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Abstract

Nearly all organizations of any type, size or scale produce their final output via a
process characterized in some form by (i) joint contributions from multiple individual
agents and (ii) a sequential work flow in which “upstream” agents take actions that
may impact the choices made by those “downstream,” at later stages. This presents
unique contracting challenges given the interactions among the agents. Consistent
with the existing contracting literature, we demonstrate in a linear production process
that the power of the optimal linear scheme is increasing along the process. Our main
contribution is to show that this is driven by a unique mechanism based on the
principal’s efforts to induce each agent to internalize their “disutility externality” on
downstream agents. While robust to a number of extensions, we show that the
increasing power result is not generally robust to different technologies. Via a general
model, we are able to demonstrate that the power of schemes may vary from stage to
stage arbitrarily as a function of the super- or sub-modularity of the technology with
respect to equilibrium effort. In this sense, we are able to explain a broader range of
pay patterns than existing theories. Finally, we argue that the schemes we study, even
those structured with differential levels of power, promise all identical agents the same
expected utility once we account for the differential levels of effort and should thus
not be seen as “discriminatory.”
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1 Introduction

Multi-agent joint, sequential production presents unique contracting challenges due to the

dynamic and potentially complex dependencies among the agents. In particular, in such a

setting, the expected impact of a given agent’s action is a function of other agents’ previous

actions. In writing a contract with each agent, the principal’s challenge is to endow them

with the desired objective function, given their specific role in a process, the details of which

may not be fully determined at the time of contracting. This has implications both for each

agent’s participation decision and for their action (e.g., effort) selection.

Our aim in this paper is to characterize the optimal linear contract in this setting, and

to assess the relative power of the scheme across agents at different stages in the process.

We make several points: (i) Even under risk-neutrality, making agents the residual

claimants on the firm output in a joint, sequential setting does not yield first-best

outcomes even though it does so in a setting with atomistic agents; (ii) With a linear

production technology throughout the organization, the power of the optimal linear scheme

increases through the production process from start to finish; (iii) While (ii) is consistent

with the literature, we demonstrate that it is driven in our model by a novel and general

“disutility externality;” (iv) Though the increasing-power result is robust to a number of

extensions, it is not robust to different technologies. In fact, contrary to the literature, the

relative power of the optimal linear scheme may vary arbitrarily from stage to stage, driven

by the super- or sub-modularity of the technology across stages. Thus, our model can

explain a broad range of intra-organizational pay patterns; (v) In spite of the fact that the

optimal linear scheme reflects differential incentives across identical agents, it may be seen

as non-discriminatory in that it results in identical expected utility. In particular, since the

equilibrium effort varies across agents, once we account for the associated disutility, all

agents are paid identically; and (vi) in a context with a probabilistic dichotomous outcome,

each of these results holds and the contract is unique.

Our contributions to the existing literature derive from the fact that we consider both
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continuous effort choices and participation decisions. As described by Winter (2006), a

joint sequential production model is appropriate to capture many real-world contracting

settings such as modern division-based corporations, R&D and software development. Each

of these settings may be characterized by upstream agents selecting from a rich choice set

the action that maximizes their own expected utility, while these choices, in turn, also drive

the relative attractiveness of the action choices available to downstream agents. Employees

in a marketing department, for example, may invest in the creation of email marketing

campaigns designed to create leads. Higher effort levels in marketing should result in better

leads. That lead quality, in turn, will affect how productive or impactful various levels of

sales effort might be on customer decisions. Based on this, salespeople decide how much

effort to invest in meeting with, and selling to, prospects. This example highlights several

distinct features of our setting and model. First, each agent makes choices, the relative

appeal of which will vary from setting to setting. Different products, economic or seasonal

cycles and other firm or competitor tactics each could impact the relative returns of different

choices. However, contracts are written beforehand, so the firm may not be able to specify

at the time of contracting what specific level of effort is desired.

Second, the marketing decisions made upstream impact how much effort the salespeople

will contribute, again from a rich choice set. However, the disutility experienced by the

salesperson is not directly relevant to the marketer, who balances their own expected

compensation against their own disutility. The impact of he marketer on the disutility

borne by the salesperson represents an intra-organizational externality that is of course

relevant to the principal and which must be addressed by the compensation scheme in

order to achieve first-best outcomes. This externality and its relationship to incentives has

not been discussed in the literature.

Finally, equilibrium effort levels will differ across agents. Salespeople, for example, may

exert more effort than marketing people in equilibrium, or vice versa. This complicates

somewhat the analysis of the potentially discriminatory aspect of the compensation scheme.
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However, with a binding participation constraint, identical agents working in different stages

of the process will still all receive the same net expected utility.

We model an arbitrarily-large set of agents producing, through their sequential,

interdependent effort, a single contractible outcome. We focus on a continuous outcome

but demonstrate that our results apply equally well to the commonly-studied context with

a dichotomous, probabilistic outcome. Agents earlier in the process select effort that drives

the marginal impact of effort (“productivity”) selected by agents later in the process. We

first show, using a simple linear technology, that the optimal linear contract has power that

is increasing as we move from earlier to later agents in the process. With a dichotomous

outcome, this contract is unique. This finding echoes that of Winter (2006), however we

demonstrate that it is driven here by a very different force not present in his model. One

might expect that, given risk neutrality, a candidate for the optimal contract would make

agents residual claimants on the firm output, as this might ensure that each agent would

choose first-best effort. However, such a contract is ineffective in the joint, sequential

setting because it does not account for the disutility externality. That is, under residual

claimancy, the principal’s and agents’ objective functions are still misaligned in that the

latter do not account for the impact of their effort choice on the disutility faced by those

agents downstream from them. As a result, with a linear technology, the principal

“meters,” or attenuates, the incentive in each contract in proportion to this disutility. Only

the final agent in the process is offered a maximum-powered contract because they don’t

generate any such externality. Note that these forces don’t appear in Winter (2006)

because (a) on-path effort costs are fixed in the binary action setup, and (b) “high effort” is

exogenously given as optimal for all agents.

Our analysis also reveals that, since each agent is bound to their reservation wage, a

context with identical agents would imply that each is paid the same expected wage, though

via a different mix of salary and commission. Unlike the existing literature, the agents in

this setting would not, for example, prefer to be in a different role in equilibrium. In this
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sense, we argue that the schemes may be seen as non-discriminatory.

We build on this result in a number of directions including allowing for heterogeneity

across agents with respect to both productivity and efficiency; uncertainty around these

factors; dichotomous outcomes; a setting in which total payout is constrained; and risk

aversion. In each of these settings, we find consistent results. Finally, we investigate joint,

sequential production with a general technology, while maintaining the focus on a linear

contract. Here, we find that the increasing-power result is not general. In fact, the power of

the scheme is higher in stage n+ 1 relative to stage n if and only if the technology in stage

n + 1 is supermodular in effort. That is, if and only if an increase in stage n effort leads

to higher optimal effort in stage n + 1. This generalizes the core result with respect to the

disutility externality in the sense that when the technology is supermodular – which is the

case for linear technology – the externality is a positive one, meaning that an increase in

the agent’s effort level will increase efforts downstream. Thus, if they don’t account for the

externality, this cost is ignored and effort choice will be supra-optimal, requiring metering.

The converse of this argument is that under sub-modular technologies, the agent will choose

effort that is too low if they ignore the externality. Thus, the principal will “boost” the power

of the scheme to induce them to internalize it. In this way, we see our analysis as explaining

a wide range of observed pay patterns throughout and across organizations as a function of

the nature of the production technologies.

In the rich literature on contracting with multiple agents, most of the early focus had

been on the principal’s problem of designing schemes for “teams” comprised of agents who

make simultaneous effort choices either in static (Holmstrom, 1982) or dynamic (Che and

Yoo, 2001) settings. These studies have considered, for example, the effectiveness of

tournaments and/or relative performance evaluation (RPE) when individual outcomes are

at least partially observable by the principal. More broadly, these schemes have been

studied in multi-agent settings in which there isn’t necessarily joint production but

correlated shocks. That is, there is in these models a consideration of incentive
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interdependence but not necessarily production interdependence (Lazear and Rosen, 1981;

Nalebuff and Stiglitz, 1983; Green and Stokey, 1983). Closely related to the tournament

and RPE literatures is the extensive literature on job design. These studies ask how the

principal should optimally assign tasks to agents given considerations associated with

preferences, technology and risk aversion. These models typically abstract away from any

explicit technological interdependence (Corts, 2007) and/or focus on joint production in a

simultaneous setting (Corts, 2007; Holmstrom and Milgrom, 1991; Itoh, 1992). On the

contrary, here we take task assignment and job design as exogenous but focus on an

organization with explicit and sequential interdependence among the tasks.

Segal (1999, 2003) investigates a broad range of multi-agent contexts with externalities in

which agents make participation decisions. A general finding in these settings is that identical

agents may earn different returns in equilibrium. Winter (2004) studies a simultaneous

collaborative process with multiple agents making binary effort choices. He finds that the

optimal scheme must necessarily be discriminatory in the sense that the principal will pay

some agents more than others in order to signal that there will be sufficient effort provided

to ensure a successful outcome. Halac et al. (2021) extend these ideas by considering a

context in which contracts are not public and, thus, one is uncertain as to whether and

which others are paid more. They demonstrate that, in this setting, again simultaneous,

there is no discrimination and bonuses are identical. While this stream is characterized by

models of binary participation decisions associated with a simultaneous production process,

an exception is Edmans et al. (2013) who allow for a richer set of effort choices, again in a

simultaneous-move setting. Our specification of a sequential process is critical to our findings

because, by assumption, agents are able to observe the outcome of previous actions before

making their own effort decisions. Returning to our example above, salespeople are able

to observe the quality of the leads before deciding how much outreach they should invest

in. Without this feature, the disutility externality at the center of our results would not be

present.
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Most-closely related to the context we study here are Strausz (1999) and Winter (2006),

each of which departs from the previous literature by focusing on a sequential technology.

