In this section, we show the experiment results for the Box context distribution. In the Box setting, we use a
uniform sample over a box in R4. We use [0.5, 1.5]4/K where K = 9 is the number of products and the
division is to keep the final magnitude of the parameters in the same range as the two cases. Moreover, other
implementation details are the same as in previous cases. This setting allows customer heterogeneity along all
of the four dimensions.

Figure A1 shows the regret comparison between the non-contextual and contextual versions of the
Thompson Sampling method. Aligned with the results for the other two context vector distributions, namely
OrthogonalGroups and WeightedAverages, we see that using context vectors is critical to achieving an
optimal regret. Furthermore, we compare the contextual version of Thompson Sampling to the contextual
version of Greedy and M3P baselines in Figure A2. We could again see that Thompson Sampling outperforms
M3P and Greedy in this time horizon. By the time 20,000, the simple regret of Greedy is more than twice
the TS simple regret. In this setting, Greedy is even more competitive in the early stages compared to
previous settings. We believe this is due that information sharing along context dimensions is higher than
OrthogonalGroups and WeightedAverages settings because the context distribution spans a R4 sub-space.

Figure A1: We compare the cumulative regret of the contextual versions of Thompson Sampling (TS Contextual) with its non-
contextual counterparts (TS Non-Contextual) for the Box context distributions

(a) Cumulative Regret (b) Percentage of Optimal Revenue (c) Simple Regret

Figure A2: Comparison of the performances of three contextual methods – Thompson Sampling (TS), M3P, and Greedy for the Box
context vector distribution.

I.4 Price Distributions on Synthetic Experiments for the Linear Contextual Setting
Here, we add the price distribution of the M3P method and discuss the properties of the distribution compared
to Greedy and Thompson Sampling methods. Figure A3 shows the distribution of prices played that contains
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Thompson Sampling method and both Greedy and M3P baselines in the OrthogonalGroups context
distribution when the context vector is the first basis vector (c = e1). While M3P ultimately identifies the
optimal price, we can observe that it explores a broad spectrum of prices across all stages, resulting in higher
total regret.

(a) Prices T < 1000 (b) Prices 5, 000 ≤ T ≤ 6000 (c) Prices 19, 000 ≤ T

Figure A3: A version of Figure 6 that includes the Thompson Sampling method along with both Greedy and M3P baselines.

J Supplementary Materials for NielsenIQ Linear Contextual Experiments in Section 7.2
Table A6 consists of the estimates that we obtained for the model in Section 7.2, along with our modifications
to estimates that were zero or negative. We describe our changes now. Recall that the set of brands is
K = {Peet’s Coffee, CTLBR, Starbucks, Stumptown, Seattle’s Best, Tony’s coffee, Caffe Umbria, Ladro,
Caffee Vita, Other }.

• Several of the coefficients were zero due to no promotion in those quarters for specific brands (namely
Seattle’s Best in Q2 γSeattle′sBest,Q2 , Caffe Umbria in Q1 γCaffeUmbria,Q1 , Ladro in Q1 and Q4
γLadro,Q1 , γLadro,Q4 , and Caffe Vita in Q1 γCaffeV ita,Q1). For any estimated coefficients, we replaced
its value with the average of the promotion coefficients of all the other brands in the same quarter.

• For the γLadro,S1 estimate was zero because the Ladro brand in Store 1 did not have any promotions.
So we replaced this estimate with the average of the gamma coefficients of other brands for Store 1
γi′,S1 , i

′ ∈ K, i′ ̸= Ladro.
• Two of the brands, Starbucks and Seattle’s Best, were not present in Store 2 and hence resulted in zero

estimates on all of the coefficients αi,S2 , βi,S2 , γi,S2 , i ∈ {Starbucks, Seattle’s Best}. For each of these
coefficients, we replaced its estimated value with the average of the coefficients of the other brands.
This modification led to unrealistic market shares for Starbucks and Seattle’s Best in store 2, which did
not match the rest of the data. To correct this, we subtracted 2 from each coefficient.

