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Abstract

In online A/B tests, where the sample flows in over time from a very large population and
multiple policies can be experimented concurrently, an analyst has to make decisions on the
efficient traffic allocation, when to stop the experiment, and which of the policies to adopt. We
develop the minimax-regret decision framework for online A/B tests, providing integrated opti-
mal solutions for the aforementioned decision problems. Our minimax-regret decision framework
controls for the maximum regret, which is the maximum anticipated net payoff loss from making
an error in a decision, instead of the maximum Type I error probabilities. Notably, our frame-
work rationalizes and advocates a much less conservative cutoff decision rule in favor of new,
innovative policies than the conventional hypothesis-testing cutoffs. We apply our framework to
a large mobile game company’s multi-arm experiment data, in which our minimax-regret deci-
sion framework arrives at drastically different decisions than the conventional hypothesis-testing
framework. We then validate our framework by running a series of Monte Carlo simulations that
mimic the data-generating process of our focal company’s experiments. Our minimax-regret de-
cision criteria attain better performance in designating the correct decisions as well as achieving
lower net payoff loss than the hypothesis-testing counterpart. Without sacrificing the accuracy
of the decisions, our minimax-regret efficient traffic allocation reduces the wait time and sample
size by more than 30% relative to the ad-hoc traffic allocation.
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1 Introduction

Firms constantly run online randomized field experiments in digital marketing, referred to as online
A/B tests, to find a new marketing policy that improves the payoff of interest, e.g., revenue, retention,
and conversion. For instance, search engines test hundreds of different website layout features, such
as sponsored ad location, font size, and background color. Video hosting platforms vary the users’
ad-exposure frequency and duration by seconds. Mobile game studios examine new game features
such as difficulty level, character design, and item prices, by making only very small changes to them.
In these examples, the per-user effect size is presumably small because the new marketing policy
experiments being run involve only a piecemeal change from the status quo, and the underlying
population is very large compared to the test sample. The exploration-exploitation tradeoff for the
payoffs in the A/B test sample can be ignored in such a setup.

The Neyman-Pearson hypothesis test has been the standard decision framework applied uni-
versally to online A/B tests regardless of the context and goal of running the A/B tests. What
the hypothesis test controls for is only the maximum-tolerable Type I error probability under the
desired significance level; it does not control for Type II error probability or the magnitude of
foregone payoffs from committing an error. However, using the Type I error probability and the
associated statistical significance as the policy-sorting and/or policy-adoption-decision criteria can
be at odds with improving the payoff, because a policy with a larger p-value (less significant) may
have a higher expected payoff. Another problem with hypothesis tests is the absence of a sensible
adaptive sample-collection stopping criterion that does not peek at the effect-size estimate or its
p-value midway through the sample collection. It has led to a widespread practice of a p-hacking
scheme referred to as “peeking and optional stopping,” whereby the analyst monitors the p-value
during the sample collection and terminates the experiment if the p-value falls below the conven-
tional significance level (e.g., 0.05 or 0.01). Such a p-hacking scheme inflates the actual Type I error
probability more than the intended maximum-tolerable Type I error probability, invalidating the
decisions from the hypothesis tests.12

In this paper, we propose an alternative decision-theoretic framework for online A/B tests, which
provides an integrated solution for the aforementioned problems. The idea is to account for both
the magnitude of the foregone payoff and the probability of committing either Type I or Type II
errors in decision-making, rather than accounting for the Type I error probability alone. Specifically,
we propose controlling for the maximum regret, which is the worst-case {error probability × net

1Suppose the analyst is allowed to peek at the experiment at least once during the collection of a size-n sample
and stop the sample collection if the “naive” p-value is smaller than the pre-set significance level α. Then, the event
of rejecting the null occurs only more often than no peeking is allowed.