The former models a partnership and seeks to find an efficient budget-balanced method for

dividing the revenue generated by a sequential process while ensuring each agent puts forth

first-best effort. The author presents a novel solution in which the deterministic nature of

the technology allows for precise identification of any shirker. In contrast, our focus here is

on identifying the principal’s profit-maximizing contract in a context with stochastic output.

Moreover, we demonstrate that our result is robust to arbitrary constraints on compensation

pay out, including budget balance.

Winter (2006) models an exogenously-given joint, sequential production process yielding

a dichotomous outcome (success or failure). Each of the agents in his model has a task to

complete and makes an observable (but not contractible) binary effort choice. High effort

leads to a successful task outcome with higher probability. The overall collaborative process

is successful if and only if each task is successful. The cost of high effort is fixed for each

agent and not a function of other agents’ choices. The principal’s objective is to attain high

effort choices by all agents at minimum cost. He derives a result that is similar in spirit to

our supermodular case, yet as noted above, and discussed in more detail below, is based on

a different set of forces, owing to our modeling of both participation and continuous effort.

The rest of our paper is structured as follows. In Section 2, we focus on a linear model of

joint, sequential production and demonstrate that the optimal linear scheme has a sharing

rule that increases monotonically in power from the beginning to the end. We demonstrate

how this result is distinct from the literature in that it is driven by the presence of a disutility

externality. We extend the linear model in a number of directions including allowing for

rich heterogeneity across the agents as well as uncertainty about the agents at the time

of contracting (Section 2.2). We also demonstrate that the core result persists under an

arbitrary payout constraint (Section 2.3) and with a dichotomous outcome (see 2.1). In

Section 3, we provide a counter-example to the increasing-power result and in Section 4 we
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present a general model that incorporates and provides insight into both the linear model

and the counter-example. In short, under joint, sequential production, the power of the

scheme may change arbitrarily from stage to stage with the direction dictated by the super-

modularity (increasing power) or sub-modularity (decreasing power) of the technology. We

conclude in Section 5 with a summary and suggestions for future work.

2 A Linear Model of Joint Sequential Production

Consider an organization comprised of N risk-neutral agents producing a single continuous

output in a sequential process. Each agent is indexed by n with agent 1 representing the

beginning, and agent N the end, of the process. Each agent chooses effort level en which is

associated with a private cost G(en) = 1
2
e2n. Let X(e) + ε represent the stochastic output

of the joint sequential production technology where e ≡ (e1, e2, ..., eN) and E[ε|e] = 0. We

assume that only the Nth agent’s effort has a direct impact on the outcome, while the

contribution made by each agent n < N is via the creation of an interim output which enters

the production function for agent n+ 1. We refer to this as “productivity” pn(en−1, pn−1).

In this section, we incorporate a specific, linear specification of the production process:

p1 given (1)

pn =
√
pn−1 · en−1, 1 < n ≤ N − 1 (2)

X =
√
pN · eN (3)

We assume here that p1 is exogenous, fixed and known to all parties. Higher values of p1

imply a production process in which the principal wants the agents to exert higher levels of

effort. We present below in Proposition 4 a version of the model in which this is instead

a random variable at the contracting stage, but known before effort is chosen. Note that

this specification is supermodular in effort in the sense that higher effort at stage n implies
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higher effort at stage n+1 ceteris paribus. We investigate different specifications in Sections

3 and 4. See Figure 1 for a graphical representation of the process.

Figure 1: Joint, Sequential Technology

We model a joint, sequential technology comprised of N agents jointly producing output X. Higher effort en
put forth by each agent n < N increases the productivity pn+1 of the next agent in the production process:
∂pn+1

∂en
> 0.

We focus on linear contracts with salary Sn and commission Cn ∈ [0, 1]. Each agent’s

total payoff (and, thus, utility, given our assumption of risk neutrality) Wn is then:

Wn = Sn + Cn ·
[
X(e)− 1

2
e2n + ε

]
(4)

which each agent maximizes sequentially with respect to en, conditional on observing pn.

Owing to the sequential nature of the process, defined in Equations (1) - (3), we can rewrite

(4) to reflect the fact that each agent differs in terms of her impact on the expected outcome.

Next, we define the stage-n output function, Xn(e
nenen(en)|pn), as agent n’s expectation of the

output X, conditional on their own observed productivity and as a function of their effort

choice. Here, enenen ≡ {en+1, ..., eN}, that is the vector of all effort levels downstream from agent

n. Thus, (4) becomes, in expectation:

E[Wn] = Sn + Cn ·Xn(e
nenen(en)|pn)−

1

2
e2n (5)

which each agent maximizes at effort level e∗∗n . We use e∗∗n to capture agents’

utility-maximizing effort choices, and e∗n for first-best effort levels.

In this model setup, the principal implements the first-best outcome by selecting the
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compensation parameters that solve the following problem:

Max{Cn,Sn} X(e1, e2, ..., eN)−
1

2

N∑
n=1

e2n (6)

s.t. E[Wn] ≥ W n (7)

en = e∗∗n (8)

The W n terms capture each agent’s reservation wage. Before analyzing the scheme, we solve

for the the first-best effort levels by maximizing the following unconstrained problem:

Maxen X(e1, e2, ..., eN)−
1

2

N∑
n=1

e2n (9)

In the following lemma, we characterize the first-best effort e∗n and associated productivity

levels, as well as stage-n output function, Xn(e
nenen(en)|pn). We will, where possible, suppress

the arguments to Xn for parsimony.

Lemma 1. The first-best productivity, effort levels, and stage-n output functions, associated

with the problem in (9), are given by:

1. p∗n · ψn−1 = p∗n−1

2. e∗n =
√
pn
ψn

3. Xn =

√
pn∏N

m=n+1 ψm
en

where ψn = 2k(n), k(N) = 0, k(n− 1) = 2 · k(n) + 1

The lemma makes clear that in this linear production technology, first-best productivities

decline along the process, from beginning to end. We are also able to use Lemma 1 to derive

implications for the dynamics of optimal effort:

e∗n
e∗n−1

=
ψn−1

ψn
·
√

pn
pn−1

> 1
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Though productivity declines, first-best effort levels increase monotonically along the

sequence.

The stages of the game are as follows: (i) the principal makes a take-it-or-leave-it

contract offer of {Cn, Sn} to each agent n. (ii) Conditional on each agent accepting the

offer, the production process unfolds as each agent first observes their own productivity and

then selects their effort which drives the next agent’s productivity. (iii) The final output is

determined by agent N ’s effort choice, and (iv) agents are paid and firm profits are realized.

We find the unique set of contract parameters that yield a subgame-perfect equilibrium.

The following lemma presents useful results on agents’ optimal response to arbitrary

linear contracts in our current specification. Our focus is on the slope parameters {Cn} as

the “salaries” will be chosen to bind the agents to their reservation wages.

Lemma 2. Consider the problem defined in (1)-(3). For a given compensation scheme{
Sn, Cn

}
the unique subgame-perfect set of efforts levels, total sales and costs of effort are

given by:

1. e∗∗n (pn) = Cn+1Cn
√
pn

N−n∏
j=2

C2j−1

n+j (10)

2. X =
N∏
n=1

C2n−1

n (11)

3.
1

2
e∗∗2n =

Cn
2

N∏
j=1

C2j−1

j (12)

Equation (10) highlights the forces driving each agent’s effort choices. In addition to

their own incentive Cn, they also consider both their productivity pn and the incentives of

all agents downstream from them. This is a direct implication of the interdependence of

the production process. Using the results from Lemma 2, we can rewrite Equation (6) as

an unconstrained optimization problem in which the firm chooses
{
Cn

}
to maximize the
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following objective:

E[Π] = X − 1

2

N∑
n=1

e2n −
N∑
n=1

W n =
N∏
n=1

C2n−1

n −
N∑
n=1

Cn
2

N∏
j=1

C2j−1

j −
N∑
n=1

W n (13)

We are now able to solve in closed form for the unique linear scheme implementing the

first-best outcome, which in our setting is surprisingly simple:

Proposition 1. The subgame-perfect linear contract that maximizes (13) is C∗
n = 2n−N ∀n

In a four-stage sequential technology, for example, the commission rates would be given by

(from upstream to downstream): 1
8
, 1

4
, 1

2
, 1. This provides a parsimonious explanation, for

example, for the commonly-observed phenomenon that, in the same organization, employees

in marketing are typically paid via lower-powered schemes than those in sales. Along the

same lines, it is not uncommon for functional managers (upstream) to be paid according to

lowered-powered schemes relative to their direct reports (downstream). The following is a

direct corollary of Proposition 1:

Corollary 1.1. There does not exist a linear compensation scheme satisfying
∑

nCn ≤ 1

that implements the first-best outcome in this model

While this is an unattractive property, we show later that the qualitative features of the

result in particular, the increasing power – persist even when we constrain the solution to∑
nC

∗
n ≤ 1.

We highlight several aspects of Proposition 1. First, we note that this is inconsistent

a heuristic that suggests that a principal should always make risk-neutral agents residual

claimants on revenue – i.e., that the principal should “sell the firm” to risk-neutral agents.

