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Abstract

Social networks rely on sharing engaging content with their users. Since continued produc-

tion of user-generated content is critical to their success, they have constructed a variety of tools

to motivate new content creation, to facilitate user discovery of new content, and to provide

attention and recognition to the best user-generated content. Past research shows that such

attention and recognition increase the volume of content shared on the networks. But how do

these affect the nature of content shared on their platforms? Do they cause creators to share

content similar to the ones that received attention and recognition? Or do creators take risks

and create different content than the ones recognized? These are the questions we ask in this

paper. Our empirical context is an image-sharing social network where creators share digital

art and photography. We leverage a randomized controlled experiment to induce exogenous

variation in attention and recognition to specific content. Using a transfer learning-based ma-

chine learning algorithm, we convert complex images into lower-level features. This allows us

to analyze similarities and differences between images. Our main findings are that creators

produce and share different content on the social network than the ones that received attention

and recognition. This result is robust to a variety of ways in which we classify image content.

Our results illustrate the importance of tools aimed to induce attention and recognition to the

creation and development of diverse content by social media creators and give insights into

factors that motivate content creators to create content.

Keywords: User-generated content, machine learning, transfer learning, image recognition,

field experiments, award recognition, attention
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1 Introduction

Social networks rely on user-generated content to attract and retain users on their platforms. These

networks increasingly face stiff competition from other platforms for users’ time and attention and

are therefore motivated to cultivate novel and unique content on their platforms. Traditional media

can more directly influence content novelty since the content is either produced by the media outlets

themselves or contracted out to third-party content producers. By contrast, social media has to rely

on indirect levers, for example, front pages, spotlights, featured content, news feeds, and trending

tabs, to direct attention and recognition to the best pieces of content and to motivate their users to

create more content and create more novel content. Past literature has documented that attention

and recognition lead to more engagement and greater content creation by users whose work received

that attention and recognition on social networks (Toubia & Stephen 2013; Muchnik et al. 2013;

Huang & Narayanan 2021) and content sites like Wikipedia (Zhang & F. Zhu 2011; Aaltonen &

Seiler 2015; Kummer 2013; Gallus 2017; K. Zhu et al. 2020).

However, the impact of these levers on the nature of the work created by users is less clear.

On the one hand, attention and recognition can act as external signals to the content creator of

the quality and popularity of their work, and can motivate them to create more content similar to

the one that got them attention and recognition. On the other hand, these can satisfy their need

for external validation from their audience and license them to explore their interests, take more

risks and create content different from the ones that got them attention. In this study, we examine

the impact of attention and recognition generated through the featuring of content on the front

page of a social network on the nature of the work that users create subsequently. We leverage a

field experiment run in collaboration with an image-sharing social network, where attention and

recognition are exogenously manipulated for a randomly selected set of users to find causal evidence

to answer our main research questions.

Content creation has been considered to be a function of both extrinsic and intrinsic motivators

(Toubia & Stephen 2013; Muchnik et al. 2013). Lerner & Tirole (2002) refer to two incentives for

creators to create and share open source software content - the career enhancement incentive and

the ego gratification incentive. The former refers to the ability of the content creator to signal their

quality and capabilities in the specific domains in which they create content, while the latter refers
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to the desire on the part of content creators to generate recognition from their peers. These are both

examples of extrinsic motivators for content creation. The behavioral literature has also explored

the effects of extrinsic motivators such as peer recognition and attention, through their impact on

the affective state of the creator, and thereby their desire to continue their positive affective state

through creation of more content (Isen et al. 1987). Indeed such extrinsic motivators have been

empirically identified as key drivers of content creation in a variety of contexts such as open source

software (C.-G. Wu et al. 2007), online communities and forums (Jin et al. 2015) and sales-force

motivation (Larkin 2011; Ederer & Manso 2013).

Content creators also have intrinsic motivators to create content. The process of creating content

might be inherently pleasurable for the creator. And they might derive utility from sharing what

they produce since they might consider it as a public good - something others could use and build

on in the context of open-source software, for instance.

Given that creators have both extrinsic and intrinsic motivators for content creation, the pre-

diction of the effect of recognition and attention on the nature of future content created and shared

by the users is ambiguous. On the one hand, extrinsically motivated creators may see attention

and recognition from their peers as signals of quality of the work. Since they would likely wish to

receive more attention and recognition, these signals should motivate them to subsequently create

and share work similar in nature to the one that received attention. On the other hand, if they

perceive the external audience as desiring variety in content, or if they see that their perceived

quality among their peers depends on demonstrating their versatility in creating different kinds of

content, they would be motivated to create works different from the ones that generated attention.

Purely intrinsically motivated creators would typically not be impacted by external recognition

or attention in the nature of content they produce. However, most creators are likely to have a

mix of intrinsic and extrinsic motivations for creating and sharing content. Motivational crowding

theory suggests that the introduction or elevation of extrinsic motivators could decrease the effect

of intrinsic motivators (Frey & Jegen 2001; Gneezy et al. 2011), suggesting that recognized creators

might be discouraged from producing content they find intrinsically interesting. Alternatively, if the

effects of extrinsic motivators such as attention and recognition are concave in nature, creators whose

extrinsic motivators have been satiated should focus on creating content that gives them intrinsic

utility. This could lead to content creation different from the ones created for satisfying the extrinsic
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part of utility, and which in turn generated attention and recognition. Thus, consumers with intrinsic

motivation (but also some degree of extrinsic motivation) would create content different from the

one that generated attention and recognition if these satiate their extrinsic motivators.

A related empirical work on award recognition’s impact on content novelty is Burtch et al.

(2022), which experimentally gifted Reddit Gold awards to users on the platform and found that

the provision of these awards decreased treated users’ subsequent content novelty. However, we

highlight a few notable differences between their study and the present work which could lead to

divergent conclusions on the effects of award recognition on the content novelty of treated users.

First, their context is a text-based discussion platform whereas this research focuses on image-

based art platform. In addition to potential differences arising from the type of content itself,

there are potentially higher expectations around what constitutes novelty in an artistic context

and heightened barriers to content creation. Secondly, their study awarded relatively average users

selected among almost all posters in their focal communities, while in contrast our experimental

users were selected amongst the best creators on the platform. Burtch et al. (2022) found that while

content novelty of treated users decreased, their intervention did ultimately stimulate the creation

of novel content through the mechanism that newer users with comparatively novel content were

stimulated to create more content. Our context focuses on seasoned, top creators who are more

likely to have received previous forms of external recognition. Therefore, relative to the users in

that study, the users in ours are less likely to be influenced in their beliefs about what kind of

work they are good at through this external recognition, and hence less likely to create content

similar to the recognized work. Finally, there are significant differences in the nature and prestige

of the awards that have the potential to influence how it is perceived by the recipient. Burtch et al.

(2022) utilize a peer award which is common, largely cosmetic in nature, and has minimal impact

on the visibility of the awarded content. In contrast, our study’s award is the highest recognition

bestowed by the platform, pushes notifications to all the creators’ peers, and elevates the work to

front page visibility in front of thousands of viewers. These differences are large enough that, while

both nominally considered awards, they represent distinct mechanisms by which platforms direct

attention to content. For the reasons described, it is unclear how the prior work’s findings should

translate into our context.

Another related study of the impact of recognition on content novelty is Negro et al. (2022),
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which examines the impact of a status-conferring award - the Grammy Award - on subsequent

content creation by musicians. The main point of that paper is that artists who received the

Grammy Awards created music that was more different on various pre-defined characteristics to

those created by contemporaneous artists than artists who were award finalists but did not win.

There are a few aspects of this study that we would like to highlight that distinguish our work.

First, the analysis of the impact of the Grammy Awards is based on non-experimental, observational

data. The challenge with this is that the causality of the documented effects is hard to establish.