2See, e.g., Armitage et al. (1969); McPherson and Armitage (1971); Deng et al. (2016); Miller and Hosanagar
(2020); Johari et al. (2017, Forthcoming), and also (all accessed in December 2022):

https://blog.analytics-toolkit.com/2017/bayesian-ab-testing-not-immune-to-optional-stopping-issues/
https://blog.analytics-toolkit.com/2017/the-bane-of-ab-testing-reaching-statistical-significance/
https://blog.acolyer.org/2017/09/28/peeking-at-ab-tests-continuous-monitoring-without-pain/
https://www.evanmiller.org/sequential-ab-testing.html
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foregone payoff} by committing either type of an error. Controlling for the maximum regret is
payoff optimal by construction. It allows for a direct comparison across multiple experiment arms in
choosing the best arm, because the unit of the maximum regret is identical to the payoff of interest
(e.g., USD for revenue, no. of users for retention). The maximum regret is decreasing in the sample
size, and therefore, it is a natural object to be optimized in deciding the overall sample size and the
sample allocation ratio across multiple experiment arms. We devise a metric to be monitored during
sample collection based on the maximum regret, which can be calculated without peeking at the
current effect-size estimates and is therefore not subject to the p-hacking scheme mentioned above.
Finally, we show in our empirical application and Monte Carlo validation that our proposed decision
framework achieves a higher payoff and reduces the sample size substantially without sacrificing the
accuracy of a decision, compared with the conventional hypothesis-testing framework.

We build our decision framework upon the prior work of Tetenov (2012), who developed the
baseline minimax-regret decision rule for two-arm experiments when the experiment data are ex-
ogenously given to the analyst. We innovate upon Tetenov’s baseline minimax-regret decision rule
and make several novel methodological contributions by developing an integrated minimax-regret
decision framework for (i) multi-arm experiments, (ii) the experiment-stopping rule, and (iii) the
efficient dynamic traffic allocation, where (i) and (ii) pertain to the optimal experiment evaluation
problem and (iii) to the optimal experiment design problem. In a (i) multi-arm experiment, the
analyst needs to decide not only whether to reject the status quo policy (i.e., the control), but also
which new alternative policy to adopt if multiple new policies (i.e., treatments) are preferred to the
status quo policy. We propose filtering and sorting the alternative new policies by the maximum
regret of rejecting the status quo policy. The filtering and sorting criteria are directly relevant to the
payoffs and give a unique and consistent ordering across all the policies being examined. For the (ii)
experiment-stopping rule, we propose monitoring and controlling for the worst-case minimax regret
at a level that an analyst decides, which does not involve monitoring the effect-size estimate itself
or the associated p-values. Turning to the optimal experiment design, (iii) the efficient dynamic
traffic-allocation problem can be viewed as a combination of (i) and (ii). We provide the dynamic
optimal traffic-allocation scheme that minimizes the overall sample size, which translates directly to
the wait time before making a policy-adoption decision.

Notably, when the regret is symmetric, the optimal decision cutoff threshold in our minimax-
regret framework turns out to be 0, which is much less conservative than 1.645, 1.960, or 2.326
(corresponding to the significance levels of 0.05, 0.025, or 0.01, respectively) in traditional z-tests.
We also show our zero decision cutoff threshold derived from the minimax -regret criterion can also
be derived from the problem of minimizing average regret, as long as the analyst does not have any
prior information about the true distribution of the effect size, that is, when the prior is symmetric
around zero.

We apply our minimax-regret decision framework to real-world field-experiment data. The data
come from the multi-arm experiment conducted by a large mobile game studio that ran a series of
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randomized experiments to examine the effect of game-difficulty adjustment on customers’ in-game
currency spending. According to the conventional hypothesis-testing decision rule, the t-stats for
all three new proposed policies do not exceed the threshold needed to reject the status quo policy.
By contrast, all three new policies exceeded the optimal minimax-regret decision threshold. The
analysis of the field-experiment data highlights that the payoff-optimal decision rules may diverge
drastically from hypothesis tests in practice.

To validate our minimax-regret decision framework, we run a series of Monte Carlo experiments
that closely replicate our mobile game company’s experiments. In the experiment-evaluation Monte
Carlo, we examine and compare the performance of the proposed minimax-regret decision framework
against the hypothesis-testing decision rule. Because the true parameter values are known in the
simulated data, we can calculate the percentage of the incorrect decisions and the associated realized
payoff loss. We find our minimax-regret decision framework performs remarkably well in designating
the correct decision, and our focal company could potentially gain several thousands of dollars per
day by switching to the proposed minimax-regret decision rule from the conventional hypothesis-
testing decision rule. In the experiment-design Monte Carlo, we examine the performances of the
proposed efficient traffic allocation. Compared with the benchmark in which the company allocates
the traffic at an ad-hoc ratio, our method can reduce the required sample size by more than 30%
without sacrificing the accuracy of the decisions. In the context of the field experiment we analyzed,
it translates into a reduction in the wait time for data collection from 21 days to 14 days to reach
the same decision. Adopting our minimax decision framework would help the company make timely
decisions with minimal wait time spent on sample collection.