Typically, in a risk-neutral setting, the assignment of the firm’s revenue to the agent has been

shown to endow them with the firm’s objective function. However, this is not the case with

joint, sequential production. Specifically, even if we were to assign all revenues to any agent

n < N , they would not choose e∗n. The reason for this relates to the fact that an upstream
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agent’s effort choice imposes two externalities on downstream agents, one related to revenue,

and thus monetary compensation, and the other related to disutility. The former is aligned

via residual claimancy, but the latter is not. To see this in a simple example, note that

first-best effort at the final stage of the process is, from Lemma 1, e∗N =
√
pN . From Lemma

2, this agent’s effort choice is e∗∗N = CN
√
pN , so indeed the principal would optimally sell

them the firm. However, consider now agent N − 1. Conditional on the agent’s productivity

level pN−1, the firm’s problem is:

MaxeN−1

√√
pN−1eN−1 · eN(pN)−

1

2
e2N(pN)−

1

2
e2N−1 (14)

Substituting in the equilibrium choice by agent N yields:

MaxeN−1

1

2

√
pN−1 · eN−1 −

1

2
e2N−1 (15)

which implies the first-best effort level of e∗N−1 =
1
2

√
pN−1 . However, if the firm sets CN−1 =

1, the agent chooses, again from Lemma 2, the supra-optimal level of e∗∗N−1 =
√
pN−1 . The

agent works “too hard” as do all subsequent agents as a result. To appreciate why this the

case, note that in selecting their effort, agents trade off two factors: (i) the marginal impact

of their effort on the expected revenue (and, ultimately, their expected payout), and (ii) the

marginal cost of their effort. Since it does not affect their utility, agent N−1 in this example

does not consider the impact their effort choice has on the effort costs experienced by the

downstream agent N . Moreover, endowing them with a claim on the firm’s revenue does

not accomplish this either. Selecting CN−1 = 1 is not tantamount to endowing the agent

with the firm’s objective function because it doesn’t ensure they internalize this “disutility

externality.”

To illustrate this property more generally, we compare here the principal’s optimal effort

choice with an arbitrary agent’s choice. The principal’s solution must satisfy a system of N
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necessary first-order conditions of the form:

[
dX

dpN

dpN
dpN−1

· · · dpn+2

dpn+1

∂pn+1

∂e∗n

]
−

[
e∗n +

∑
m>n

em
∂em
∂pm

dpm
dpm−1

· · · dpn+2

dpn+1

∂pn+1

∂e∗n

]
= 0 (16)

The first bracketed term represents the marginal impact of agent n’s effort choice on the

outcome X, propagated down through the entire organization via the effort levels of all

downstream agents. Note that we indicate the full derivatives of both X and the

productivities pn, reflecting the fact that changes in productivity at stage n have both

direct and indirect effects on productivity at stage n + 1. The second bracketed term

reflects the marginal impact of agent n’s decision on their cost of effort as well as that of

those agents later in the process. Our choice of functional form for the technology makes

this straightforward to solve in closed form. We return below to a characterization of a

more-general solution. Agent n’s utility-maximizing effort choice, on the other hand,

satisfies the following necessary first-order condition.

Cn ·

[
dX

dpN

dpN
dpN−1

· · · dpn+2

dpn+1

∂pn+1

∂e∗∗n

]
− e∗∗n = 0 (17)

It is clear in comparing (16) and (17) at Cn = 1, that they’re aligned on revenues, which is

what one would expect from the literature on atomistic, or separable, production. However,

there is clear misalignment on costs due to the disutility externality. Moreover, as n decreases

– i.e., as one goes farther back in the process – this misalignment becomes more and more

pronounced because this implies that there are more agents on whom one is imposing the

disutility externality.

Note that Winter (2006) presents a set of results that appear quite similar. However,

there are a number of important distinctions. Most critically, our results are driven by very

different forces. His result is driven by a declining intrinsic cost to shirking. Specifically,

shirking by agents causes, in equilibrium, all later agents to shirk. This of course is less

harmful to the probability of a successful outcome (and, thus, more tempting) the later an
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agent sits in the process. To offset this, the principal increases the reward for a successful

outcome paid to agents closer to the end, in order to ensure they don’t shirk. From (16) and

(17), it is clear that, at maximum power, this revenue- (or outcome-) based misalignment is

not present here.1

Another point of distinction, to which we return in detail in Section 4, our setup

accommodates a range of technology specifications that can give rise to arbitrary patterns

of contracts, including those that may decrease in power from one agent to the next. The

core driving factor in all will be the nature of the disutility externality. In this linear case,

the externality leads to supra-optimal effort causing the principal to meter, via dampened

incentives, the effort levels. However, we will both give an example of, and more-fully

characterize, a context in which the externality may lead to sub-optimal effort,

necessitating boosted incentives earlier in the process. Again, owing to the different

drivers, such a solution is not shown by Winter (2006).

Finally, it is worth comparing the optimal linear contract here with that in Winter (2004)

and Halac et al. (2021), who investigate the optimality of “discrminatory” contracts, defined

as those that pay ex ante identical agents different levels of compensation. On one hand, this

is indeed the case here as well, with agents earlier in the process being paid via lower-powered

schemes. However, given our consideration of both effort and participation, by construction,

each agent in our model is bound to their reservation wage. Put differently, while they

receive different compensation structures, they experience exactly the same expected utility.

In this sense, then, we would argue that the contracts are in fact not discriminatory. Put

simply, if given the option, no agent would prefer to move from one position to another.

2.1 Unique Contract with Dichotomous Outcome

Our core model specifies a continuous outcome as a function of the continuous, sequential

effort of N agents. An alternative approach, common in the literature (see, for example,
1Moreover, making any agent the residual claimant in Winter (2006) would ensure that they choose the

principal’s desired effort level. As outlined above, this is not the case here due to the disutility externality.
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Baker et al. (1994)), would be to conceptualize the process as producing with probability
√
pNeN a single observable output of value normalized to 1. An appeal of this extension,

besides a broader set of applications, is that there is, by construction, a unique optimal

sharing scheme.

To see how naturally such a specification fits here, we can maintain (1) and (2) exactly.

In place of (3), we specify a dichotomous outcome (e.g., success or failure):

X ∈ {0, 1} (18)

Pr(X = 1) =
√
pN · eN (19)

Then, all that remains is to constrain √
pN · eN ∈ [0, 1]. Per the discussion following Lemma

1, a sufficient condition for this would be p1 ≤ 1, though this could be relaxed significantly.

We thus state the following:2

Proposition 2. Consider a joint, sequential process with N agents producing a single output

of value 1 with probability √
pN · eN , with agents 1, ..., N − 1 acting according to (1) and (2).

Then, with p1 ≤ 1, the unique subgame perfect compensation scheme is characterized by

C∗
n = 2n−N .

Note that the driver of this result is, again, the principal’s effort to encourage the agent to

internalize the disutility externality.

2.2 Heterogeneity in the Linear Model

Our core model is parsimonious in that it lacks heterogeneity across either agents or tasks.

In this section, we consider a richer a version of (2):

pn+1 = bn ·
√
pn · en (20)

2The authors are sincerely grateful to Bob Gibbons and Roi Orzach for suggesting this approach.
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Here, the bn parameters reflect the fact that some functions in an organization have more

impact on the production process than others. Alternatively, some agents are inherently

more productive than others. Moreover, rather than a homogeneous disutility of effort

G(en) =
1
2
e2n, we allow heterogeneity here as well:

Gn(en) =
γn
2
e2n (21)

For example, some work is inherently more difficult or perhaps generates more disutility than

other work. Indeed, many management decisions focus on the magnitude, and the allocation,

of investments associated with the productivity of agents – as captured in the bn parameters

– as well as their efficiency, as captured in the γn’s.

As the following proposition demonstrates, this richer specification nonetheless yields an

optimal linear contract that is identical to that in the simpler set up.

Proposition 3. Incorporating into (9) the agent-level heterogeneity as described in (20) and

(21) yields the same optimal linear compensation plan as presented in Proposition 1.

As shown in the proof of Proposition 3, the fully-parameterized version of the profit function

in (13) is given by:

E[Π] =
( N∏
j=1

b2
j

j

γ2
j−1

j

)( N∏
n=1

C2n−1

n −
N∑
n=1

Cn
2

N∏
j=1

C2j−1

j

)
−

N∑
n=1

W n (22)

It is immediately apparent that these parameters serve only to shift up or down the firm’s

revenue, as well as the equilibrium effort levels.3 To develop some intuition around this

result, consider a simple (N = 2) joint, sequential process. Let b1 = γ1 = 1, and allow b2 and

γ2 to be free. It is easily verified that e∗2 =
b2
γ2

· √p2 and C∗
2 = 1. Given this, the principal’s

problem is:

MaxC1

b22
γ2
p2(e1)−

1

2

b22
γ2
p2(e1)−

1

2
e21 (23)

3Note that this is also true in standard models of non-joint, sequential production under risk neutrality.
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while the agent’s problem is:

Maxe1 C1
b22
γ2
b2p2(e1)−

1

2
e21 (24)

So, while the parameters b2 and γ2 are incorporated into agent 1’s problem, they only account

for “half” of the effect. In particular, they only account for the revenue effect, but not the

disutility. Thus, the pay scheme C1 must compensate for this, which it does by metering

the incentive in the agent’s utility function by a factor of one half. Moreover, this is true

regardless of the values of b2 and γ2. As we add more and more stages, the metering must

increase, reflecting more misalignment between the agent and the principal. However, in

every case, this misalignment – which the compensation scheme is selected to rectify – is a

fixed proportion, independent of the heterogeneity parameters.