The study attempts to mitigate this concern in robustness checks using a matching estimator but

cannot eliminate concerns about the validity of the necessary assumptions for this approach to work

(??). The "control" group consists of artists who were finalists for the award in a given category, but

did not win the award. It is not possible to distinguish their subsequent actions as a consequence

of not winning the award from the actions of the "treatment" group, i.e. award winners. Thus,

it is difficult to know if award winners created more novel content in response to winning the

award, or the losers created less novel content in response to not winning the award. By contrast,

our study uses a controlled field experiment to exogenously affect attention and recognition to the

treatment users’ content. Thus, we can provide conclusive causal evidence of the effects we aim to

find. Second, the content creators in the control group of our experiment do not know that they are

in the control group - this mitigates concerns about SUTVA violations. We additionally conduct

analysis to support the idea that our results are not affected by this issue.

In summary, it is unclear how the attention and recognition as a result of platform levers affects

the nature of content produced by creators - in particular, it is unclear if these will cause the

creator to create content similar or dissimilar to the ones that generated attention and recognition.

Social media platforms have strong preferences for content variety due to the demands of user

engagement (F. Wu & Huberman 2007; Huotari & Ritala 2021; Ciampaglia et al. 2015). Ideally for

these platforms, the visibility mechanisms (such as front pages) that drive user engagement to top

creators would also encourage these top creators to continue creating novel content.

Content novelty is subjective and difficult to measure in user generated content, which often

comes in the form of unstructured expressions such as images or video. Human judgments of

images are subjective, and the typical social media context displays images alongside peer feedback,

leading to herding behavior (Muchnik et al. 2013) and unreliability of aggregate signals such as
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like counts. Finally, the assignment of recognition and visibility is typically endogenous on social

networks. To the extent that a social network utilizes human judgment in determining what content

to feature, the curated content will tend to differ systematically from content that is not chosen for

featuring. Even the absence of manual curation, algorithms for content discovery utilize user signals

such as views, likes, or engagement to identify content to promote. The non-random selection of

content makes establishing counterfactual user behavior in the absence of recognition difficult.

This paper addresses these challenges through the implementation of a randomized field exper-

iment on a large, artistic image-sharing social network. This social network, Behance, has over

5 million users who have created over 9 million digital albums of images called ’projects’. This

platform is host to highly artistic and creative professionals, including digital artists, illustrators,

photographers, animators, and more. Behance utilizes human curators to identify exemplary con-

tent to feature on the front page of the website, where the featured content can be seen by all

visitors to the site and is awarded a badge of recognition. Through collaboration with the site, we

introduce randomization to which content ultimately gets featured from among a larger set of cu-

rated candidate content pieces, allowing for clean comparison between treated users, whose content

is featured and control users, whose content is not.

We look to characterize how feature recognition and the resulting peer attention and recognition

directed by it can impact the nature of the subsequent creative output of a content creator. To

do so, we begin by downloading the images created by users in the experiment. These images are

pieces of digital art, and are highly complex in nature. Similarity and dissimilarity between pairs

of images is thus challenging to measure, especially with existing image recognition tools that have

been trained on photorealistic objects. Added to this is the fact that we have thousands of images

in our dataset, which renders a fully manual process of assessing similarity impractical. We instead

look to a transfer learning approach that can extend a small set of human labels specialized to our

creative context of digital art while leveraging the deep learning from a much larger set of images.

We collect training data for transfer learning by soliciting labels and ratings on a smaller, random

subset of images which were human-labeled via Amazon Mechanical Turk (MTurk). Workers label

the images on seven pre-defined dimensions and provide open-ended keywords describing the image.

The base for our transfer learning is Inception Net (Szegedy, Liu, et al. 2015), a widely popular

multi-class image classification algorithm for image recognition or detection, employing deep learning
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to learn about image features.

The key contribution of this model is that it achieves high levels of prediction accuracy with a

much smaller dataset and lower number of parameters (still about 25 million). If we were to train an

Inception Net model from scratch, we would need a very huge set of labeled training images for the

model to learn all these parameters from the data. This would be very expensive, time-consuming

and would defeat our very purpose of building a machine learning prediction model in the first

place. Therefore, we employ the transfer learning approach where we use the weights (parameter

values) from an Inception v3 model (Szegedy, Vanhoucke, et al. 2016)) pre-trained on the ImageNet

database (Fei-Fei et al. 2009). Because ImageNet is a vast and diverse dataset of images (more than

14 million images), the weights learned by a deep learning model trained on ImageNet should be

generic enough to work for our target images.

We make two sets of predictions for our images, first we predict the score (rated on a discrete

scale of 1 to 7) of each image on seven pre-defined dimensions (abstractness, commercial intent,

creativity, complexity, emotiveness, likeability, photorealism). In order to predict the image score

across these predefined dimensions, we use a deep learning model coupled with these pre-learnt

Inception Net parameters via transfer learning. We build one deep learning model each for the

seven dimensions, and each model predicts the dimension score of the image on a discrete cardinal

scale of 1-7. We modify the Inception Net model to incorporate the cardinal nature of our labels,

which is different than the categorical data for which the model was originally built. Second, we

also predict the keywords associated with the image. In order to predict the image keywords, we

again use the same transfer learning Inception Net model but in order to deal with the very high

dimensionality of the keywords space, we also use the Word2Vec model pre-trained on the Google

News data. Word2Vec is a popular technique for natural language processing which uses a neural

network to learn word associations from a large corpus of text. The model achieves this by creating

word embeddings, which basically are words represented as lower dimensional numeric vectors in

such a way that similar words have a similar vector representation. The Word2Vec model helps us

represent the thousands of human-labeled keywords for our training data into a much more compact

representation of a 300 dimensional vector. This lower dimensional representation of the keyword

labels, coupled with the pre-trained Inception Net weights enables us to make predictions of the

keyword labels for all the images in our experiment, even with a small training data size. Finally,
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in addition to generating the keyword predictions for all the images using our model, we also use

Google’s Vision API to predict the keywords for our images. Vision API uses pre-trained deep

learning models for image recognition and generating labels for the images. This provides us with

an additional set of keyword labels for all the images in our experiment.

We find that users whose works are featured create significantly different and more novel content

than those whose content were not featured. These findings are robust to the machine learning

methods we utilize to assess image similarity, including object labeling through the Google image

recognition API, transfer learning of seven human-labeled predefined image dimensions, and transfer

learning of human-labeled keywords. These results represent encouraging findings for social networks

hoping to cultivate novel content through the usage of attention and recognition levers, as they

suggest that even highly creative individuals can benefit from these interventions.

2 Empirical Context and Experimental Design

To study the effect of attention and recognition on subsequent content creation activity, we partner

with the large art-sharing social network Behance, which is part of Adobe Inc. Users on Behance

create and share their artistic work with each other in the form of albums called "projects" that

contain collections of images. Behance is a uni-directional social network similar to Twitter, where

users form one-sided following links. Followers of a user get notified for various events related to

that user, including the posting of new content, commenting activity, when one of their works has

been featured, etc. Figure 1 is a screen shot of the front page of the social network. Each work

shown on the front page has been selected to be featured on the site. As can be seen in this figure,

the network displays collections of images for users to view and get inspired by, and for creators to

showcase their work and receive likes, feedback and comments from other users.

The network provides a variety of tools for users to discover content. An important tool that is

used by Behance to showcase work and promote discovery of high quality content is that it employs

a team of human curators to browse content on the website, and select works to be ‘featured’ on

the front page. The message at the bottom right of Figure 1 refers to this as well, pointing to the

’hand-picked’ nature of the content shown on the network. This aspect of the network is similar

to tools employed by other networks, such as trending content on YouTube and featured content
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Figure 1: Screenshot of the Behance Front Page

on Twitter. On Behance, content is selected by the curators to be featured on the front page of

the network every day. Featured content receives a permanent star mark, and followers of the user

whose work got featured get notified about it. The permanent mark distinguishes the content as

exemplary and is seen by users on the network and managers at Behance to be one of the highest

forms of recognition available on the network. It draws attention from both followers of the user

who receive news notifications of the feature and a vast number of non-followers who see the work

courtesy of its placement on the front page of the website.

Figure 2 shows an example of featured and non-featured content from a user on the network.