Our work contributes to an emerging literature on developing new statistical decision frameworks
based on a more relevant metric than Type I error probabilities in marketing and management science
(e.g., Chick and Inoue, 2001; Chick and Gans, 2009; Chick and Frazier, 2012; Ascarza, 2018; Feit
and Berman, 2019; Schwartz et al., 2017; Berman and Van den Bulte, Forthcoming). Our minimax-
regret decision rule formalizes the notion of Ascarza (2018)’s “value lift” in the context of online A/B
tests and provides a systematic guideline to control for the maximum foregone net value lift. The
most closely related work to ours is Feit and Berman (2019). Based on the Bayesian perspective
with a fully specified parametric shape of the priors, Feit and Berman study the optimal ex-ante
profit-maximizing decision criteria and sample-size selection problem in two-arm A/B tests when the
population is finite and relatively small, for which the costs of A/B tests and gains/losses from the
test sample cannot be ignored. Even though the approach and decision context that Feit and Berman
consider are different from ours, in that we approach the problem from a frequentist’s perspective and
we study the “pure-exploration bandits” problem whereby the rewards earned during the exploration
period can be ignored due to a very large underlying population size and/or relatively small per-user
effect size, the zero optimal cutoff they derive is the same as ours in the case of two-arm experiments.
This paper therefore complements Feit and Berman and reconfirms that a less conservative decision
rule than what is implied by hypothesis testing is payoff optimal across different experiment settings.
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In addition, our minimax-regret decision framework is amenable to optimizing the site traffic and
choosing the best policy in multi-arm experiments.

This paper contributes to the literature that develops the statistical decision rules based on the
notion of maximum regret (e.g., Manski, 2000, 2004; Dehejia, 2005; Hirano and Porter, 2009; Tetenov,
2012; Hirano and Porter, 2020), and the asymmetric minimax-regret framework developed by Hirano
and Porter (2009); Stoye (2009); Tetenov (2012). We add to this literature by innovating upon
Tetenov (2012)’s baseline asymmetric minimax-regret framework to several dimensions, as explained
above. Furthermore, we are the first to implement the asymmetric minimax-regret framework to
real-world online A/B test data.

Our work contributes to the literature that studies the stopping rule in online A/B test sample
collection. At least since Armitage et al. (1969); McPherson and Armitage (1971), testing the
hypothesis of null effects repeatedly during the sample collection is known to make the usual p-value
invalid in controlling for the Type I error probability. Recent attempts have sought to provide valid
“optional stopping” criteria in terms of correct Type I error probabilities when the A/B tests are
continuously monitored (e.g., Deng et al., 2016; Johari et al., 2017, Forthcoming). Our work provides
alternative stopping criteria that allow for the real-time monitoring of the worst-case maximum
regret, but not the effect-size estimator itself, and therefore are not subject to the aforementioned
p-hacking schemes.

We also contribute to the literature on efficient sample allocation in multi-armed bandit experi-
ments. Lai and Robbins (1985); Agrawal (1995) derived the average-regret-based efficient adaptive
sample allocation rules. Other closely related research in this vein is Schwartz et al. (2017), who pro-
pose a revenue- or acquisition-maximizing dynamic sample allocation problem in multi-armed bandit
experiments from the Bayesian perspective. We add to this literature by proposing the criteria that
control for the maximum regret from a frequentist’s perspective.

The remainder of the paper is organized as follows. Section 2 develops the experiment-evaluation
part of the minimax-regret decision framework for online A/B tests, taking the experiment design
as given. Section 3 develops the minimax-regret-based experiment-design part, where we propose
the efficient traffic allocation algorithm. Section 4 presents an empirical application of our minimax-
regret decision framework, and Section 5 presents the results from our Monte Carlo studies. Section
6 concludes.