Given the invariance of the optimal scheme to different values of the {bn, γn} parameters,

the next proposition is a natural extension in which we allow them to be random variables

at the contracting stage:

Proposition 4. Assume the {bn, γn} parameters are distributed according to a

2N-dimensional joint distribution with support R2N+. If an expected value exists for

N∏
j=1

b̃2
j

j

γ̃2
j−1

j

(25)

then, a model in which the values of {bn, γn} are realized after contracting, but before effort

selection, yields the same optimal linear scheme as in Proposition 1.

So, our result is robust not only to the presence of heterogeneity in the desired effort levels,

but also to ex ante uncertainty.

Given that neither the equilibrium compensation scheme nor reservation wages (the

latter by assumption) are impacted by these parameters, our result in Proposition 3 makes

straightforward the investigation of a range of organizational design decisions. As an
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example, we look here at the allocation of productivity (bn) and efficiency (γn)

improvements across an organization.

It is obvious from (22) that the firm’s profit improves as the productivity and efficiency

of its agents improve (i.e., as bn increases and γn decreases, for any n). However, it is less

obvious how an organization should distribute its investments in productivity or efficiency

improvements. Here, we abstract away from the decision as to how much to invest and focus

instead on where to invest.4

Consider the impact on the principal’s return of increasing the productivity of a single

agent n by a small amount:
∂E[Π]

∂bn
= 2n · b−1

n ·K ≡ dn (26)

where K ≡ E[Π] +
∑

nW n > 0. Now, for any two agents m and n, we have:

dm − dn = K ·

[
2m

bm
− 2n

bn

]
(27)

An analogous analysis can be performed for efficiency γn. Several interesting insights can be

gleaned from this. First, in a hypothetical context with ex ante homogeneous agents such

that bn = b ∀n, productivity-increasing investments should always be made downstream (in

the productivity of agents m > n) before they’re made upstream. At first, this may seem

surprising given the multiplicative effect of effort provision through the process. However,

it relates to a point made above regarding the monotonic increase in first-best effort levels

across the process, driven again by the firm’s desire to attenuate upstream effort relative to

downstream. As a result, a given investment in productivity improvement yields lower gains

upstream, relative to downstream. Of course, in a standard atomistic, additive, separable

model with homogeneous agents, there would be no difference in the impact of productivity

investment across different stages.

More generally, allowing for heterogeneity across stages, the allocation decision involves
4Moreover, let ht represent funds budgeted for productivity improvements in period t. For the sake of

parsimony, we assume here that the marginal response of productivity
∂bn
∂ht

is constant across n.
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a trade off between this preference for downstream investments, on one hand, and current

productivity levels, on the other. To the latter point, it is clear from (26) that such

investments yield concave gains, limiting the optimal disparity in downstream vs. upstream

investments. Moreover, given the joint nature of production in our setting, an improvement

in an agent’s productivity will have a bigger impact on profits the relatively

more-productive the other agents are. To complete this analysis, we can state formally the

following result on the long-run allocation of productivity in an organization. Note that for

this result, we assume the random arrival of funds for productivity improvement. Since we

don’t model the activities throughout the entire organization, this is meant to capture the

idea that productivity improvements (e.g., training) may in a given period be expected to

yield higher or lower marginal returns relative to other investment opportunities.

Proposition 5. In the unique stable long-run allocation of productivity (efficiency)

investments across the organization, for any pair of agents m and n: bm = 2m−n · bn ∀m,n

(γm = 2m−n · γn ∀m,n).

While we’re aware of no rigorous empirical analysis of relative intra-organizational

investment into productivity or efficiency, this result is consistent with casual observation.

For example, the average spending on training for marketing employees (upstream) is

generally significantly below that spent on (downstream) sales training.5

2.3 Payout Constraint

As noted in Corollary 1.1, a clear implication of Proposition 1 is that the first-best plan

implies that the principal pays out more in commission than the value of their output. More

precisely, it pays out a proportion of revenue equal to 2 · (1 − 2−N) ∈ (1, 2) for N > 1. We

consider here a version of our model in which we impose an additional constraint such that
5See, for example, cxl.com/blog/state-of-marketing-training-2019/ which reports annual marketing

training to be around $1,000 per employee, and www.ama.org/listings/2020/04/26/sales-training-2/ which
reports sales training averages over $2,200 per employee.
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the principal maximizes expected return as specified in Equation (13) subject to:

N∑
n=1

Cn ≤ C, C ∈ (0, 1] (28)

where Cn represents the constrained-optimal agent-level commission rates and C is the

overall payout cap. As the following result demonstrates, while of course the overall level of

payout is lower, the constrained model yields precisely the same relationship among adjacent

sharing rules as we obtain above in the unconstrained model.

Proposition 6. In the constrained model, in which we impose (28) on the core model, we

find the following unique optimal linear sharing rule:

(i) C
∗
n+1 = 2C

∗
n, ∀ n

(ii) C
∗
n =

2n−1

2N − 1
C, ∀ n

Part (i) of the result shows that again we see a doubling of the power of the scheme from n

to n+ 1. It is straightforward to verify that, as one would expect:

C
∗
n = C∗

n ·

[
C

2 · (1− 2−N)

]

In other words, the constrained-optimal sharing rates are equal to the unconstrained values,

each scaled downward by a fixed proportion. Moreover, the scaling factor is intuitive in that

it reflects the relative magnitudes of the constrained and the unconstrained payouts. By

referring to part (i) of Lemma 2, it can be verified that the effects on effort levels of imposing a

payout constraint are more severe with respect to upstream agents than downstream agents.

As a result, such a constraint leads to more variation in effort levels across stages. This is

a direct result of the multiplicative effects of incentives. As a final note on this constrained

model, it is straightforward to demonstrate that the core results in Proposition 5 carry over

exactly to this constrained setting.
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2.4 Risk Aversion in a Linear Joint Sequential Process

To this point, for the sake of parsimony, we have maintained an assumption of risk neutrality,

which has been the focus of much of the contracting literature. In order to capture this in

our modeling framework, we adopt the CARA framework, including an exponential utility

function such that the utility for monetary payoff W is given by:

U(W ) = −e−RW (29)

where R captures the agent’s constant absolute risk aversion. As is well known (Pratt,

1964; Holmstrom and Milgrom, 1991), assuming that the error term in the final stage-N

output is normally distributed with zero mean and variance σ2 gives rise to the tractable

transformation of expected utility into a certainty equivalent CEn:

CEn = Sn + Cn ·X − 1

2
e2n −

1

2
RnC

2
nσ

2 (30)

In turn, incorporating the “risk premium” into the firm’s objective function yields:

E[Π] = X − 1

2

N∑
n=1

e2n −
1

2
σ2

N∑
n=1

RnC
2
n −

N∑
n=1

W n (31)

Since, conditional on the compensation parameters, agent n’s maximization of (30) yields

identical effort to her solution to (4), the results in Lemma 2 define optimal effort choices

e∗∗n in the risk-averse context as well. What remains then is to characterize the optimal

sharing scheme, which will not be identical to the risk-neutral setting, since the firm will no

longer implement first-best outcomes. Substituting the results from Equations (1)-(3), we

can rewrite the firm’s objective as a function of the compensation parameters:

E[Π] = X − X

2

N∑
n=1

Cn −
σ2

2

N∑
n=1

RnC
2
n −

N∑
n=1

W n (32)

22



The firm’s first-order conditions for (32) with respect to N commission rates {Cn} are:

∂X

∂C∗
n

(
1−

N∑
n=1

C∗
n

2

)
− X

2
−Rnσ

2C∗
n = 0 (33)

From (11), one can substitute in for:

∂X

∂Cn
=

2n−1

Cn
·X (34)

and thus rewrite the necessary first-order conditions for an optimal set of commission rates:

2n−1X
(
1−

N∑
n=1

C∗
n

2

)
=
XC∗

n

2
+Rnσ

2C∗2
n (35)

Note that X
(
1−

∑N
n=1

C∗
n

2

)
is constant across n.

Starting with homogeneous risk aversion in which Rn ≡ R ∀n, one can see that, as in the

risk-neutral case, the power of the compensation scheme will increase monotonically across

the risk-averse production process, from beginning to end. Having said this, the introduction

of risk aversion mitigates the slope of incentives along the process. That is, the increase from

C∗
n to C∗

n+1 is attenuated, relative to the risk-neutral case, due to risk aversion. This can be

seen by re-arranging (35) to form the ratio C∗
n

C∗
n+1

:

C∗
n

C∗
n+1

=
X
2
+Rσ2C∗

n+1

X + 2Rσ2C∗
n

(36)

Then, assuming that the claim is false, that is

X
2
+Rσ2C∗

n+1

X + 2Rσ2C∗
n

<
1

2

yields an immediate contradiction. Intuitively, since optimal schemes under risk aversion are

lower powered relative to risk neutrality, the extent to which agents will overproduce effort

23



if they ignore the externality is already dampened. Thus, there is less of a need for the firm

to further attenuate the incentive.

These ideas are readily extended to cases of heterogeneous risk aversion. On one hand,

it can be verified from Equation (35) that, if risk aversion is declining across the sequential

process (for example, if salespeople are less risk averse than marketing, who are in turn less

risk averse than human resources), then again it will always be the case that the power of

incentives is monotonically increasing. Intuitively, the heterogeneity in risk-aversion

reinforces in such a setting the decreasing need to attenuate effort levels. However, this is

not necessarily the case if risk aversion is increasing, or perhaps non-monotonic. We

summarize this discussion with the following Proposition:

Proposition 7. Assuming agents of level n are endowed with risk aversion Rn, then the

following claims hold:

1. Under homogeneous risk aversion, C∗
n < C∗

n+1 ∀n

2. Under homogeneous risk aversion, it is always the case that C∗
n+1

C∗
n

is declining in R

3. If risk aversion is declining in n, then C∗
n < C∗

n+1 ∀n though this is not necessarily

true for increasing risk aversion.