• Finally, for some of the contexts c, βi(c),i ∈ {Ladro, CaffeVita} is negative using the estimated
values. This leads to an upwards sloping demand curve which violates our theory. This is due to
negative estimated βLadro,Q1 , βLadro,Q3 , βCaffeV ita,Q3 , βCaffeV ita,Q4 coefficients. To deal with this,
we increased the estimated values for these coefficients by either two or four to ensure that βi(c),
i ∈ {Ladro, CaffeVita} is still positive for all possible eight context vectors. Precisely, we added two to
coefficients βLadro,Q1 , βLadro,Q3 , βCaffeV ita,Q3 ; and added four to βCaffeV ita,Q4 .

Experimental Setting: We now describe the experimental setting we use for this experiment.
• Batch Size: We chose the batch size for retraining our models to be 1. That is we retrain our models

after each sample.
• Range of decision variables: For simulations in this section we use ℓ = $0.25 to u = $40 for prices

and display variables are constrained to be in the simplex i.e. X = {x ∈ R10
≥0 :

∑10
i=1 xi = 1} as we

had in previous simulations.
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Parameter Estimated Modified Parameter Estimated Modified Parameter Estimated Modified
αP eet′sCoffee,Q1 1.167 1.167 βP eet′sCoffee,Q1 1.989 1.989 γP eet′sCoffee,Q1 -0.280 -0.280
αP eet′sCoffee,Q2 0.458 0.458 βP eet′sCoffee,Q2 1.375 1.375 γP eet′sCoffee,Q2 0.081 0.081
αP eet′sCoffee,Q3 0.442 0.442 βP eet′sCoffee,Q3 1.449 1.449 γP eet′sCoffee,Q3 0.347 0.347
αP eet′sCoffee,Q4 1.259 1.259 βP eet′sCoffee,Q4 2.156 2.156 γP eet′sCoffee,Q4 -0.182 -0.182
αP eet′sCoffee,S1 0.864 0.864 βP eet′sCoffee,S1 2.749 2.749 γP eet′sCoffee,S1 0.219 0.219
αP eet′sCoffee,S2 2.462 2.462 βP eet′sCoffee,S2 4.220 4.220 γP eet′sCoffee,S2 -0.253 -0.253

αCT LBR,Q1 0.626 0.626 βCT LBR,Q1 1.986 1.986 γCT LBR,Q1 -0.326 -0.326
αCT LBR,Q2 -0.050 -0.050 βCT LBR,Q2 0.630 0.630 γCT LBR,Q2 0.581 0.581
αCT LBR,Q3 -0.161 -0.161 βCT LBR,Q3 0.680 0.680 γCT LBR,Q3 1.064 1.064
αCT LBR,Q4 0.308 0.308 βCT LBR,Q4 1.209 1.209 γCT LBR,Q4 -1.781 -1.781
αCT LBR,S1 -2.181 -2.181 βCT LBR,S1 0.853 0.853 γCT LBR,S1 0.159 0.159
αCT LBR,S2 2.905 2.905 βCT LBR,S2 3.653 3.653 γCT LBR,S2 -0.620 -0.620

αStarbucks,Q1 0.203 0.203 βStarbucks,Q1 0.475 0.475 γStarbucks,Q1 0.354 0.354
αStarbucks,Q2 0.059 0.059 βStarbucks,Q2 0.598 0.598 γStarbucks,Q2 0.212 0.212
αStarbucks,Q3 0.044 0.044 βStarbucks,Q3 0.493 0.493 γStarbucks,Q3 -0.483 -0.483
αStarbucks,Q4 0.842 0.842 βStarbucks,Q4 1.798 1.798 γStarbucks,Q4 0.307 0.307
αStarbucks,S1 1.148 1.148 βStarbucks,S1 3.364 3.364 γStarbucks,S1 0.389 0.389
αStarbucks,S2 0.000 -1.182 βStarbucks,S2 0.000 4.071 γStarbucks,S2 0.000 -2.145