The image on the left was featured on the network, as seen by the star badge at the bottom of the

image. The image on the right was not featured, and does not have this star badge.

Our experiment introduces randomization to which projects receive feature awards during the

experiment and subsequent observation period. As part of the operation of the website, Behance’s

curation team regularly combs through user generated projects to identify exemplary artwork worthy

of receiving a feature award. Identified works are placed in the feature queue, an ordered list of

projects scheduled to be featured on the site. At set intervals throughout the day, the project at

the front of the queue is given its feature award, then removed from the queue. The randomization

procedure proceeds as follows: from the (at the time of randomization) 8,921 in the feature queue, N
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Figure 2: Example of Featured (Left) and Non-Featured (Right) Content on Behance

= 658 projects owned by unique users were selected for the experiment. These projects were divided

into equally sized treatment and control groups of N = 329 each, and the feature queue was then

rearranged such that the treatment group projects would be awarded on a random day over a two

and a half month experimental period while the control group projects were not awarded during the

experimental period or subsequent three month observation period (they received their award after

the observation period). Other projects owned by users in the experiment were not affected by this

randomization, thus the treatment can be thought of as adding one additional award to the treated

users. A diagram of the experimental timeline can be seen in Figure 3. We conduct randomization

checks and find no significant pre-treatment differences between treatment and control groups in

either recorded network activity or labeled characteristics in Table 1.
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Figure 3: Experimental Timeline

Notes: Diagram depicting the timeline of the experiment, including pre-experimental observation
period, experimental period, and post-experiment observation period. Treatment group users (for
example, #58 and #125 as shown) received a feature award on their focal project at a random
date during the experimental period. Control group users were guaranteed to not receive an award
on their focal project until the end of the post-experiment observation period.

Table 1: Randomization Checks on pre-treatment variables. Network activity quantities repre-
sent day-level measures averaged across pre-treatment days by user and then by experimental group.

Mean of
Control

Mean of
Treatment

p: Two-sided
t-test

Labeled Characteristics
Abstract 3.701 3.736 0.338
Commercial 3.929 3.770 0.809
Complex 3.825 3.935 0.759
Creative 4.310 4.417 0.693
Emotive 3.813 3.897 0.561
Likeability 4.433 4.528 0.680
Photorealism 4.215 4.383 0.754
Cosine similarity to focal project 0.449 0.426 0.126
Euclidean distance to focal project 2.452 2.372 0.477
Dot product with focal project 3.856 3.296 0.556
Other Network Activity Measures

Appreciations received 10.233 11.203 0.513
Comments received 0.600 0.794 0.119
Views received 111.626 119.486 0.655
Inbound ties 4.163 4.890 0.241
Appreciations given 0.972 1.064 0.783
Comments given 0.237 0.303 0.516
Views given 5.707 5.976 0.757
Outbound ties 0.194 0.240 0.299
Projects published 0.018 0.024 0.123
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Thus, we induced random variation in featuring, allowing us to the study the impact of the

feature award on subsequent user behavior. Huang & Narayanan (2021) study the impact of fea-

turing on the engagement of the users, their subsequent content creation and sharing activity on

the network. The main finding of that paper is that users whose work was featured increased their

engagement on the network, shared more content, and created more content after the feature award.

In this paper, we leverage this same experiment to study the impact of feature awards on the nature

of content created by the users. In particular, we study whether users create and share content that

is similar to the ones that were featured, or whether they create and share more novel content.

3 Empirical Strategy

As noted earlier, we aim to study the impact of featuring, and the recognition and attention gener-

ated by it, on users’ subsequent content creation process, and in particular whether they create and

share more novel content. For this purpose, we need to be able to measure the novelty of future

content. This is a challenging endeavor in our context of digital art. Consider the three images in

Figure 4. These three images were pieces of digital art created by the same artist. If we were to

consider the image in the middle and compare it to the images on the two sides, it is challenging to

decide which of the two images - on the far left or the far right - is closer to the one in the middle.

On the one hand, the image on the far left has a realistic face like the one in the middle, while the

one on the right does not. On the other hand, the image on the right has flowers, like the one in the

middle and unlike the one on the right. This set of images illustrates the complexity of measuring

novelty of a piece of content relative to the featured content. It is not possible to measure novelty

using either a direct comparison of images, or even an identification of objects in the image.

Our approach to this problem is to two-pronged. First, we convert the image into a bag of words

describing it. This allows us to compare content based on similarity between these collections of

words. This takes us away from literal characteristics of the images towards the meaning conveyed by

the images. The second approach is to identify important pre-defined dimensions that differentiate

images on this social network, obtain measures for the images on these dimensions and then measure

similarity or dissimilarity between pairs of images on these dimensions.

Before we describe how we go about these two different approaches, we describe the data that
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Figure 4: Content Novelty

we obtain for the purpose of our study.

3.1 Image Dataset

We downloaded a total of 37,927 images owned and created by the 658 users in the experiment

over an observation period containing three months pre-experiment, two and a half months during

the experiment, and three months post-experiment. These images were downloaded alongside their

project format and characteristics. As described earlier, content is organized on Behance in projects,

with each project consisting of a collection of images. The dataset comprises of 658 projects,

each owned by a user in the experiment. They would be featured or not during the experimental

period depending on the user’s group assignment. These users created an additional 2763 projects

during the observation period. Our approach is to compare the experimental images to the non-

experimental images in terms of image similarity measures, and assess the causal effect of featuring

on similarity for projects that were released subsequent to the project owner having their project

featured as a result of the experimental manipulation. In other words, we look at projects created

after the experimental project for each user, and compare the similarity of post-experimental project

images to those in the experimental project for the treatment vs. control group users. In this

analysis, we allow for correlations in content within users and at given points of time across users

through the inclusion of appropriate fixed effects in the respective regressions, and also cluster our
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standard errors appropriately to allow for correlated unobservables within projects. The fact that

the variation in featuring is experimentally induced allows us to make causal inferences about the

effect of featuring on similarity or dissimilarity of future content created.

For the first prong of our empirical strategy, we need to convert each image into a bag of words.

We first employed a pre-trained algorithm to do this. Google’s Cloud Vision algorithm provides just

such an algorithm. This is an image tagging algorithm trained on a large tagged dataset of images

called ‘ImageNet’ (Fei-Fei et al. 2009). The output of this algorithm is a large collection of words

for every image. The algorithm is primarily trained to identify objects in images. Google provides

an API to access this algorithm, taking as an input the image files, and outputting the set of words

associated with each image.

As described earlier, a comparison of objects present in two images might provide an imperfect

measure of dissimilarity or similarity between two pieces of digital art. Since the Google Cloud

Vision algorithm is trained to primarily identify photorealistic objects, this may provide a sub-

optimal measure for our purposes of labeling and characterizing creative digital artwork. This is

because the ImageNet database of images is a collection of photographs of objects, including living

things and inanimate objects. In contrast, our dataset has a range of vector artworks, illustrations,

and fantastical imagery. And when it does contain photography, the subject matter is often depicted

in an artistic manner to create an emotional impact on the viewer beyond the presence of a particular

subject. Therefore, we create our own training dataset, employing the Amazon MTurk platform to

employ a set of humans to label a sub-sample of our database to include not just objects or subject

matter, but also actions, emotions, and artistic techniques. It would be prohibitively expensive

for this project for all images in our dataset to be manually tagged. Hence, we do this for a sub-

sample to create a training dataset. We then employ a transfer learning approach, starting with a

pre-trained deep learning algorithm to identify basic features of images, and adding on components

that are trained on our training dataset to label all our images.

The second prong of our empirical strategy involves identifying key features that we a priori

consider to be discriminating characteristics of images on the Behance social network. These were

identified by us in collaboration with the managers at the social network, as well as through a reading

of the literature on characterizing art adapted to the context of digital illustrations and photography

(Tinio & Gartus 2018; Goude & Derefeldt 1981; Zujovic et al. 2009). We identify 7 dimensions
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that characterize the stylization of the work (Abstractness, Commercial Intent, Complexity, and

Photorealism) and its emotional impact on the viewer (Creativity, Emotiveness, and Likeability) in

terms that were both readily accessible to lay participants and tailored to Behance’s context which

centers around digital photography and illustration by professional artists. We also utilize MTurk

workers for this task, following a process similar to the one described above for labeling the images.