Similar to the discussion in Section 2.2, we can also apply our results here to the question

of organizational design. Specifically, we can ask where in the organization should one

optimally “locate” risk aversion? For example, in an organization with N agents differing

only on the dimension of risk aversion, how should they be assigned across the production

process? It is immediately clear by application of the envelope theorem that an increase in

risk aversion has a smaller effect upstream than it does downstream. From Equation (32):

dΠ(C∗
n)

dRn

=
∂Π(C∗

n)

∂Rn

= −1

2
σ2C∗2

n

Thus, by Proposition 7, in contexts with either homogeneous or declining risk aversion, it is

optimal to assign more risk-averse agents upstream in the process, rather than downstream.
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We note that this provides a novel explanation for the lay belief that salespeople are generally

more risk tolerant than are those in other, upstream roles like marketing or HR. Typically,

this is explained by taking as given the compensation scheme and arguing that those that

are less risk averse are more likely to be drawn to jobs characterized by higher-powered

incentive schemes like commissioned sales. Our result here doesn’t account for any choices

made by agents as to where to work (indeed, all agents earn in expectation their reservation

wage regardless of pay plan structure). Instead, it is driven by the fact that risk premia

are proportional to the power of the pay plan. Thus, the organizational designer places the

risk averse agent upstream where the pay plan is, in equilibrium, lower powered due to the

sequential nature of production. Put differently, this is a supply-side explanation for this

phenomenon, as compared with the typical demand-side explanation.

3 A Counter-Example

So far, we have demonstrated that in a context with a linear, joint sequential production

process each agent is paid via a higher-powered scheme than the previous agent. Further,

we have explained this result as a being driven by a disutility externality which the

principal induces agents to internalize via the optimal linear scheme. If ignored, the

externality leads to supra-optimal effort choices and sub-optimal profit as agents demand

higher salaries to compensate for the disutility. In order to induce the upstream agent to

account for their externality, the principal meters, or attenuates, the schemes. This

metering is more pronounced the earlier in the process the agent appears.

While we have shown the result to be robust to heterogeneity, homogeneous or declining

risk aversion and an alternative discrete probabilistic outcome, we demonstrate by example

that it is not generally robust to the nature of the production technology. Specifically, we

provide an example of an organization with a stage characterized by a submodular technology,

defined as one in which higher effort in stage n – which leads to higher productivity in stage
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n + 1 – leads the stage n + 1 agents to exert less effort. While this may appear somewhat

counterintuitive on the surface, it isn’t very difficult to imagine contexts in which more-

productive agents work less, rather than more. Imagine, for example, a calculus instructor

(the upstream agent) who trains the math student (the downstream agent) for a math

olympiad. It seems reasonable to imagine that the more effort the former exerts in the

training process, the less difficult the task faced by the latter in solving the problems.

To appreciate the contracting problem in such an environment, consider a three-stage

set-up as follows:

X =
√
p3e3

p3 = 1− 1

e2p2

p2 =
√
p1e1

p1 = 1

C(en) =
1

2
e2 ∀n

The only difference between this process and that in Section 2 is that, here, the agent

in stage 2 drives the stage 3 agent’s productivity via a submodular technology. We know

that C∗
3 = 1, e∗3 =

√
p3 and thus X = p3. First-best second-stage effort level maximizes the

following:

Maxe2 X(e2)−
1

2
e22 −

1

2
e3(e2)

2

Substituting in the known quantities allows us to transform the problem:

Maxe2
1

2
p3(e2)−

1

2
e22

Agent 2 solves the following problem:

Maxe2 C2p3(e2)−
1

2
e22
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One can readily ascertain that C∗
2 = 1

2
, e∗2 = (2p2)

− 1
3 and, thus, p3 = 1 − 3

√
2p

− 2
3

2 . Note

that effort here declines in productivity. Finally, moving to stage 1, where p1 = 1 and, thus,

p2 = e1, first best effort levels are found by solving:

Maxe1 p3 −
1

2
e21 −

1

2
e2(e1)

2 − 1

2
e3(e1)

2

By substituting quantities already calculated we can transform this into:

Maxe1
1

2

(
1− 3

√
2p

− 2
3

2 − 2−
2
3p

− 2
3

2

)
− 1

2
e21

The necessary first-order condition for the first-best stage-1 effort choice is given by:

1

2

(2
3

3
√
2e

∗− 5
3

1 +
2

3
2−

2
3 e

∗− 5
3

1

)
= e∗1 (37)

The agent chooses her effort level that maximizes:

Maxe1 C1

(
1− 3

√
2e

− 2
3

1

)
− 1

2
e21

The associated necessary first-order condition6 for this problem is:

C1

(2
3

3
√
2e

∗∗− 5
3

1

)
= e∗∗1 (38)

It can be readily determined that the value of C∗
1 that ensures that the agent’s effort choice

e∗∗1 is that which the firm prefers (e∗1) is: C∗
1 = 3

4
. Thus, owing to the submodularity of the

stage-2 technology, we find that C∗
1 > C∗

2 < C∗
3 .

This simple illustration makes two points. First, we reinforce the idea that the nature

of the production technology is a critical determinant of the relative power of schemes in an

interdependent organization. We emphasize that this is not the case in traditional models

of atomistic agents producing joint outputs via additive technologies. Given the first point,

this analysis also implies that simple linear (and thus supermodular) models of joint
6It is straightforward to demonstrate that both the firm’s and the agent’s problems yield unique solutions.
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production, while tractable, are not without loss of generality, at least with respect to

optimal compensation schemes. Specifically, in the presence of submodular technologies, we

would expect that the power of the scheme may instead decrease along part of the process.

Again, this is driven by the principal’s desire to induce the agent to internalize their

disutility externality. The only difference here is that the externality leads to sub-optimal

effort, requiring a “boosting” of the power of the scheme, rather than metering. In the final

section of the paper, we solve a version of the model with a more-general technology,

allowing us to more-fully characterize the optimal linear scheme across both super- and

sub-modular settings.

4 A General Model of Joint Sequential Production

To specify a general model of joint sequential production which can accommodate either

sub- or super-modular technologies, we again start with an organization with a production

process comprised of N risk-neutral agents. Each agent chooses effort level en which imposes

on her a private, non-monetary, monotonically-increasing, twice-differentiable and convex

cost Gn(en). Let X(e)+ε represent the output of the joint sequential production technology

where e ≡ (e1, e2, ..., eN) and E[ε|e] = 0. The main distinction between this set-up and

that in previous sections is that we leave the relationship among effort en(pn), productivity

pn(en−1, pn−1) and outcome X(eN , pN) unspecified. However, it remains true that each agent

makes their effort choice in sequence and conditional on their productivity, which is the

output of the previous agent’s effort choice. Thus, the depiction in Figure 1 captures this

general process as well.

We assume pn(en−1, pn−1) is twice differentiable, and (weakly) increasing and concave in

each argument. Thus, higher effort by the agent in stage n implies that the agent in stage

n+1 will be more productive. Similarly, for a given level of en, higher productivity in stage

n implies that the agent in stage n + 1 will be more productive. Since outcome X(·) is the
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analog of the productivity functions, we assume again that it is twice differentiable, and

(weakly) increasing and concave in each argument. Moreover, we continue to assume that

only X is contractible.

Finally, we assume that the total impact of productivity shifts in stage n on productivity

changes – direct and indirect – in stage n+ 1, for n < N is positive. That is:

dpn+1(e
∗
n(pn), pn)

dpn
=
∂pn+1

∂pn
+
∂pn+1

∂en

∂e∗n
∂pn

> 0 (39)

The analogous assumption holds for the total derivative of the final output X(eN(pN), pN).

While we assume that, in (39), both the direct effect of productivity ∂pn+1

∂pn
and the effect

of effort ∂pn+1

∂en
are positive., we’ll investigate the impact of different assumptions on the

relationship between stage n effort and productivity. Specifically, We’ll formally define the

context in which ∂e∗n
∂pn

> (<) 0 as “super- (sub-) modularity.” To appreciate why this is

appropriate here, note that en impacts en+1 only through its effect on productivity pn+1.

Thus den+1

den
= ∂en+1

∂pn+1

∂pn+1

∂en
.

The first-best effort choice by agent n, conditional on her observed productivity pn is

given by the effort level e∗n that satisfies the following, which is a general version of (16):[
dX

dpN

dpN
dpN−1

· · · dpn+2

dpn+1

∂pn+1

∂en

]
−

[
dGn

∂en
+

∑
m>n

dGm

dem

∂em
∂pm

dpm
dpm−1

· · · dpn+2

dpn+1

∂pn+1

∂en

]
= 0 (40)

We again focus here on linear contracts in order to facilitate a straightforward comparison of

the power of schemes across agents. Thus, given risk neutrality, and conditional on observing

their productivity pn and contract parameters Cn and Sn, each agent chooses their utility-

maximizing effort level e∗∗ by solving the following:

Max en Cn ·Xn(e
nenen(en)|pn)−Gn(en) (41)

where Xn(·) is the stage-n output function defined above. Agent n’s utility-maximizing effort

choice e∗∗n satisfies the following necessary first-order condition.
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Cn ·

[
dX

dpN

dpN
dpN−1

· · · dpn+2

dpn+1

∂pn+1

∂en

]
−

[
dGn

den

]
= 0 (42)

Recall that X(·) is a composition of concave functions – X ≡ X ◦ pN−1 ◦ · · · ◦ pn+1 – and

is thus concave, and that Gn(·) is convex. Thus, the agent’s effort choice is unique. A

comparison of (40) and (42) reinforce our main insight: even under risk neutrality, the firm

and the agent solve problems that differ substantively in terms of their consideration of the

impact of the agent’s decision on the costs of effort of downstream agents. That is, the

disutility externality extends to this general setting, and can be seen in the summation on

the left-hand side of (40).