αStumptown,Q1 3.670 3.670 βStumptown,Q1 3.680 3.680 γStumptown,Q1 -0.076 -0.076
αStumptown,Q2 1.035 1.035 βStumptown,Q2 1.550 1.550 γStumptown,Q2 -0.226 -0.226
αStumptown,Q3 -0.723 -0.723 βStumptown,Q3 0.137 0.137 γStumptown,Q3 -0.161 -0.161
αStumptown,Q4 -0.612 -0.612 βStumptown,Q4 -0.005 -0.005 γStumptown,Q4 0.825 0.825
αStumptown,S1 0.957 0.957 βStumptown,S1 2.621 2.621 γStumptown,S1 0.072 0.072
αStumptown,S2 2.412 2.412 βStumptown,S2 2.741 2.741 γStumptown,S2 0.290 0.290

αSeattle′sBest,Q1 1.779 1.779 βSeattle′sBest,Q1 4.294 4.294 γSeattle′sBest,Q1 -0.413 -0.413
αSeattle′sBest,Q2 -0.369 -0.369 βSeattle′sBest,Q2 0.251 0.251 γSeattle′sBest,Q2 0.000 0.096
αSeattle′sBest,Q3 -0.516 -0.516 βSeattle′sBest,Q3 -0.605 -0.605 γSeattle′sBest,Q3 0.385 0.385
αSeattle′sBest,Q4 0.408 0.408 βSeattle′sBest,Q4 1.720 1.720 γSeattle′sBest,Q4 0.357 0.357
αSeattle′sBest,S1 1.301 1.301 βSeattle′sBest,S1 5.660 5.660 γSeattle′sBest,S1 0.329 0.329
αSeattle′sBest,S2 0.000 -1.404 βSeattle′sBest,S2 0.000 4.293 γSeattle′sBest,S2 0.000 -2.367
αT ony′sCoffee,Q1 0.990 0.990 βT ony′sCoffee,Q1 2.097 2.097 γT ony′sCoffee,Q1 0.034 0.034
αT ony′sCoffee,Q2 0.015 0.015 βT ony′sCoffee,Q2 1.087 1.087 γT ony′sCoffee,Q2 -0.218 -0.218
αT ony′sCoffee,Q3 -0.504 -0.504 βT ony′sCoffee,Q3 0.596 0.596 γT ony′sCoffee,Q3 0.059 0.059
αT ony′sCoffee,Q4 -0.430 -0.430 βT ony′sCoffee,Q4 0.327 0.327 γT ony′sCoffee,Q4 0.296 0.296
αT ony′sCoffee,S1 -0.190 -0.190 βT ony′sCoffee,S1 2.434 2.434 γT ony′sCoffee,S1 0.034 0.034
αT ony′sCoffee,S2 0.260 0.260 βT ony′sCoffee,S2 1.673 1.673 γT ony′sCoffee,S2 0.137 0.137
αCaffeUmbria,Q1 2.480 2.480 βCaffeUmbria,Q1 3.973 3.973 γCaffeUmbria,Q1 0.000 -0.143
αCaffeUmbria,Q2 0.819 0.819 βCaffeUmbria,Q2 2.226 2.226 γCaffeUmbria,Q2 -0.244 -0.244
αCaffeUmbria,Q3 -0.548 -0.548 βCaffeUmbria,Q3 0.644 0.644 γCaffeUmbria,Q3 0.109 0.109
αCaffeUmbria,Q4 -0.043 -0.043 βCaffeUmbria,Q4 0.808 0.808 γCaffeUmbria,Q4 0.211 0.211
αCaffeUmbria,S1 1.895 1.895 βCaffeUmbria,S1 5.267 5.267 γCaffeUmbria,S1 -0.085 -0.085
αCaffeUmbria,S2 0.814 0.814 βCaffeUmbria,S2 2.384 2.384 γCaffeUmbria,S2 0.161 0.161