2 The Minimax-Regret Decision Rule for Evaluating Online A/B
Tests

We assume the goal of the company is to find a new policy that improves the payoff of interest from
the status quo, and the gains/losses from the test sample can be ignored. The payoff of interest
may include but is not limited to revenue, retention, conversion, or other performance indicators
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that may affect the company’s profit over time, and we abstract away from its relationship with the
short- or long-run profits.

In this section, we focus on the experiment-evaluation problem of online A/B tests, taking
the experiment design as given. Subsection 2.1 primarily follows Tetenov (2012), setting up the
minimax-regret decision problem for two-arm experiments. Our major contributions then follow –
we derive the rules for the sample-collection stopping criteria and the policy-adoption decision rules
for multi-arm experiments in Subsections 2.2 and 2.3.

2.1 The Minimax-Regret Decision Criteria for Two-Arm Experiments

We propose a cutoff decision rule based on the notion of maximum regret, which accounts not only
for the maximum probability of committing an error but also for the maximum net foregone payoff.
In the following, we explain how the optimal cutoff threshold can be determined according to the
decision rule that minimizes (over the action) the maximum (over the true parameter value) regrets.

Let θ be the unknown true effect size of the new, innovative policy being proposed. θ can be
either positive or negative. Without losing generality, we assume higher θ is more desirable for the
firm, and the firm wants to test the null H0 : θ ≤ 0 against the alternative H1 : θ > 0. We focus on
the two-arm policy-adoption decision problem in the current subsection, by following the classical
decision-theoretic setup in which the analyst has to decide whether to adopt the new innovative
policy based on the evidence from a size-n sample.

A maintained assumption in this paper is that a consistent and (asymptotically) Normally dis-
tributed estimator θ̂ is available to the analyst, formalized as follows:

Assumption 1. A consistent and (asymptotically) Normally distributed estimator θ̂ for θ is available
from an experimental variation created by the analyst; that is, θ̂ ∼ N

(
θ, σ2

)
, where σ2 is the variance

of the estimator θ̂ that would generally depend on the sample size n.

This is a mild assumption because it applies to virtually all effect-size estimators used in A/B
testing. Examples include the usual mean-differences estimator, regression estimator, covariate and
propensity-score matching, difference-in-differences estimator with covariates, and machine-learning-
based estimators proposed in, for example, Athey and Wager (2021); Farrell et al. (2021).

Our focus is on the class of cutoff decision rules with the following form:Reject the status-quo policy (accept the new policy) if θ̂ > T ∗

Accept the status-quo policy (reject the new policy) if θ̂ ≤ T ∗
(2.1)

for some cutoff threshold T ∗ ∈ R.3 Our goal is to find the optimal threshold T ∗ from the problem
of selecting the policy that minimizes the maximum regret we define below.

3It can be shown that when the distribution of θ̂ exhibits the monotone likelihood ratio property and the associated
loss function of the underlying decision problem is “reasonable,” which is the case in our setup, the class of the cutoff
decision rules is essentially complete in the sense that the decision rule is not dominated by any other set of decision
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Following Hirano and Porter (2009); Tetenov (2012), we define the Type I and Type II regret
evaluated at any candidate threshold T ∈ R, as a function of (T, θ, σ), as

RType I (T ; θ, σ) =

=

=

|θ|Pr (Reject the status quo policy given T |θ ≤ 0)

−θPθ,σ

(
θ̂ > T

)
−θΦ

(
θ−T
σ

) if θ ≤ 0

RType II (T ; θ, σ) =

=

=

|θ|Pr (Accept the status quo policy given T |θ > 0)

θPθ,σ

(
θ̂ ≤ T

)
θΦ
(
T−θ
σ

) if θ > 0, (2.2)

where we invoked (2.1) in the respective second equalities and θ̂ ∼ N
(
θ, σ2

)
in the respective third

equalities.
Next, we define the asymmetry factors K1 > 0 and K2 > 0 that reflect the decision-maker’s

relative weight for the status quo and new policies, respectively. A higher value of K1 (K2) will give
more weight to Type I (Type II) regret. Without losing generality, we fix K2 = 1 henceforth unless
noted otherwise.4 Applying the weights, we can write the regret function as

R (T ; θ, σ) = K11 (θ ≤ 0)RType I (T ; θ, σ) + 1 (θ > 0)RType II (T ; θ, σ) . (2.3)

5 The regret R (T ; θ, σ), which accounts for both the magnitude of the true payoff parameter θ and
the probability that the estimator is realized at θ̂, can be interpreted as the absolute value of the
expected foregone net payoff or the expected net opportunity cost by committing an error in the
decision, compared with making the desirable decision.