Reflecting the principal’s objective that e∗∗n = e∗n, we set (40) equal to (42) and re-arrange,

which yields, for each n:7

[
1− C∗

n

][
dX

dpN−1

dpN−1

dpN−2

· · · dpn+2

dpn+1

∂pn+1

∂en

]
=

∑
m>n

∂Gm

∂em

∂em
∂pm

dpm
dpm−1

· · · dpn+2

dpn+1

∂pn+1

∂en
(43)

Immediately, we see that the only case in which the agent is made the residual claimant –

where C∗
n = 1 – is for n = N . Of course, this is the only agent that doesn’t create a disutility

externality. The following claim speaks to the power of the sharing schemes for agents along

the general production process. It demonstrates that the critical factor in predicting their

relative magnitudes – do they increase or decrease? – is the extent to which effort levels in

adjacent stages are super- or sub-modular.

Proposition 8. In the general, joint sequential model with a linear sharing scheme, there is

a unique subgame perfect equilibrium in which, for all n, C∗
n < (>) C∗

n+1 if and only if the

technology in stage n+ 1 is super- (sub-) modular.

When increased stage n + 1 productivity leads to an increase in equilibrium effort in stage

n + 1 (as it is in our core linear model in Section 2) we expect to observe lower-powered
7Of course, in addition to the incentive compatibility constraint in (43), there also exists a participation

constraint for each n. Since, in this risk neutral context with a linear scheme, this implies a fixed transfer,
we focus on the power, or “commission” as we did in Section 2.
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schemes for the stage n agent than for the those in stage n + 1. On the other hand, when

it leads to a decrease in stage n + 1 effort (as it does in the example in Section 3), then

the power should decrease. In other words, the driving factor in determining super- or sub-

modularity is the sign of
∂e∗n
∂pn

. It is straightforward to demonstrate that a general analog of

Proposition 2 can be derived under a set of assumptions that bound the value of the final

agent’s output to lie within [0, 1].

Empirically, the determination of sub- vs. super-modular technologies is likely to vary

significantly across industries and perhaps firms and work processes within industry.

Moreover, it is likely to vary within organization along the production process. Thus, we

argue that Proposition 8 represents an empirically-testable hypothesis regarding the

relative power of compensation schemes ceteris paribus.

5 Final Remarks

We investigate a context in which a principal designs a compensation plan for a production

process that reflects the sequential and joint efforts of an arbitrary number of agents. We

derive a number of key insights. First, the relative power of the compensation scheme is

contingent on the nature of the underlying technology. When agent n + 1’s production

process is super-modular – as in, for example, a simple, linear process – agent n is paid

via a lower-powered scheme than is agent n + 1. The opposite is true in a submodular

context. This is independent of the number of agents involved in the process as well as their

relative productivity or efficiency. The driving force behind this result is the existence in joint

processes of a “disutility externality” through which upstream agents impact the disutility

experienced by those downstream. If ignored, as is the case under residual claimancy, this

leads to sub-optimal returns. In order to induce the agent to internalize the externality, the

principal either meters or boosts the power of the scheme, depending on the nature of the

technology.
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Second, our set-up allows us to assess the extent to which the compensation policy is

discriminatory from the perspective of total expected utility, rather than just pay. We find

that this is not necessarily the case. Because agents in equilibrium exert different levels of

effort, they will experience different disutility, for which they must be compensated. However,

by binding them to their participation constraint, the principal ensures that no agent would

experience an increase in expected utility by moving from one stage of the process to another,

and thus the scheme should not be seen as discriminatory.

As a final comment, we believe the simplicity of the linear set-up we propose may be

applied to many other interesting contexts. In particular, we expect that the disutility

externality would be present in the joint, simultaneous case as well. Since this captures

the reality in many contexts, this would be worth studying. Similarly, the assumption of a

simple sequential line of production might be extended to a variety of settings. As just a

few examples, multiple outputs, turn-taking, and the participation of multiple agents at a

given stage would each capture realistic and potentially-insightful nuances that may yield

additional and valuable insights.
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A Appendix

Proof of Lemma 1. We’ll demonstrate these claims via induction. Starting at N , the

first-best outcome, conditional on pN solves:

MaxeN
√
pNeN − 1

2
e2N

which, of course, yields e∗N =
√
pN . Moving back to n = N − 1, this implies that:

ΠN−1(eN−1; pN−1) =
√
pNeN − 1

2
e2N − 1

2
e2N−1

=
1

2
pN − 1

2
e2N−1

=
1

2

√
pN−1eN−1 −

1

2
e2N−1

First-best effort for agent N − 1, in turn, is thus e∗N−1 = 1
2

√
pN−1. This establishes the

initial condition for effort (ii), since ψN = 1 and ψN−1 = 2. Moreover, since

pN =
√
pN−1eN−1 = 1

2
pN−1, this also establishes the initial condition for productivity (i).

Finally, note that E[X|pN ] is simply, by definition, √
pNeN . Given that ψN = 1, this

completes the initial condition for (iii).

Before proceeding, it’s useful to first prove the following:

Claim: For all n, Πn = 1
ψn

√
pnen − 1

2
e2n

Proof: This holds trivially for n = N . Now, assume it holds for general n. This assumption

implies that e∗n = 1
ψn

√
pn. Thus:

Πn−1(en−1; pn−1) =
1

ψn

√
pnen −

1

2
e2n −

1

2
e2n−1

=
1

ψ2
n

pn −
1

2ψ2
n

pn −
1

2
e2n−1

=
1

ψn−1

√
pn−1en−1 −

1

2
e2n−1
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This completes the proof of the claim.

Now, returning to the proof of the lemma, we assume that claims (i) - (iii) hold for a given

n. Given the above claim, we know that agent n− 1’s first-best effort maximizes:

Πn−1(en−1; pn−1) =
1

ψn−1

√
pn−1en−1 −

1

2
e2n−1

This implies directly that e∗n−1 =
1

ψn−1

√
pn−1, which proves (ii). By definition,

pn =
√
pn−1en−1

=
1

ψn−1

pn−1

which proves (i). Finally, if (iii) holds for a given n, then from (ii) we know that:

Xn−1(e
n−1en−1en−1(en−1)|pn−1) =

pn∏N
m=n ψm

=

√
pn−1∏N

m=n ψm
en−1

which completes the proof.

Proof of Lemma 2. We first prove the following claim:

Claim: E[X+ε|pn, en] =
√
pnen

∏N−n
j=1 C2j−1

n+j Proof: We’ll show this via induction in n, given

an N. It holds trivially for n=N so we move to n=N-1 (i.e., one step up from the sales

equation). We know that sales is given by:

√
pNeN + εN
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so the level-N agent chooses effort by maximizing:

WN = SN + CN
√
pNeN − 1

2
e2N

⇒e∗N = CN
√
pN

⇒X(pN) = pNCN

Moving up one step, we can specify output as:

X(pN−1, eN−1) =
√
pN−1eN−1CN

which shows the claim for n = N − 1. Now, we assume it holds for arbitrary n and test

n− 1. Since we know that the agent in level n will maximize the following:

Wn = Sn + Cn
√
pnen

N−n∏
j=1

C2j−1

n+j − 1

2
e2n

then we know that her optimal effort level will be given by

e∗∗n = Cn
√
pn

N−n∏
j=1

C2j−1

n+j (A.1)

and therefore

X(pn) =
√
pn

[
Cn

√
pn

N−n∏
j=1

C2j−1

n+j

]N−n∏
j=1

C2j−1

n+j

=pnCn

N−n∏
j=1

C2j

n+j

All that is left at this point is to substitute the expression for pn =
√
pn−1en−1:

X(pn) =
√
pn−1en−1Cn

N−n∏
j=1

C2j

n+j
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and to re-organize and re-index:

X(pn) =
√
pn−1en−1

N−n∏
j=0

C2j

n+j

=
√
pn−1en−1

N−(n−1)∏
j=1

C2j−1

(n−1)+j

which completes the proof of the Claim. Part (i) is shown in Equation(A.1). Part (ii) follows

directly from the conditional sales equation in the claim above with n=1:

X(p1, e1) =
√
p1e1

N−1∏
j=1

C2j=1

j+1

Substituting the expression for optimal effort from (i):

e∗∗1 = C1C2
√
p1

N−1∏
j=2

C2j−1

j+1

yields:

X =
√
p1

[
C1C2

√
p1

N−1∏
j=2

C2j−1

j+1

]N−1∏
j=1

C2j−1

j+1

=
N∏
j=1

C2j−1

j

which completes the proof of part (ii), recalling that p1 ≡ 1 by assumption. Finally, to show

part (iii), we again prove a subsidiary claim first, this time with respect to the unconditional

productivity parameters.