αLadro,Q1 -4.237 -4.237 βLadro,Q1 -2.252 -0.252 γLadro,Q1 0.000 -0.143
αLadro,Q2 3.774 3.774 βLadro,Q2 4.364 4.364 γLadro,Q2 -0.359 -0.359
αLadro,Q3 2.304 2.304 βLadro,Q3 3.048 3.048 γLadro,Q3 0.422 0.422
αLadro,Q4 -3.812 -3.812 βLadro,Q4 -2.284 -0.284 γLadro,Q4 0.000 -0.222
αLadro,S1 -1.430 -1.430 βLadro,S1 1.846 1.846 γLadro,S1 0.000 0.232
αLadro,S2 -0.542 -0.542 βLadro,S2 1.030 1.030 γLadro,S2 0.063 0.063

αCaffeV ita,Q1 0.372 0.372 βCaffeV ita,Q1 1.134 1.134 γCaffeV ita,Q1 0.000 -0.143
αCaffeV ita,Q2 2.026 2.026 βCaffeV ita,Q2 2.608 2.608 γCaffeV ita,Q2 -0.242 -0.242
αCaffeV ita,Q3 -2.182 -2.182 βCaffeV ita,Q3 -0.357 1.643 γCaffeV ita,Q3 -0.110 -0.110
αCaffeV ita,Q4 -3.875 -3.875 βCaffeV ita,Q4 -1.927 2.073 γCaffeV ita,Q4 0.717 0.717
αCaffeV ita,S1 -0.826 -0.826 βCaffeV ita,S1 1.857 1.857 γCaffeV ita,S1 0.046 0.046
αCaffeV ita,S2 -2.833 -2.833 βCaffeV ita,S2 -0.400 -0.400 γCaffeV ita,S2 0.319 0.319

αOther,Q1 0.502 0.502 βOther,Q1 0.867 0.867 γOther,Q1 -0.294 -0.294
αOther,Q2 -0.011 -0.011 βOther,Q2 0.399 0.399 γOther,Q2 1.283 1.283
αOther,Q3 -0.080 -0.080 βOther,Q3 0.329 0.329 γOther,Q3 1.430 1.430
αOther,Q4 0.102 0.102 βOther,Q4 0.260 0.260 γOther,Q4 -2.747 -2.747
αOther,S1 -0.556 -0.556 βOther,S1 0.592 0.592 γOther,S1 0.926 0.926
αOther,S2 1.069 1.069 βOther,S2 1.263 1.263 γOther,S2 -1.255 -1.255

Table A6: Linear model estimates and modified estimates on Nielsen data with quarter and store dummy contexts. Coefficients that
have been modified are shown in bold.
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• Initial Exploration Phase (τexplore): For each algorithm, we begin their training them with eight price
vectors uniformly chosen.

• Parameters: The parameters we use are the modified parameters based on two stores of Nielsen data
that we discussed earlier. The parameters are listed in Table A6.

• No. of runs: We perform 10 replications of each algorithm.
• Langavin parameters: We set ηt = .03/t, ψt = ψ = 1, and Nt = 100

K Supplementary Material for NonLinear Contextual Experiments 7.3
We consider a case with K = 9 products. To generate the parameters (ᾱg, β̄g, γ̄g)g∈{1,··· ,8} for each group
we use the same set of parameters as we used in 6.2. For setting the demand parameters of each group for
each product, we randomly select one of the columns in the table. The final realization of the parameters
(ᾱg, β̄g, γ̄g)g∈{1,··· ,8} are shown in Table A8.
Experimental Setting: We describe the experimental setting we use for this experiment.