Note, however, the function R (T ; θ, σ) involves the population parameters (θ, σ); generally, it
cannot be evaluated with only a finite sample that the analyst has in hand.We assume a consistent
estimator σ̂ for σ is available and provide the necessary arguments to “plug in” σ̂ in place of σ
below.6 To deal with the unknown θ, we derive our optimal decision rules based on the maximum
Type I and Type II regret, defined as follows, where the maximum is taken over the true effect-size

rules (Karlin and Rubin, 1956, Theorem 1;Hirano and Porter, 2009, Theorem 3.4;Tetenov, 2012). Note the conventional
one-sided Neyman-Pearson hypothesis-testing decision rule whereby the decision rule rejects the null when θ̂ is “large
(small) enough” also falls into this class of cutoff decision rules.

4(K1,K2) can be interpreted as reflecting either the actual deployment costs or just the psychological preference
weights for the status quo policy. It turns out that setting (K1 = κ,K2 = 1) for any κ > 0 leads to the identical
minimax-regret decision threshold as setting (K1 = 1,K2 = 1/κ); therefore, we normalize K2 = 1.

5Note R (T ; θ, σ) is an example of an asymmetric loss function in the decision-theoretic terminology.
6The intuition is basically the same as studentizing the estimators using the estimated standard errors in the

asymptotic t-tests.
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parameter θ:

R̄Type I (T ;σ) = max
θ≤0

{
−θΦ

(
θ − T

σ

)}
R̄Type II (T ;σ) = max

θ>0

{
θΦ

(
T − θ

σ

)}
. (2.4)

The maximum Type I and Type II regrets represent the worst-case net payoff losses by committing a
Type I or Type II error under the null H0 : θ ≤ 0, thereby modeling a conservative decision maker’s
decision rule. Put differently, R̄Type I (T ;σ) is the maximum (over θ) expected foregone payoff by
rejecting the null; R̄Type II (T ;σ) is the maximum (over θ) expected foregone payoff from rejecting
the alternative.7

With the maximum Type I and Type II regret functions defined in (2.4), for each possible T ∈ R,
the analyst makes a decision regarding whether to accept the new policy by making a decision that
achieves a lower maximum regret, that is,

min
{
K1 · R̄Type I (T ;σ) , R̄Type II (T ;σ)

}
. (2.5)

Verbally, problem (2.5) is to minimize either type of maximum regret (i.e., worst-case net foregone
payoff), and hence is referred to as the minimax -regret decision problem.8 When (T, σ) is given,
the analyst should accept the new policy and reject the status quo policy if K1 · R̄Type I (T ;σ) ≤
R̄Type II (T ;σ), that is, when the maximum (over θ) regret of mistakenly rejecting the null (the
status quo policy) is smaller than the maximum regret of mistakenly rejecting the alternative (the
new policy).

The optimal decision threshold T ∗ is then defined by a T such that Type I and Type II regrets
are equalized as follows:

K1 · R̄Type I (T
∗;σ) = R̄Type II (T

∗;σ) . (2.6)

9 The decision of whether to accept the new policy can be made by comparing the realized estimate
θ̂ with T ∗: reject the new policy if θ̂ < T ∗ and accept the new policy otherwise. Or, equivalently, the

7Another possibility is to take the expected regrets by invoking an assumed prior distribution over θ. We discuss
the expected regrets and the associated expected-regret-minimizing decision rules in Appendix C. Note, from the
Bayesian perspective, the maximum Type I and Type II regrets are the respective expected regrets evaluated using
the worst-case priors.

The underlying Gaussian distribution is a smooth, well-behaved distribution. In turn, the magnitude of the max-
imum regrets, which can be evaluated without the knowledge of θ, is very informative about the actual regrets. In
Section 5, we provide the relevant evidence using simulated data.

8We follow the conventional formulation of the minimax-regret decision problem, which is slightly different from
the problem formulation of Tetenov. However, all the results developed and presented below can also be derived from
Tetenov’s problem formulation.