Claim: pn+1 =
(∏n

k=1C
2k−1

k

)
C2n−1
n+1

(∏N−n
j=2 C

(2n−1)2j−1

n+j

)
∀n

Proof: We again proceed via induction in n. First, we check that it holds for n = 1:

p2 =
√
p1e1 = e1

38



where we can now substitute in the optimal effort from part (i) of the lemma:

p2 = C1C2

N−1∏
j=2

C2j−1

j+1

which, it can easily be determined, satisfies the claim. Now, we assume it holds for given n

and solve for pn+1:

pn+1 =
√
pnen = pnCnCn+1

N−n∏
j=2

C2j−1

n+j

We now substitute in the expression for pn, given by the premise:

pn+1 =
( n−1∏
k=1

C2k−1

k

)
C2n−1−1
n

(N−n+1∏
j=2

C
(2n−1−1)2j−1

n−1+j

)
CnCn+1

N−n∏
j=2

C2j−1

n+j

=
( n∏
k=1

C2k−1

k

)
Cn+1

(N−n+1∏
j=2

C
(2n−1−1)2j−1

n−1+j

)N−n∏
j=2

C2j−1

n+j

We now multiply the two rightmost terms, being careful to keep track of indexes. We pull

out the Cn+1 term and then re-index:

=
( n∏
k=1

C2k−1

k

)
C2n−1
n+1

(N−n+1∏
j=3

C
(2n−1−1)2j−1

n−1+j

)N−n∏
j=2

C2j−1

n+j

=
( n∏
k=1

C2k−1

k

)
C2n−1
n+1

(N−n∏
j=2

C
(2n−1−1)2j

n+k

)N−n∏
j=2

C2j−1

n+j

=
( n∏
k=1

C2k−1

k

)
C2n−1
n+1

(N−n∏
j=2

C
(2n−1−1)2j−1

n+j

)

which completes the proof. To make the final step, note that:

2n−1 − 1

2
2j+1 = (2n−1 − 1)2j +

1

2
2j = 2j(2n−1 − 1 +

1

2
) = 2j(2n−1 − 1

2
) = 2j

2n − 1

2
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Now, to complete the lemma, we solve directly for the costs using the claim on productivity:

1

2
e∗∗2n =

1

2
C2
n+1C

2
npn

N−n∏
j=2

C2j

n+j

1

2
e∗∗2n =

1

2
C2
n+1C

2
n

[( n−1∏
k=1

C2k−1−1
k

)
C2n−1−1
n

(N−n+1∏
j=2

C
(2n−1−1)2j−1

n−1+j

)]N−n∏
j=2

C2j

n+j

All that remains is to simplify, which, to aid the reader, we do sequentially in the index from

1 to N:

1

2
e∗∗2n =

Cn
2

( n∏
k=1

C2k−1

k

)
C2
n+1

(N−n+1∏
j=2

C
(2n−1−1)2j−1

n−1+j

)N−n∏
j=2

C2j

n+j

=
Cn
2

( n∏
k=1

C2k−1

k

)
C2n

n+1

(N−n+1∏
j=3

C
(2n−1−1)2j−1

n−1+j

)N−n∏
j=2

C2j

n+j

=
Cn
2

( n+1∏
k=1

C2k−1

k

)(N−n+1∏
j=3

C
(2n−1−1)2j−1

n−1+j

)N−n∏
j=2

C2j

n+j

We re-write the middle product to facilitate the multiplication:

(N−n+1∏
j=3

C
(2n−1−1)2j−1

n−1+j

)
=

(N−n∏
j=2

C
(2n−1−1)2j

n+j

)

and substitute this in:

1

2
e∗∗2n =

Cn
2

( n+1∏
k=1

C2k−1

k

)(N−n∏
j=2

C
(2n−1−1)2j

n+j

)N−n∏
j=2

C2j

n+j

=
Cn
2

( n+1∏
k=1

C2k−1

k

)N−n∏
j=2

C2n+j−1

n+j

=
Cn
2

( n+1∏
k=1

C2k−1

k

) N∏
k=n+2

C2k−1

k

=
Cn
2

( N∏
k=1

C2k−1

k

)

where the final step follows from a change of variable k = n+ j.
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Proof of Proposition 1. Based on the results in Lemma 2, the firm solves the following

problem:

Max{Cn}Nn=1

N∏
n=1

C2n−1

n −
[ N∑
n=1

Cn
2

][ N∏
j=1

C2j−1

j

]
(A.2)

The N first-order conditions are given by:

2n−1C∗2n−1−1
n

N∏
m ̸=n

C2m−1

m − 2n−1 + 1

2
C∗2n−1

n

N∏
m ̸=n

C2m−1

m − 2n−1C∗2n−1−1
n

N∑
m ̸=n

Cm
2

N∏
w ̸=n

C2w−1

w = 0

(A.3)

In order to simplify the analysis, we divide both sides by the following quantity:

2n−2C2n−1−1
n

∏
m ̸=n

C2m−1

m

yielding a system of N equations:

2− 2n−1 + 1

2
C∗
n −

∑
m ̸=n

Cm = 0 n = 1, ..., N (A.4)

We first show that the result must be unique and then derive the optimal sharing rule in

closed form. To do so, we take the system of equations and express them in matrix-vector

form:

Fξ = 2 (A.5)

where ξ is a column vector of commissions and F is an N -by-N matrix. Each row of F

corresponds to the first-order condition for the sharing rule for agent n. Using Equation

(A.4), we define F as follows:

Fij =


2i−1+1

2
j = i

1 j ̸= i

Since F is of full rank, the solution vector ξ is necessarily unique. Consider now the following
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solution:

ξi = 2i−N (A.6)

To see that this solves the system in (A.5), we plug it into (A.4) for a given n and assume

that it is not a solution: ∑
i ̸=n

2i−N +
2n−1 + 1

2n−1
2n−N ̸= 2 (A.7)

Noting that: ∑
i ̸=n

2i−N = 2−
(1
2

)N−1

−
(1
2

)N−n

We can substitute into (A.7) to yield the contradiction. This completes the proof.

Proof of Proposition 3. In order to demonstrate this result, we will show that the model

specification incorporating a rich set of parameters as captured in (20) and (21) collapses

to the set-up of the core model, absent a constant shifting term. First, we’ll establish the

impact on revenue, relative to the result in Lemma 2.

Claim: For any n, X(pn, en) =
√
pn · en ·

∏N−n
j=0 b2

j

n+j

C
υ(j)
n+j

γ
υ(j)
n+j

, where υ(0) = 0 and υ(j > 0) =

2j−1.

We show this via backward induction in n. To see that the claim holds for n=N, note

that X(pN , eN) is given by √
pNeNbN . Assuming now that the claim holds for X(pn, en), we

check whether this implies it holds for X(pn−1, en−1). Specifically, we assume that

X(pn, en) =
√
pnen

N−n∏
j=0

b2
j

n+j

C
υ(j)
n+j

γ
υ(j)
n+j

(A.8)

Agent n chooses en to maximize the following:

E[Un|pn, en] = Sn + Cn
√
pnen

(N−n∏
j=0

b2
j

n+j

C
υ(j)
n+j

γ
υ(j)
n+j

)
− γn

2
e2n
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which yields

e∗n =
Cn
γn

√
pn

(N−n∏
j=0

b2
j

n+j

C
υ(j)
n+j

γ
υ(j)
n+j

)
(A.9)

Substituting (A.9) into (A.8) yields:

X(pn) = pn
Cn
γn

(N−n∏
j=0

b2
j+1

n+j

C
2υ(j)
n+j

γ
2υ(j)
n+j

)

All that is left is to substitute for pn =
√
pn−1bn−1en−1:

X(pn−1, en−1) =
√
pn−1bn−1en−1

Cn
γn

(N−n∏
j=0

b2
j+1

n+j

C
2υ(j)
n+j

γ
2υ(j)
n+j

)

and to re-index:

X(pn−1, en−1) =
√
pn−1en−1

N−(n−1)∏
j=0

b2
j

n−1+j

C
υ(j)
n−1+j

γ
υ(j)
n−1+j

)
which completes the proof of the claim.

We can now solve for revenue in equilibrium, which simply follows from the conditional

sales equation with n=1:

X(p1 = 1, e1) = e1 ·
N∏
j=1

b2
(j−1)

j

C
υ(j−1)
j

γ
υ(j−1)
j

Substituting the optimal effort level from (A.9) yields:

X =
N∏
j=1

b2
j

j

C
υ(j)
j

γ
υ(j)
j

(A.10)

Next, we show that the cost of the sales effort is shifted by the same constant factor, relative

to the Equation (A.2) above. We do so, again, via induction in n. Starting at N = 1, using
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Equation (A.9) and shifting the index for clarity:

e∗1 =
C1

γ1

N∏
j=1

b2
j−1

j

C
υ(j−1)
j+1

γ
υ(j−1)
j+1

and thus:

γ1
2
e∗21 =

γ1
2

C2
1

γ21

N∏
j=1

b2
j

j

C
2υ(j−1)
j+1

γ
2υ(j−1)
j+1

=
C1

2

( N∏
j=1

b2
j

j

γ2
j−1

j

)( N∏
j=1

C2j−1

j

)

This proves the claim for N = 1 (to verify, compare this expression with point 3 in Lemma

2). In order to complete the induction argument, we use Equation (A.9) to form the ratio

of successive effort costs:

γn+1

2
e∗2n+1

γn
2
e∗2n

=

C2
n+1

2γn+1

(∏N−(n+1)
j=0 b2

j+1

n+j+1

C
2(j)
n+j+1

γ
2(j)
n+j+1

)
C2

n

2γn

(∏N−n
j=0 b2

j+1

n+j

C
2(j)
n+j

γ
2(j)
n+j

) · pn+1

pn
(A.11)

We note that:

pn+1 =
√
pnbnen

⇔ pn+1

pn
=
bnCn
γn

N−n∏
j=0

b2
j

n+j

C
υ(j)
n+j

γ
υ(j)
n+j

One can verify that (A.11) reduces to:

γn+1

2
e∗2n+1

γn
2
e∗2n

=
Cn+1

Cn
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To complete the induction proof, note that the premise that:

γn
2
e∗2n =

Cn
2

N∏
j=1

b2
j

j

γ2
j−1

j

C2j−1

j

implies, by the ratio analysis above, that:

γn+1

2
e∗2n+1 =

Cn
2

N∏
j=1

b2
j

j

γ2
j−1

j

C2j−1

j · Cn+1

Cn

=
Cn+1

2

N∏
j=1

b2
j

j

γ2
j−1

j

C2j−1

j

Combined, these analyses prove that, in this richer specification, the firm’s compensation

scheme is chosen to maximize:

X =
( N∏
j=1

b2
j

j

γ2
j−1

j

)[( N∏
j=1

C2j−1

j

)
−

N∑
n=1

Cn
2

N∏
j=1

C2j−1

j

]

which differs from our core model in Proposition 1 only by a constant shifting term which is

a function of the n−level parameters.