Collecting data on these 7 dimensions for all images would be prohibitively expensive. Therefore,

we used the same MTurk sample of human subjects to rate images in the training sample described

earlier on these dimensions. We then use a transfer learning algorithm once again to predict the

scores on these 7 dimensions for every image in our dataset.

3.2 MTurk Survey Details

We utilize Amazon MTurk to aid in manually labeling a randomly selected subset of 882 images

created by users in the experiment. Each image was rated by 5 independent workers, with restric-

tions placed such that no worker could label more than 100 images. A total of 333 MTurkers were

recruited for the task, providing a total of 4,410 image labels. Participants were given an overview

of the task, asked to review an example image, then shown example keyword labels for the example

image. Once they confirmed their understanding of the task, they viewed the focal image and pro-

vided 8 or more terms or keywords that could be used to categorize the image, which could include

objects in the image, actions that the subjects in the image are performing, techniques describing

the image or its creation, or emotions that the image depicts or is designed to elicit from the viewer.

Finally, participants rated the image on each of the 7 dimensions of Abstractness, Commercial In-

tent, Complexity, Creativity, Emotiveness, Likeability, and Photorealism on a scale from 1-7. These

terms were defined and described for the workers to aid in their ratings. A screenshot of the survey

instructions is shown in Figure 5.

3.3 Details of the Transfer Learning Approach

Great efforts have been put lately into creating computer-based image processing solutions for

facilitate a better understanding of artistic images (Stork 2009, Cornelis et al. 2011). One of the

easy methods to find the similarity or differences in the pictures is by using off-the-shelf APIs such

as Google’s Cloud Vision. This pre-trained computer vision software labels images by detecting
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Figure 5: MTurk Survey

Notes: MTurk Survey provided to participants for human labeling of 882 images. Participants
were shown an image created by a user in the experiment and asked to rate the image on a 1-7
scale for 7 defined dimensions, including abstractness, commercial content, complexity,
emotiveness, likeability, and photorealism. They were then asked to provide 8 or more keyword
tags for the image related to objects in the image, subjects in the image, techniques utilized in its
creation, and emotions depicted or intended to be elicited in the image.
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keywords that are associated with the image. An example1 of the labels that these models provide

can be seen in Figure A1. In fact, we use this method of auto-labelling our images.

However, it is important to note that Google Cloud Vision and other similar algorithms are

trained on generic image databases that are not geared specifically for labeling creative images.

The supervised learning methods that Google uses can train a model to recognize the patterns and

content in images, but the images that we are dealing with on the Behance platform are by design

creative and artistic in nature. Hence there might be salient attributes of images that are relevant

to the Behance platform, but these canned algorithms might not be able to pick those up. For

example, brand details in the images might be relevant to signify commercial intent of the image

or allude towards the image being a commissioned artwork. Similarly, some of the artistic pieces

might be very abstract when compared to the usual images which the auto-labelling algorithms are

trained on. Hence to ensure that the key attributes of the Behance image data are retained in the

labelling exercise, we build an image labelling model that is trained on our own data. This ensures

that the model is geared towards detecting patterns in artistic data like the ones shared on Behance.

In order to develop our own labelling model, we would need to train a CNN on a manually

labelled random sub-set of our creative image data. However, to train a full-scale deep learning

model with millions of parameters from scratch, would require a huge pre-labelled training data-set

of images. This will defeat the very purpose of developing the model for us because the whole point

of creating this CNN model is to automate the labelling task for our data-set. Hence to circumvent

this problem, we employ a transfer learning approach. Transfer learning enables us in taking the

knowledge learned from CNNs that are already trained on bigger data-sets and transferring that

knowledge to a model with a smaller training data-set. The idea behind this technique is that the

initial layers of the CNN detect low-level features of the images such as edges and gradients, which

are more transferable between different types of images. On the other hand, the later layers of the

network detect features that are more specific to the creative and artistic images in our dataset and

these features can be learnt based on the training data-set (Yosinski et al. 2014).

Transfer learning has been used in the existing literature for predicting artistic images. Lecoutre

et al. (2017) use a dataset of paintings to train a deep learning model on detecting artistic styles.

Though they have a labelled dataset of 80,000 images, it is not sufficient to train from scratch a
1Source - Google AutoML Vision Guide https://cloud.google.com/vision/automl/docs/beginners-guide
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model that can provide high accuracy of prediction. Their model uses weights pre-trained for object

recognition on ImageNet. Tan et al. (2016) use a similar transfer learning approach for classification

of fine-art paintings. The weights for their model are pre-trained on ImageNet and the last softmax

layer is retrained based on their artistic data for style recognition. We follow a similar technique to

Tan et al. (2016) in our algorithm.

In our case, in order to label the images, we employ transfer learning on the Inception Net v3

model. For the initial layers of the Inception network we use the same weights as a model trained

on a bigger data-set (ImageNet, which contains more than 14 million images) and freeze those

weights. Next, we make the weights of only the last layer variable and train them based on our

self-constructed data-set of Behance images. This method is suitable for us because it reduces the

number of weights that need to be learnt from our training dataset that contains only a few hundred

images.

We employ this deep learning model for predicting the labels for the entire set of images posted

by the users in our experiment. Our relatively small total set of 875 images labelled by the MTurkers

is used to train our prediction model (we use a random sub-sample of 825 images to train the deep

learning models and set aside 50 images as the test set). Once we train our deep learning models

on the labelled data-set, we then deploy these models to predict the labels for the unlabelled set of

images in our experiment.

There are two sets of labels that need to be predicted for the images - first, we label the images

on 7 different dimensions (abstractness, commercial intent, complexity, emotiveness, likeability,

photorealism), and second, we predict the keyword labels for the images. Next, we describe both

these models in detail.

3.3.1 Dimension Predictions

Our first prediction task is to detect the score of each image across the 7 dimensions - abstractness,

commercial intent, complexity, emotiveness, likeability and photorealism. The score is a specific

rating give to each image against each of the above specified dimensions, as measured on a discrete

cardinal scale ranging from 1 to 7. We use an Inception Net based model (Szegedy, Liu, et al. 2015)

to do these predictions. Inception v3 2 is an image classification algorithm for categorical data.
2https://cloud.google.com/tpu/docs/inception-v3-advanced
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It is a widely popular, state of the art algorithm used for classification of complex data. The key

contribution of this model is that it achieves high levels of prediction accuracy with a relatively

small number of parameters.

If we were to train an Inception Net model from scratch, we would need a very huge size of

labelled training images for the model to learn all these parameters from the data. This would be

very expensive, time-consuming and would defeat our very purpose of building a machine learning

prediction model in the first place. Hence we employ a transfer learning approach where we use

the weights (parameter values) from an Inception v3 model (Szegedy, Vanhoucke, et al. 2016) pre-

trained on the ImageNet database. The ImageNet3 database is a very large visual database which

consists of more than 14 million images labelled across 21,841 categories (Fei-Fei et al. 2009). These

categories in the ImageNet database might not be directly relevant to our requirement.

However, because ImageNet is a vast and diverse enough data-set of images, the weights learned

by a deep learning model trained on ImageNet should be generic enough to identify basic features

for our target images (Yosinski et al. 2014). Hence, in our model we use a simple algorithm with

pre-learned weights for all layers (using Inception Net trained on ImageNet) in the CNN except for

the last one which is a fully connected layer with a standard softmax function to output the final

probabilities across the 7 ratings. The parameters corresponding to only this last layer are learnt

using our training dataset.

We train 7 separate deep learning models, one each for the 7 dimensions. Since the value of each

dimension varies on a discrete cardinal scale of 1 to 7, the objective of each prediction model is to

predict the score on a 1 to 7 scale for a specific dimension. For example - the model predicting the

"Abstractness" dimension provides a prediction of the Abstractness score for the image on a 1 to 7

scale. Hence our problem is a multi class classification problem.