• Batch Size: We use a batch size of 1, meaning we retrain our model after each sample.
• Range of decision variables: In this section we use ℓ = $0.25 to u = $35 for prices and display

variables are constrained to be in the simplex i.e. X = {x ∈ R9
≥0 :

∑9
i=1 xi = 1} as we had in

previous simulations.
• Initial Exploration Phase (τexplore): For each algorithm, we begin the training with eight price vectors

uniformly chosen in the price range for each product.
• No. of runs: We perform 16 replications of each algorithm.
• Langavin parameters: We set ηt = .03/t, ψt = ψ = 1, and Nt = 100
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Cluster Center Point in R4

C1 (1.5333, 0.2791, -0.3047, 0.3206)
C2 (1.2733, 1.1628, -1.8624, -0.1311)
C3 (-0.8562, 0.9631, 1.1349, 0.6243)
C4 0.5939, 1.1283, -0.8742, -0.1140)
C5 (-0.2955, -0.0915, 1.4045, 0.6518)
C6 (-0.8897, 1.0243, -1.8955, -1.8797)
C7 (-0.1244, -1.3115, 1.4395, 0.0780)
C8 (-0.8430, 0.5344, -0.1450, 0.6617)

Table A7: Centers of the Gaussian mixture model for non-linear contextual setup

Product 1 Product 2 Product 3 Product 4 Product 5 Product 6 Product 7 Product 8 Product 9
ᾱ1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ᾱ2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ᾱ3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ᾱ4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ᾱ5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ᾱ6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ᾱ7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ᾱ8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
β̄1 0.2500 0.2000 0.3000 0.1000 0.2000 0.4500 0.1000 0.4000 0.4500
β̄2 0.2500 0.1000 0.1000 0.1500 0.2500 0.4500 0.4500 0.4500 0.4000
β̄3 0.5000 0.2000 0.2000 0.5000 0.2500 0.1500 0.3500 0.1500 0.4500
β̄4 0.2000 0.1000 0.5000 0.3500 0.1500 0.3500 0.1000 0.4000 0.1000
β̄5 0.5000 0.3500 0.3000 0.2500 0.4000 0.3000 0.2500 0.1000 0.1500
β̄6 0.5000 0.5000 0.1000 0.4000 0.5000 0.4500 0.5000 0.4000 0.3000
β̄7 0.1000 0.3000 0.4000 0.2000 0.1000 0.4000 0.4000 0.3000 0.5000
β̄8 0.4000 0.3000 0.2500 0.1500 0.3500 0.1000 0.3500 0.2000 0.3000
γ̄1 0.2000 0.5000 0.8000 0.8000 0.5000 0.2000 0.8000 0.5000 0.2000
γ̄2 0.2000 0.8000 0.8000 0.3000 0.2000 0.2000 0.2000 0.2000 0.5000
γ̄3 0.1000 0.5000 0.5000 0.1000 0.2000 0.3000 0.3000 0.3000 0.2000
γ̄4 0.5000 0.8000 0.1000 0.3000 0.3000 0.3000 0.8000 0.5000 0.8000
γ̄5 0.1000 0.3000 0.8000 0.2000 0.5000 0.8000 0.2000 0.8000 0.3000
γ̄6 0.1000 0.1000 0.8000 0.5000 0.1000 0.2000 0.1000 0.5000 0.8000
γ̄7 0.8000 0.8000 0.5000 0.5000 0.8000 0.5000 0.5000 0.8000 0.1000
γ̄8 0.5000 0.8000 0.2000 0.3000 0.3000 0.8000 0.3000 0.5000 0.8000

Table A8: Parameters of α(c), β(c), γ(c) piecewise linear function.

L Table of notations
In this section, we provide a table of notations used in this paper.
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T Time Horizon/rounds
K number of products

x, X marketing mix allocation
p, P price vector
H history

θ, α, β, γ parameter vector
B bounds for x
M bounds for α, β, γ
U utility function
L log-likelihood
Vt covariance matrix
κ problem parameter for contextual case
µ demand function

Rθ(p, x) objective function

Table A9: Notation used throughout

Q quarters
C cluster centers
S stores
u bounds for price
w feature variables
o display variables
i brands
Q market share?

Table A10: Notations used in experiments

ei exp(αi − βipi + γixi)
λ regularization

G(e)
∑

i∈[K] ei

H Hessian of Rc(p,x)
µi multinomial probability of item i
S upper bound for ∥θ∥

ψt(δ) upper bound for the bad event E
Wt empirical covariance matrix

Table A11: Notations used in proof
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