Proof of Proposition 4. Following the proof of Proposition 3, all that remains is to show

that the participation constraint is satisfied. Proposition 3 shows that the expected incentive

compensation will shift linearly with the quantity in (25). In the induction argument in the

proof of Proposition 3, we show that the same is true of disutility. Thus, the agent’s payout

Wn shifts linearly with (25) and the expected return can be found trivially as long as (25)

has an expected value.

Proof of Proposition 5. We consider the random arrival in time t of funds available for

productivity improvement. The claim is that in the limit as enough funds arrive for such

investment, the distribution of productivity approaches that characterized in the

Proposition. In order to prioritize such investments, we begin by assigning agent m the
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rank r(m) in order of the expected marginal return on improved productivity. This

assignment is accomplished in such a way that the set of agents with the highest values of

dm are assigned rank r(m) = 1 and so forth, without gaps. Formally, define the

correspondence y(k) ≡ r−1(k) as the set of agents with marginal returns on productivity

investments that rank kth among agents. Define y(1) ≡ {m|dm ∈ maxn∈N dn}. Generally,

define y(k) ≡ {m|dm ∈ maxn∈N\
⋃k−1

h=1 y(h)
dn}. Now, consider the following optimal

investment policy: Step (i): Divide funds equally across y(1) agents until funds run out or

dy(1) = dy(2). Step (ii): If funds run out, stop and wait for the arrival of more investment

funds. Step (iii): If funds remain, re-calculate all r(i) and return to Step (i) with

remaining funds. Clearly, this policy gets (weakly) closer to the distribution of productivity

described in the proposition each time new funds arrive. As the available funds gets large

enough, we approach this distribution.

Proof of Proposition 6. Formally, the firm solves the following problem:

MaxCn

N∏
n=1

C2n−1

n −
N∑
n=1

Cn
2

N∏
j=1

C2j−1

j

s.t.
N∑
n

Cn ≤ C, C ∈ (0, 1]

Note that this specification already reflects the imposition of both the participation and

individual rationality constraints for the N agents. We now form the Lagrangian to

incorporate the constraint into the objective:

L =
N∏
n=1

C2n−1

n −
N∑
n=1

Cn
2

N∏
j=1

C2j−1

j + λ(C −
N∑
n

Cn)
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The necessary conditions for a constrained maximum are:

∂L

∂Cn
≤ 0 ∀n (A.12)

Cn ∈ (0, 1] ∀n (A.13)

λ ≥ 0 ∀n (A.14)

λ · (C −
N∑
n

Cn) = 0 (A.15)

Cn ·
∂L

∂Cn
= 0 ∀n (A.16)

Since we know that the unconstrained maximum (i.e., λ = 0) violates the sharing constraint

for C ∈ (0, 1], we know that the constraint will bind. This implies that (C −
∑N

n Cn) = 0.

Noting that for this to be a meaningful solution, we further impose Cn > 0 ∀n so that:

∂L

∂Cn
= 0 ∀n

Or:

[
2n−1 − 2n−1 + 1

2
C∗
n

]
C∗(2n−1−1)
n

∏
m∈N\n

C2m−1

m − 2n−1C∗(2n−1−1)
n

∑
m∈N\n

Cm
2

∏
j∈N\n

C2j−1

j = λ ∀n

We divide both sides of the nth equation by:

2n−1C∗(2n−1−1)
n

∏
m∈N\n

C2m−1

m

which allows us to derive the following from the nth and (n+ 1)th equations:

2− 2n−1 + 1

2n−1
C∗
n −

∑
m∈N\n

Cm =
C∗
n+1

2C∗
n

[
2− 2n + 1

2n
C∗
n+1 −

∑
m∈N\(n+1)

Cm

]
(A.17)
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Assume that C∗
n+1 ̸= 2C∗

n, which implies that:

2n−1 + 1

2n−1
C∗
n +

∑
m<(n−1)

Cm + C∗
n+1 +

∑
m>n+1

Cm ̸= 2n + 1

2n
C∗
n+1 +

∑
m<(n−1)

Cm + C∗
n +

∑
m>n+1

Cm

⇔ 2n−1 + 1

2n−1
C∗
n + C∗

n+1 ̸=
2n + 1

2n
C∗
n+1 + C∗

n

⇔ 2n−1 + 1

2n−1
C∗
n + C∗

n ̸= 2n + 1

2n
· 2C∗

n

which can be readily verified to present a contradiction. All that remains is to show that

ζ ≡ C∗
n+1

C∗
n

= 2 ∀n is the (unique) solution to the problem. We start by re-writing Equation

(A.17):

2− 2n−1 + 1

2n−1
C∗
n −

∑
m∈N\n

Cm =
ζ

2

[
2− 2n + 1

2n
ζC∗

n −
∑

m∈N\(n+1)

Cm

]
⇔ 2− 2n−1 + 1

2n−1
C∗
n −

∑
m<n

Cm − ζC∗
n −

∑
m>n+1

Cm =
ζ

2

[
2− 2n + 1

2n
ζC∗

n −
∑
m<n

Cm − C∗
n −

∑
m>n+1

Cm

]
⇔ K − 2n−1 + 1

2n−1
C∗
n − ζC∗

n =
ζ

2

[
K − 2n + 1

2n
ζC∗

n − C∗
n

]

where K ≡ 2−
∑

m<nCm −
∑

m>n+1Cm. This yields the quadratic equation:

ζ2
2n−1 + 1

2n+1
C∗
n − ζ

[C∗
n

2
+
K

2

]
+K = 0 (A.18)

Given that 2n−1+1
2n+1 C∗

n > 0 and that −
[
C∗

n

2
+ K

2

]
< 0, this can yield at most one positive

solution.

In order to complete the proof, we need to solve the finite geometric sum, noting again
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that the constraint will bind in equilibrium:

C∗
1 + C∗

2 + C∗
3 + ...+ C∗

N = C

⇔ C∗
1 + 2 · C∗

1 + 22 · C∗
1 + ....+ 2N−1 · C∗

1 = C

⇔ C∗
1

N∑
n=1

2n−1 = C

⇔C∗
1 =

C

2N − 1

Finally, since C∗
n = 2n−1C∗

1 , it follows that C∗
n = 2n−1

2N−1
C

Proof of Proposition 7. Part 1 of the proof is shown in the main body of the paper. To

see part 2, we can complete the analysis of (2.4) and note that the premise implies that

X + 2Rσ2C∗
n+1 < X + 2Rσ2C∗

n

which, given part 1, is clearly contradicted. Finally, to see part 3, note that, in equilibrium:

C∗
n

C∗
n+1

=
X
2
+Rn+1σ

2C∗
n+1

X + 2Rnσ2C∗
n

and, note that:
X
2
+Rn+1σ

2C∗
n+1

X + 2Rnσ2C∗
n

<
X
2
+Rnσ

2C∗
n+1

X + 2Rnσ2C∗
n

< 1

Where the first inequality is implied by declining risk aversion and the second is proven in

part 1 of the proposition.

Proof of Proposition 8. We begin by writing an expression analogous to (43) for the agent

in stage n+ 1:[
1− C∗

n+1

][
dX

dpN

dpN
dpN−1

· · · dpn+3

dpn+2

∂pn+2

∂e∗n+1

]
=

∑
m>n+1

∂Gm

∂em

∂em
∂pm

dpm
dpm−1

· · · dpn+3

dpn+2

∂pn+2

∂e∗n+1

(A.19)
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Next, we multiply both sides of (A.19) by:

dpn+2

dpn+1

· ∂pn+1

∂e∗n
∂pn+2

∂e∗n+1

which yields:

[
1− C∗

n+1

][
dX

dpN

dpN
dpN−1

· · · dpn+2

dpn+1

∂pn+1

∂e∗n

]
=

∑
m>n+1

∂Gm

∂em

∂em
∂pm

dpm
dpm−1

· · · dpn+2

dpn+1

∂pn+1

∂e∗n
(A.20)

Subtracting (A.20) from (43) yields the following:

C∗
n+1 − C∗

n =

dGn+1

den+1

∂e∗n+1

∂pn+1

∂pn+1

∂e∗n
dX

dpN

dpN
dpN−1

· · · dpn+2

dpn+1

∂pn+1

∂e∗n

(A.21)

Our assumptions ensure that the denominator is positive, and Gm is strictly increasing,

which completes the proof.
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