9Lemma 1 of Tetenov establishes that R̄Type I (·;σ) and R̄Type II (·;σ) cross once and only once; therefore, problem
(2.6) is well defined for a given σ. See Figure 2.2 below for a graphical illustration.
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analyst can compare K1 · R̄Type I

(
θ̂; σ̂
)

against R̄Type II

(
θ̂; σ̂
)

to find the minimizer of the problem

(2.5) directly.10 Intuitively, comparing θ̂ with T ∗ can be understood analogously as comparing the
realized studentized estimate with the t-statistics threshold in one-sided asymptotic hypothesis tests.
Similarly, R̄Type I (T ;σ) evaluated at T = θ̂, σ = σ̂ can be understood analogously as the p-value for
one-sided asymptotic hypothesis tests. Again, the key difference from hypothesis tests is that our
proposed minimax-regret decision rule accounts for not only the probability but also the magnitude
of the net foregone payoffs from committing either type of error.

We developed our framework assuming θ̂ follows a Gaussian distribution exactly with a known
variance σ2. However, the assumption is not likely to be satisfied in most practical circumstances
– θ̂ may follow a Gaussian distribution asymptotically, with only a consistent estimator σ̂ for the
unknown σ being available to the analyst. In Appendix B, we provide the argument and necessary
proofs that justify the plugging-in of σ̂ in place of σ and the asymptotic approximation of the
optimal-threshold decision rule T ∗.

One implication of our minimax-regret decision rule is that the optimal threshold T ∗ = 0 when
the analyst weights the maximum Type I and Type II regrets equally, that is, when K1 = 1. In
Appendix C, we prove the same optimal threshold of T ∗ = 0 can be derived when the analyst
minimizes average regret, where the average is taken against the assumed prior that is symmetric
around zero. In Online Appendix H, we also provide the pre-calculated table for T ∗ with varying
K1.

Graphical Illustrations Figure 2.1 depicts RType I (T ; θ, σ = 1) and RType II (T ; θ, σ = 1) as func-
tions of θ and T while fixing σ = 1. The colors represent the value of the respective regrets. Figure
2.2 illustrates K1 · R̄Type I (T

∗;σ), R̄Type II (T ;σ), and how the optimal threshold T ∗ is determined.
The ridges (dashed line) of Figure 2.1 trace the maximum regret across possible values of T , the
height of which coincides with the maximum-regret function values depicted in the top-left panel of
Figure 2.2. The projection of the ridge is illustrated in Figure 2.2, from which the optimal threshold
T ∗ is determined by the intersection of the two lines representing maximum Type I and Type II
regrets.

As Figure 2.1 shows, the Type I and Type II regret functions are smooth in (T, θ), and the
maximum regret has an interior solution in θ across all values of T . Fixing T and deviating θ from
the respective maximizer will give the respective regret values declining to zero rapidly. As such, the
decision rules based on the maximum regrets are not affected “too much” by the extreme values of
θ and would not be very different from those based on average regrets with a well-behaved prior.11

In Figure 2.2, we vary the asymmetry parameters K1 ∈ {1, 3} and the magnitude of σ ∈ {1, 2}.
When K1 = 1 (the left two panels), the optimal threshold T ∗ is zero regardless of the magnitude of

10We do not consider the case θ̂ = T ∗ as the event occurs with probability zero under Assumption 1.
11In our Monte Carlo study (Section 5), we explore to what extent the maximum-regret functions can be good

proxies for the regret functions.
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Figure 2.1: Illustrations of Type I and Type II Regret Functions

Note. The left panel corresponds to RType I (T ; θ, σ) and the right panel corresponds to RType II (T ; θ, σ). The
contour maps are drawn with σ = 1 and K1 = K2 = 1. The vertical axes represent T , the color represents
the level of the regret, and the horizontal axes represent θ. The dotted-line trajectories trace the maximizers
of θ at each level of T .
Figure 2.2: Illustrations of Max. Type I and Type II Regret Functions and the Optimal Thresholds

Note. The optimal threshold T ∗ is determined at the intersection of the maximum Type I and Type II regrets,
marked by *. The horizontal axis represents T , the first argument of the respective maximum-regret functions.
Parameters (σ,K1), the optimal threshold T ∗, and the max-minimax-regret value K1 · R̄Type I (T