We use the standard cross-entropy loss function as below,

L(ŷ, y) = −
7∑

j=1

yjlogŷj (1)

Where y is the input label vector of the image, ŷ is the predicted label vector for the image.

Our model’s objective is to maximize the above defined loss function, so that it can minimize
3https://image-net.org/
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the distance between the MTurker labelled score (real value) and the model output for the score

(predicted value).

The architecture for each of our 7 deep learning models is the same and is described in Table 2

(it uses the Inception v3 architecture by Szegedy, Vanhoucke, et al. 2016). Note that the feature

weights of the portion of the CNN architecture lying between the 2 red lines in Table 2 are obtained

using the transfer learning approach from the Inception v3 model pre-trained on the Image Net

database 4. These weights are applied to the input image to generate a 2048 dimensional output

vector. This vector is supplied as input to the final Softmax layer in Table 2 that is then trained

using our given database of images to predict the final result. The final output of the Softmax layer

is a vector that provides the likelihood (probability) associated with each of the 7 scores (Rating

from 1 to 7) for the input image. For the purpose of predicting the final score for each image,

we take a weighted average of the 1-7 discrete ratings with their probabilities as predicted by our

model.

Table 2: Inception Net with Transfer Learning Architecture

Layer Size Kernel Size Stride Padding
Input Image 299 x 299 x 3
conv 3 x 3 / 32 2
conv 3 x 3 / 32 1
conv padded 3 x 3 / 64 1 same
pool 3 x 3 / 64 2
conv 3 x 3 / 80 1
conv 3 x 3 / 192 2
conv 3 x 3 / 288 1
3_Inception As in Fig A1 (Appendix) same
5_Inception As in Fig A2 (Appendix) same
2_Inception As in Fig A3 (Appendix) same
pool 8 x 8
logits logits
FC: Softmax

Notes - The kernel size is height x width / number of filters. Batch normalization is used to prevent overfitting the data. FC
is a fully connected layer which means all neurons inside this next layer connect to all the neurons of the previous layer.
Softmax activation is simply a multinomial logit function.

Lastly, in order to conserve the cardinal nature of our data, instead of using hard labels we use

soft labels as the true y values (Diaz & Marathe 2019, Zang et al. 2021). In a categorical variable

setting, we use hard labels as the y variable. This means if there are 3 categories A, B, C into which
4http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
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we are classifying our image, then an image of ’A’ will have the y label as {1,0,0} and an image of

a ’C’ will have y variable {0,0,1}. In a cardinal variable setting we want to leverage the intrinsic

ordering of the labels, so we use soft labels as the y label. What this means is that if there are 3

possible ratings for the commercial {1,2,3}, then an image with an actual commercial rating of 3

will have the y vector defined as -

{f(abs(actual rating-1)), f(abs(actual rating-2)), f(abs(actual rating-3))}

= {f(abs(3-1)), f(abs(3-2)),f(abs(3-3))} = {f(2), f(1), f(0)}, where abs() is absolute difference.

The ‘f’ function is chosen such that total value across the label vector sums to 1 and ‘f’ is increasing

such that f(2) > f(1) > f(0). We choose a multinomial logit function for this purpose.

More formally we define y as the seven dimensional encoded vector of our ground truth label

for a particular instance of rating rt as:

yi =
e−ϕ(rt,ri)∑7
k=1 e

−ϕ(rt,rk)
, ∀ ri ∈ Ω, & i = 1, 2, .., 7

Where Ω = r1, r2, ..., r7 are the 7 cardinal categories and ϕ(rt, ri) is a metric loss function of

absolute difference that penalizes how far the true metric value of rt is from the rating ri ∈ Ω.

It is easy to see that these soft labels allow us to penalize a rating of 1 more strongly as compared

to 2, if the real commercial rating of the image is in fact 3.

3.3.2 Keyword Prediction

Our next task is to predict the keywords associated with each image in our sample. For example,

an image of a chocolate milkshake could have a list of keywords associated with it such as - cream,

milk-shake, fattening, unhealthy etc. We have a sample of 875 images for which we know the list

of keywords associated with those images (i.e., they have labelled keywords by MTurkers). We

need to predict these words associated with each image. Looking at this list of keywords, we

find that there are a total of approximately 8500 unique keyword labels associated with the full

set of labelled images. Thus, we have have a high dimensionality problem for our keyword space

and the mapping between the unique keywords to the images results in a sparse matrix. In fact,

several of these keywords are associated with exactly one image in our labelled data-set. Due to

this high dimensionality of the keywords, the labelled data is not sufficient to train a conventional

21



classification model to predict keywords for all images.

To address this challenge, we use a pre-trained Word2Vec model in combination for Inception

Net v3, to create a transfer learning approach to the keyword prediction task. Word2Vec is a

popular natural language processing model that maps the words into real valued vectors called word

embeddings using a neural network (Mikolov et al. 2013). These word-embeddings are encoded in

such a way that words that have similar meanings (share a common context) would be closer to

each other in the vector space and the words with different meanings would be farther apart. For

our prediction exercise we use a Word2Vec model pre-trained on the Google News corpus of text

with about 3 million words and phrases. For each word that you supply to this model as input, the

output is a 300 dimensional word-embedding vector. We supply all the 8500 unique keywords from

our labelled data-set as inputs to the pre-trained Word2Vec model and generate the 300 dimensional

word-embedding vector for each of these keywords. Next, for each image we take a dimension-wise

average of the word-embedding vectors for all the keywords associated with an image. At the end

of this exercise, we obtain a data-set of a 300 dimensional word-embedding associated with each of

the 875 images in our data-set.

Next, we reduce the dimensionality of the images in our data-set. Each image is represented as

a 299 x 299 x 3 vector in our data, which is a 268,203 dimensional vector. We use the pre-trained

Inception Net model described in the previous dimension prediction exercise to generate a lower

dimensional image vector. Each 299 x 299 x 3 image vector is provided as input to the Inception

v3 model to get a 2048 dimensional vector as an output. At the end of this exercise, we have 2048

dimensional vectors that represent each of the labelled images in our data-set.

Now, we run ridge regressions with the 2048 dimensional image vectors as the independent X

variables and each of the 300 dimensional word embedding as the dependent variable (Y). The loss

function for the ridge regression is as defined below:

Lridge(β̂) =
N∑
i=1

(yi − xiβ̂)
2 + λ

m∑
j=1

(β̂j)
2

where N corresponds to the 825 images, m corresponds to the 2048 vector dimensions & λ is the

regularization penalty.

So in total we run 300 ridge regressions, one each for the 300 dimensions of the word embed-
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dings. Once we train this ridge model, we use the weights from this regression to predict the word

embedding vectors for all the remaining unlabelled images in our experiment. We then use the

Word2Vec model to back-out the set of 20 top keywords with word-embeddings most similar to the

predicted vector.

Lastly, we also use Google’s Cloud Vision API to predict the keywords for our images. This

is a simple process in which the images are supplied to Google’s Cloud Vision API software. This

program uses a pre-trained model for image recognition and generating labels for the images, which

we can then directly download. This provides us with an additional set of keyword labels for all the

images in our experiment.

4 Details of the Post-Classification Analysis

After the completion of the training process of our models for Dimension Predictions as well as

Keyword Predictions, we carry out post-classification analysis on a held out test set of 50 images to

assess the performance of our trained models. This evaluation provides a final unbiased performance

measure for our models’ fit.

4.1 Dimension Predictions

First we report the post-classification analysis for the dimension prediction exercise. We calculate

the performance of the model on a held-out test set of images. In addition, we also train a CNN

model with only two convolutional layers to see how a simple CNN without transfer learning performs

on our data-set, thereby comparing our model with the transfer learning weights to a simple CNN

trained entirely on our training sample. This model provides us a benchmark against which to

assess the output of our transfer learning approach. These results are reported in Table 3 below.