∗;σ) =

R̄Type II (T
∗;σ) are displayed in the boxes, respectively.
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σ. Hence, whenever the realized θ̂ is positive, the status quo policy should be rejected according to
the minimax-regret decision rule. When K1 > 1 (the right two panels), the optimal threshold T ∗ is
greater than zero and varies with the level of σ.12

Notice the optimal threshold from our minimax-regret decision criteria is much less conservative
than the hypothesis-testing counterpart. Recall the 5% significance-level threshold for one-sided
hypothesis testing of H0 : θ ≤ 0 rejects the null only when the realized t-value (θ̂/σ̂) is larger than
1.645. The same threshold can only be rationalized with K1 = 102.4, that is, when the analyst
weights the (maximum) Type I regret at least 102.4 times more than the (maximum) Type II regret.
We argue this decision rule is unnecessarily conservative and likely to be suboptimal for payoff
maximizing. We finally note when K1 = 1 and σ = 1, the maximum regret when θ̂ is realized
right at the optimal threshold T ∗ = 0 is 0.17. This worst-case maximum regret can be calculated
without evaluating θ̂; only a consistent estimate of σ is needed. We use this feature extensively in
our efficient traffic-allocation criteria developed in Section 3.

Example: Effectiveness of a Promotion Campaign To put the maximum-regret functions
into context, suppose the analyst wants to examine the effectiveness of a promotion campaign. The
analyst runs a standard A/B test to measure θ. Here the outcome of interest, θ, is the difference in
average revenue per user (ARPU) per day between the treatment group and the control group over
the course of the campaign. The analyst sets K1 = 1. After the sample collection and estimation,(
θ̂, σ̂
)

turn out to be θ̂ = $0.5 and σ̂ = $1. In this case, R̄Type I (0.5; 1) = $0.0814, which is the
maximum per-user expected net loss from rejecting the status quo policy if the new policy’s true net
effect is negative, and R̄Type II (0.5; 1) = $0.3102, which is the maximum per-user expected foregone
net benefit from sticking to the status quo policy if the new policy’s true net effect is positive.
Assume further that this platform has 1 million underlying users. When scaled by the number of
users, the maximum Type I regret is around $81,400 per day, and the maximum Type II regret is
around $310,200 per day. Therefore, abandoning the status quo policy in favor of the new policy is
optimal. However, under the classical hypothesis tests, we would have declared θ̂ to be insignificant
under the conventional significance levels, thereby failing to reject the status quo policy.

2.2 Sample-Collection Stopping Criteria That Controls for the Max-Minimax
Regret

In this subsection, we develop the sample-collection stopping criteria based on the worst-case (i.e.,
maximum) minimax regret. The basic idea is to set a threshold ψ for the height of the asterisk in
Figure 2.2 before starting the sample collection, and monitor only the height of the asterisk during
the sample collection. The height of the asterisk declines to zero as the sample size increases, and
the threshold ψ is the maximum worst-case (i.e., maximum) minimax regret that the analyst is

12We show the optimal T ∗ is in fact proportional to σ in Lemma 1 of Appendix A.
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willing to tolerate. Because the analyst can monitor the height of the asterisk without monitoring θ̂
itself, the analyst should not “peek” at the current effect-size estimate θ̂ during the sample collection
even if θ̂ can be readily calculated – θ̂ should be revealed to the analyst only when the height of
the asterisk falls below ψ. The proposed sample-collection stopping criteria are not subject to the
widespread p-hacking scheme of monitoring the estimate θ̂ itself or the associated p-value midway
through the sample collection and rejecting the null once the p-value hits the desired significance
level (see, e.g., Armitage et al., 1969; Johari et al., 2017, Forthcoming).13

In previous work by Tetenov (2012), only the threshold T ∗ from the minimization problem is
of interest in the analyst’s decision problem, not the level of the maximum Type I and Type II
regret. However, when the analyst can effectively choose the sample size n that determines σ, as
is common in the online A/B test environments, we propose monitoring the value of the following
max-minimax-regret function at the optimal threshold T ∗ that equalizes the arguments of the min

operator in (2.5), that is,

V (σ;K1) := K1 · R̄Type I (T
∗;σ) = R̄Type II (T

∗;σ) . (2.7)

The function value V (σ;K1) is defined by the worst-case (i.e., maximum) minimax regret, which is
attained if θ̂ is realized exactly at the optimal threshold T ∗. Put differently, V (σ;K1) represents
the maximum net loss in payoff by committing either type of error in a decision when the analyst
follows the minimax-regret decision rule subsequently.