Inception v3 is a standard CNN architecture designed by Google which is used for the transfer

learning approach in our model, hence we don’t describe it in detail here. The architecture of the

Simple CNN that we use is described in Table 4. The key reason for keeping this model simple

was that, given the small size of the training data-set that we have, it would be difficult to train

a more complex model (higher number of effective parameters) as more data would be needed for

convergence. As can be seen from the performance comparisons presented in Table 3, the accuracy

as well as the hit rate of the model we train using transfer learning is higher than the Simple CNN.
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Table 3: Dimension Prediction Performance

Inception Net Simple CNN Naive Random
Labels Accuracy Hit-Rate Accuracy Hit-Rate Accuracy Hit-Rate Accuracy Hit-Rate
Abstract 86% 86% 80% 68% 83% 76% 67% 46%
Commercial 84% 76% 74% 58% 72% 54% 61% 32%
Complex 91% 94% 85% 92% 85% 78% 68% 36%
Creative 85% 84% 80% 74% 85% 76% 67% 40%
Emotive 85% 80% 77% 64% 81% 70% 62% 32%
Likeability 93% 100% 86% 82% 87% 88% 64% 36%
Photorealism 81% 70% 65% 42% 53% 34% 62% 36%

Notes - Inception Net is based on the Inception Net v3 algorithm with transfer learning. The Naive Model assigns the mode of
each of the dimensions from the training data as the predicted rating for all the test images. The random model assigns a
random value chosen from the discrete scale 1-7 as the score for each dimension of each test image. Accuracy is defined as (1 -
error), where error is defined as the ratio of the absolute difference between the predicted rating and the true (M-Turkers
labelled) rating divided by 6 (Note that the true M-Turker rating is calculated by rounding the mean of the ratings provided
by the 5 independent M-Turkers who rated the picture). We are dividing the difference by 6 since the rating scale for each
label varies from 1 to 7. Hit-rate gives us the % of cases in which predicted rating deviation from true value was <= 1. Both
accuracy and hit-rate is calculated on a held-out test data-set with 50 images.

Lastly, instead of treating the ground truth values as discrete variables on a 1-7 scale and

handling them as a multi-class classification problem, we use the continuous values of the ground

truth labels obtained using a simple average of the ratings for each image, provided by the five

independent M-Turkers that labeled the image. Due to the simple average that is performed to

obtain the ground truth values (without any rounding of the decimals), these are continuous values

ranging between the 1-7 scale. So as a robustness check we train a similar Inception v3 model

as per the architecture specified in Table 2 with these continuous ground truth values, and to

accommodate the continuous nature of the labels we change the loss function of the final layer to

a mean squared error between the true values and the predictions. The performance from this new

model is very similar to our original Inception Net model, and we report the accuracy levels for

each of the dimensions on the test set in the Appendix Table A1.

4.2 Keyword Prediction

Next, we report the post-classification results for the Keyword Prediction Model. Similar to the

previous case, we evaluate the performance on a held-out sample of 50 test images. The results of

the performance of the model are presented in Table 5.

We compare the ridge model with other regularization techniques like Elastic Net and Lasso. We

see these are not very different in terms of accuracy of the model, although the keyword prediction
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Table 4: Simple CNN Architecture

Layer Size Kernel Size Stride Padding
Input Image 299 x 299 x 3
Convolution1 3 x 3 / 32 1 Same
ReLU1
MaxPool1 2 x 2
Convolution2 2 x 2 / 64 1 Same
ReLU2
MaxPool2 2 x 2
FC1
ReLU3
Drop-out drop-out rate is 0.5
FC2

Notes - The kernel size is height x width / number of filters. FC is a fully connected layer which means all neurons inside this
next layer connect to all the neurons of the previous layer. FC2 has Softmax activation which is simply a multinomial logit
function. ReLU is the Rectified Linear Unit Activation function, which takes the max of the input to the activation function
and 0. ReLU is generally preferred over a simple sigmoid function as it takes care of the vanishing gradient problem. We use
Drop-out regularization to prevent over-fitting the data, which is a risk given the smaller training data size. Lastly we follow
batch normalization because it helps train the model faster and has a desirable regularization effect.

Table 5: Keyword Prediction Performance

Model Keywords Word
Embeddings

Absolute Distance
(Mean)

Absolute Distance
(Sum)

Cosine
Similarity

Ridge 46% 95% 0.01 169.03 0.81
Elastic net 46% 95% 0.01 169.9 0.80
Lasso 44% 95% 0.01 171.32 0.80
Naive 20% 94% 0.01 196.81 0.74
Random 0% 74% 0.06 826.04 0.02

Notes - The Naive Model assigns a common word embedding value for all images in the test set, which is calculated by taking
a dimension-wise average of the vector, across all images. The Random Model assigns word embeddings for each image by
picking a random value which varies between the maximum and minimum vector values as observed in the data. Keywords
column calculates the percentage of images for which any one of the predicted keywords matches with the M-Turker labelled
keywords. For calculating the Word Embeddings column, we take an average across the (1-error) values for each predicted
vector dimension, where error is the difference of the predicted value and the true value, divided by the difference between
maximum and minimum values of the true vectors (the true vector for each image is calculated by taking a dimension-wise
average of the word-embedding vectors for all the keywords associated with an image). Absolute Distance (Mean) is the
average of the absolute difference between the predicted and true vector values of the images, across all dimensions. Absolute
Distance (Sum) is the sum of the absolute difference between the predicted and true vector values of the images, across all
dimensions. Finally cosine similarity is the average across images of a measure of similarity between the predicted word
embedding and the true word embedding. Cosine similarity between any two given vectors is defined as the ratio of the dot
product of the two vectors and the product of the two vectors’ magnitudes. All calculations are based on a held-out test
data-set of 50 images.
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is clearly the best in Ridge. We also compare our model with two other models which don’t use

any sophistication to make predictions: the Naive and the Random models. The Naive Model

simply outputs a constant prediction. In our case, this common prediction is calculated by taking

a dimension-wise simple average of the word-embedding vector, across all training images. On

the other hand, the Random Model makes predictions based on uniform random value selections.

Therefore for each element of the word-embedding prediction, the Random Model picks a random

value which varies uniformly between the maximum and minimum vector values as observed in the

training data. We see that our model outperforms both of these across the performance indices.

5 Results

We conduct our analyses through a difference-in-difference framework in order to leverage both the

presence of pre-treatment data and the random timing of treatment for treatment group users over

the experimental period. The advantage of this framework over a simple means comparison between

treatment and control is that we reduce noise by accounting for pre-treatment variation through

user-level fixed effects and account precisely for when a user became treated based on their award

date. Our generalized specification is as follows:

DependentMeasureijt = β1 · I(TreatmentGroupi × PostAwardijt) + ηi + δt + ϵijt (2)

In this model, DependentMeasureijt is our dependent variable measure of interest (which will

be either a rating prediction or a distance measure arising from our machine learning models) for

the image or project j created by user i at time t. β1 is our estimated treatment effect, arising

from the interaction I(TreatmentGroupi × PostAwardijt) of TreatmentGroupi: whether the user

i is in the treatment group and PostAwardijt: whether the image or project j was created t after

user i was awarded. We control for persistent differences in creation across users through the use

of user fixed effects ηi. These ηi also function as the group identifier in the difference-in-difference

framework, while the time-based identifier is the series of fixed effects δt which captures week-level

common network shocks. We compute robust standard errors and cluster at the project level when
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appropriate.

5.1 Analysis - Dimension Labels

We begin our examination with the predefined labels as generated by our transfer learning ap-

proach to dimension prediction. For each image, we select the prediction for the each dimension

in {abstractness, commercialintent, complexity, emotiveness, likeability, photorealism} by calcu-

lating the label given by our model as the model predicted level times the confidence in the given

level. This gives us a numerical label for each dimension for each image in our dataset, which we

feed into our difference-in-difference specification. The results of this analysis is given in Table 6.

Table 6: Treatment Effect Model - Predefined Dimensions

Dependent variable:

Abstract Commercial Complex Creative Emotive Likeability Photorealism

(1) (2) (3) (4) (5) (6) (7)

TreatmentGroup x PostAward −0.005 −0.029 0.002 0.001 0.021 0.023 0.051
(0.017) (0.039) (0.027) (0.026) (0.026) (0.022) (0.057)

Observations 30,803 30,803 30,803 30,803 30,803 30,803 30,803
R2 0.431 0.491 0.382 0.437 0.461 0.398 0.521
Adjusted R2 0.419 0.480 0.370 0.426 0.450 0.386 0.512
Residual Std. Error (df = 30198) 0.355 0.687 0.541 0.532 0.522 0.467 1.104

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

At least in terms of raw levels, we do not show any significant difference as a result of the award.

However, looking at aggregate changes in raw levels has the potential to hide changes in creative

behavior, such as if creators have heterogeneous reactions to awards based on the characteristics of

the project that was featured.

To address this, we aim to create a measure of similarity between each image a user created

either before or after being awarded and the images in the featured project. To do so, we first

generate the featured project’s average characteristics by taking the mean ratings on each dimension.

Then, we normalize ratings utilizing a Z-score to account for differences in mean and variance

between dimensions. Finally, we construct three (dis)similarity measures, including cosine similarity,

Euclidean distance, and dot product similarity.

The results of this analysis are given in Table 7. Here, we see that artists create significantly

different content after receiving an award as compared to before receiving the award. This is shown
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in the significant increase in Euclidean distance and a decrease in dot product similarity (note:

these quantities are inversely related as one is a measure of difference and the other a measure of

similarity).

Table 7: Treatment Effect Model - Dimension Similarity

Dependent variable:

Cosine Similarity Euclidean Distance Dot Product

(1) (2) (3)

TreatmentGroup x PostAward −0.034 0.078∗ −0.394∗∗

(0.021) (0.047) (0.172)

Observations 29,246 29,246 29,246
R2 0.352 0.314 0.512
Adjusted R2 0.339 0.301 0.503
Residual Std. Error (df = 28681) 0.401 0.950 3.553

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

5.2 Analysis - Word2Vec Keyword Labels

We conduct an analysis utilizing our predictions from the Word2Vec model. To do so, we generate

keyword predictions utilizing a nearest neighbors algorithm to return keyword labels for images

based on their representation in the embedded space. We measure the similarity between a given

project and the featured project by counting overlapping keywords between the two projects, with

a second measure normalizing the count of overlapping keywords by the number of keywords in the

featured project. The results of this analysis is shown in Table 8.

These tables replicate our findings that content creators exhibit significantly more novel or

different content after being treated.

5.3 Analysis - Pre-trained Model Labels

Finally, we utilize the outputs of pre-trained models in Google’s Cloud Vision API. These models

trade off the benefits of training on artwork and particularly abstract representations of objects

with the benefits of a vastly larger training set. For each experimental user, we create image-wise

comparisons of overlapping keyword counts and a fraction of shared keywords (normalized by the
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Table 8: Treatment Effect Model - Word2Vec Keyword Labels

Dependent variable:

commonWordCount commonWordFrac

(1) (2)

TreatmentGroup x PostAward −5.125∗∗ −0.023∗∗∗

(2.121) (0.008)

Observations 3,829 3,829
R2 0.656 0.489
Adjusted R2 0.597 0.401
Residual Std. Error (df = 3264) 28.965 0.113

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

counts observed in the featured project) for potential pair of images between the user’s featured and

non-featured projects. Our results, as shown in Table 9, are consistent with our transfer learning

approach using Word2Vec. Users in the treatment group create significantly different images after

being treated, with an average overlap of 7.2 fewer terms per project. This represents a decrease of

11.4 percentage points in the fraction of overlapping terms.

Table 9: Treatment Effect Model - Pre-trained Google Cloud Vision API Keyword Labels

Dependent variable:

Google commonWordCount Google commonWordFrac

(1) (2)

TreatmentGroup x PostAward −7.219∗∗∗ −0.114∗∗∗

(2.016) (0.017)

Observations 95,365 95,365
R2 0.011 0.025
Adjusted R2 0.011 0.025
Residual Std. Error (df = 95363) 26.373 0.277

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.4 Heterogeneity in Effects by Level of Prior Recognition

The prior literature suggests that individuals experience satiation of extrinsic motivators such as

external recognition, which would suggest that prior levels of external recognition would moderate

observed effects of recognition on subsequent content creation. To test this, we examine heterogene-

ity in our estimates by utilizing a median split by level of prior recognition. Specifically, we divide

our sample evenly based on the average daily appreciations the user received in the pre-experimental

period. We replicate our prior analyses, first looking at differences induced by experimental assign-

ment in the post treatment period in levels within our pre-defined dimensions, then examining

content similarity within the pre-defined dimensions, and then finally keywords from our Keyword

Prediction Model. We find that users in the above median prior recognition group exhibit increased

content novelty in the post-treatment period as measured both by distance and similarity in latent

space (Table 11) and keywords (Table 12), while those with below median prior recognition do not

show this change in content production. Replicating our main results, the raw levels do not show

any significant difference as a result of the treatment.

These results are consistent with a mechanism of satiation of extrinsic motivation. Creators

with lower prior levels of recognition interpret new recognition as a signal of what peers recognize

and value, and thus either do not change or even intensify their production of content similar to

recognized works in pursuit of further recognition. In contrast, creators with high levels of prior

recognition exhibit extrinsic satiation, and therefore can diversify content production to satisfy

intrinsic motivations once extrinsic recognition is satisfied, thus taking risks with content production

which differs significantly from their prior work.

5.5 Discussion - Stable Unit Treatment Value Assumption

Given that this experiment is conducted on a social network and featured works are visible to

all users on the site, there is the potential for spillovers from featured works as a result of the

experiment onto other users in the experiment, as these users may also visit the front page of the

website and thereby be inspired by the works featured there. These spillovers have the potential to

violate the stable unit treatment value assumption (SUTVA) as discussed by Cox (1958) and Rubin

(1980), as there would be a dependency between users’ observations and the treatment assignment
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Table 10: Heterogeneity in Effects by Previous Popularity - Predefined Dimensions

Dependent variable:

Abstract Commercial Complex Creative Emotive Likeability Photorealism

(1) (2) (3) (4) (5) (6) (7)

TreatmentGroup x PostAward 0.025 −0.032 −0.006 0.028 0.006 0.026 0.017
(Below Median Recognition) (0.034) (0.078) (0.043) (0.046) (0.046) (0.038) (0.094)

Observations 8,217 8,217 8,217 8,217 8,217 8,217 8,217
R2 0.474 0.427 0.388 0.449 0.403 0.355 0.577
Adjusted R2 0.455 0.407 0.366 0.430 0.383 0.333 0.562
Residual Std. Error (df = 7940) 0.353 0.709 0.514 0.513 0.509 0.433 1.048

TreatmentGroup x PostAward −0.017 −0.025 0.008 −0.009 0.012 0.018 0.081
(Above Median Recognition) (0.020) (0.046) (0.034) (0.031) (0.032) (0.027) (0.070)

Observations 21,029 21,029 21,029 21,029 21,029 21,029 21,029
R2 0.410 0.523 0.377 0.432 0.481 0.412 0.502
Adjusted R2 0.401 0.515 0.367 0.423 0.473 0.402 0.494
Residual Std. Error (df = 20701) 0.355 0.670 0.546 0.530 0.522 0.473 1.122

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11: Heterogeneity in Effects by Previous Popularity - Dimension Similarity
Dependent variable:

Below Median Recognition Above Median Recognition

Cosine Similarity Euclidean Distance Dot Product Similarity Cosine Similarity Euclidean Distance Dot Product Similarity

(1) (2) (3) (4) (5) (6)

TreatmentGroup x PostAward −0.012 0.079 −0.384 −0.051∗∗ 0.100∗ −0.549∗∗∗

(0.042) (0.096) (0.364) (0.025) (0.056) (0.201)

Observations 8,217 8,217 8,217 21,029 21,029 21,029
R2 0.358 0.317 0.450 0.355 0.318 0.534
Adjusted R2 0.336 0.293 0.431 0.345 0.308 0.527
Residual Std. Error 0.411 (df = 7940) 0.954 (df = 7940) 3.395 (df = 7940) 0.396 (df = 20701) 0.946 (df = 20701) 3.605 (df = 20701)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 12: Heterogeneity in Effects by Previous Popularity - Keyword Labels

Dependent variable:

Below Median Recognition Above Median Recognition

commonWordCount commonWordFrac commonWordCount commonWordFrac

(1) (2) (3) (4)

treatment_x_post_feature −4.675 −0.010 −5.868∗∗ −0.030∗∗∗

(4.427) (0.016) (2.393) (0.010)

Observations 1,173 1,173 2,595 2,595
R2 0.664 0.520 0.666 0.482
Adjusted R2 0.564 0.377 0.619 0.410
Residual Std. Error 29.681 0.106 28.418 0.114

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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of other users in the experiment. While we cannot entirely rule out all potential mechanisms for

social contagion given the networked nature of the site, we provide some discussion of likely avenues

for SUTVA violations and provide discussions and evidence that these are unlikely in our context.

One potential concern could arise if the process of running the experiment caused a change in

the quantity, quality, variety, or subject matter of featured works on the site. This change could

be noticed by users in the experiment, who might alter their creative activities in response to this

perceived change in the feature process. To mitigate this, we specifically designed our experiment

so as to not alter the process by which works are regularly featured on the site. Our manipulation

works with the pre-existing feature process to randomly rearrange the order in which works queued

to be featured actually become featured. There is no increase in the number of featured works as a

result of the experiment, and works randomly assigned to either the treatment or control group as

a result of the study were drawn from the set of works identified by Behance curators and queued

to be featured. From the perception of all users on the site, there is no difference in the number,

nature, or content of works featured during the experimental period versus outside the experiment,

and therefore neither the control group nor the treatment group before they are treated (featured)

can be affected by the presence of this ongoing experiment.

Another potential concern could be the extent to which users’ expectations might be altered by

our study. In other contexts, if content creators are nominated for an award and the final award

recipient is randomized, creator expectations might be subverted or creators may experience shock

or disappointment at the unexpected result. The change in expectations could then influence future

creative activities. This pathway is not feasible in our context, as users on the site are unaware

of whether their works are being examined, identified, and queued to be featured by the curators

until the moment the feature award is given. Feature recognition is also exceptionally rare - at the

time of the experiment, 9 million projects existed on the site while only a few dozen are featured

daily. The overwhelming majority of users on the site will never have a single work become featured.

Based on this, we would not expect creators to form strong expectations of getting recognized, nor

would a lack of feature recognition have informative value about the quality of one’s work. Thus, it

is highly unlikely for a SUTVA violation to occur based on changing user expectations as a result

of our experiment’s presence or manipulation.

Finally, we construct a robustness check to examine whether the characteristics of the works
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featured as a result of the experiment have spillover influence on other experimental users’ subse-

quent content creation. Our test utilizes the randomization of the timing of featuring created by the

experimental design and proceeds as follows: for each project, Pijt, indexed by i, created by a user j

at time t during the experimental period, we find the nearest (temporally) featured works, Fi′,−j,t−7

and Fi′′,−j,t+7, by other users −j that were featured one week before and one week after i’s creation

date t. We calculate the distances in terms of predefined characteristic dimensions and similarity

between Pijt and each of Fi′,−j,t−7 and Fi′′,−j,t+7, and perform a two-sided t-test to determine if

there are persistent differences between the similarity of newly created works to existing, publicly

featured work or yet-to-be-featured work. The intuition behind this placebo test is that if the char-

acteristics of a featured work has some spillover effect to influence other users’ content creation,

then newly created works can influence recent features, which are visible and promoted to everyone

via the front page of Behance while future features that have not yet been promoted mechanically

cannot influence the nature of works created temporally prior. The comparison to a future featured

experimental project is useful, as this creates a clean comparison between works that are otherwise

similar in characteristics due to the randomization in timing and only differ in their visibility and

salience as a result of featuring to peer users in the experiment. As additional robustness, we repeat

the same test while using a two week window. From Table 13, we see no evidence that the featuring

of works created by other artists affects the nature of subsequent creation.

Table 13: Placebo Test of Peer Effects of Feature Recognition

p-value, two sided t-test:

1 Week Comparison Window 2 Week Comparison Window

Euclidean Distance 0.492 0.303
Dot Product 0.314 0.065∗

Cosine Similarity 0.527 0.317
Abstract 0.521 0.163
Commercial 0.495 0.275
Complex 0.904 0.514
Creative 0.844 0.404
Emotive 0.627 0.481
Likeability 0.581 0.525
Photorealism 0.971 0.362

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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6 Conclusion

This study conducts a field experiment on a large art-sharing website to randomly allocate awards

and front page featuring in order to estimate changes in creative activity as a result of attention

and recognition in social networks. The direction of attention and recognition is one of the key

levers available to social networks, which aim to foster diverse creative content on their sites in

order to attract users. Additionally, social network platforms are increasingly investing millions of

dollars into contracts with top creators to secure exclusive content for the platform, such as Spotify’s

partnership with Joe Rogan reportedly valued at $200 million (Rosman et al. 2022) or TikTok’s

collaboration with the National Hockey League (TikTok Newsroom 2022). As such, the question

of whether awards, attention, and recognition foster greater creativity amongst top creators is a

critical one as websites determine how to allocate scarce user attention.

Our analysis employs machine learning algorithms to analyze creative artwork at scale and using

parsimonious human-labeled training data and a transfer learning approach. We find that after

being featured, creators subsequently create different content from their awarded work. This result

is consistent across multiple measures of content similarity, including low-dimensional structured

embeddings, medium-dimensional unstructured representations, and pre-trained industrial tools for

image labeling.

These results have implications for managers of social networks, who face questions of whether

the recognition of top content creators simply encourages creation of repetitive, similar content to

the works recognized. We find that the opposite is the case, with non-recognized users actually

creating more monotonous content. These results are encouraging, but future research is needed

to determine how social network managers can best allocate attention. Expanding the number of

works that receive recognition has the potential to dilute the perceived value of the award. Further,

it is unclear whether non-top users benefit similarly from award recognition. Finally, much of the

value of an award may be in the aspirational value it provides to the large number of non-awardees.

These are interesting questions for future research, though may be difficult to assess in large field

experiments such as this one.
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Appendix

Figure A1: Labels Generated by Google Vision API

Figure A2: Architecture for Inception Module 1 (as per Szegedy, Vanhoucke, et al. 2016)
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Figure A3: Architecture for Inception Module 2, (as per Szegedy, Vanhoucke, et al. 2016, n=7)

Figure A4: Architecture for Inception Module 3, (as per Szegedy, Vanhoucke, et al. 2016)
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Table A1: Accuracy of Model with Continuous Ground Truth Labels

Labels Accuracy Value
Abstract 87%
Commercial 83%
Complex 88%
Creative 87%
Emotive 85%
Likeability 89%
Photorealism 83%

Notes - This model uses continuous ground truth variable values ranging between 1-7 calculated by taking a simple average
(without rounding) across the feature ratings provided by the 5 M-Turkers for each image. The model architecture used is
similar to the earlier Inception-v3 based model as defined in Table 2 with the modification being that the last layer of the
model is modified to include the MSE (mean squared error) loss function to accommodate the continuous label values.
Accuracy is defined as (1 - error), where error is defined as the ratio of the absolute difference between the predicted rating
and the true (M-Turker) rating divided by 6 (Note that the true M-Turker rating is calculated by taking an average of the
ratings provided by the 5 independent M-Turkers who rated the picture). We are dividing the difference by 6 since the rating
scale for each label varies from 1 to 7. The accuracy is calculated on a held-out test data-set with 50 images.
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