Lemma 1 in Appendix A establishes the value of V (σ;K1) and the optimal threshold T ∗ as
linear functions of σ, respectively. Specifically, V (σ;K1) = σV (1;K1) and T ∗ = σT ∗

σ=1. Therefore,
Lemma 1 reduces the problem of bounding the worst-case minimax regret to the problem of pre-
calculating V (1;K1) as a function of K1. We propose a nested decision rule to first collect a large-
enough sample to control V (T ∗;σ) under a certain level ψ that is the analyst’s decision variable,
and then compare θ̂ with T ∗ to decide whether to accept or reject the innovative new policy. Again,
we assume θ̂ ∼ N

(
θ, σ2

)
, where σ2 declines to zero as the sample size n increases. Formally, the

sample-collection stopping problem we described thus far can be formulated as follows:

min
n≥0

n (2.8)

s.t. σV (1;K1) ≤ ψ

σ =
s√
n
,

13Hypothesis tests intend to control the Type I error probability under some pre-set significance level. The “peeking
and optional stopping” p-hacking scheme is problematic because it induces the resulting actual Type I error probability
to be higher than the desired significance level. By contrast, the goal of our minimax-regret decision framework is to
find a payoff-improving policy while controlling for the maximum net foregone payoff under a pre-set level. Monitoring
the height of the asterisk does not undermine this goal.
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where σV (1;K1) = V (σ;K1) = K1 · R̄Type I (T
∗;σ) = R̄Type II (T

∗;σ) and s is a positive constant.14

The following Figure 2.3 illustrates how max-minimax regret changes as σ declines to zero, that
is, as the sample size increases. The coordinate where the max-minimax regret is attained is marked
with asterisks, and the level of max-minimax regret is the horizontal dotted lines. The analyst may
stop sampling once the level of the horizontal dotted line is below a pre-set threshold ψ. In Online
Appendix H, we also provide the pre-calculated table for V (1;K1) with varying K1. Combined with
the relation V (σ;K1) = σV (1;K1), the level of the max-minimax regret for any combination of
(σ,K1) can be easily calculated using only the table and a calculator.

Figure 2.3: Illustrations of the Max-Minimax Regret When K1 = 2 and σ = 3, 2, 1

Note. The solid lines represent the effective maximum Type I and maximum Type II regrets when the analyst
follows the minimax-regret decision rule. The horizontal dotted lines represent the level of max-minimax
regret. The horizontal axis represents T , the first argument of the respective maximum-regret functions.
Parameters (σ,K1), the optimal threshold T ∗, and the max-minimax regret value K1 · R̄Type I (T

∗;σ) =

R̄Type II (T
∗;σ) are displayed in the boxes, respectively.

2.3 The Minimax-Regret Decision Criteria for Multi-Arm Experiments

In this subsection, we develop the minimax-regret decision criteria for multi-arm experiments. In
online experiments, an analyst commonly explores multiple treatment arms simultaneously, where
the analyst has to choose one best policy among all the treatment arms and the control group.
The idea here is to filter and sort the policies based on the metric that is directly relevant to the
payoff of interest. Along this line, we propose calculating the maximum Type I regrets for each of
the proposed new policies, filtering the new policies whose effect size exceeds the respective optimal
threshold, and selecting the policy that achieves the lowest maximum Type I regret. The multi-arm
experiment sorting and decision procedure developed below give a total ordering on the set of all
the policies being examined.

14s2 is the variance term in
√
n
(
θ̂ − θ

)
→d N

(
0, s2

)
. Note we assumed the

√
n convergence rate for simplicity

in exposition. The problem can be reformulated with proper rate-of-convergence adjustments when the convergence
rate is slower than

√
n.
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Denote {1, 2, 3, ..., J} by the different marketing policies being examined, where policy 1 denotes
the status quo policy, that is, the control group. We assume the analyst sets K1 > 0 as a decision
variable but takes K2 = ... = KJ = 1 as fixed. The assumption reflects that all the new policies
are ex-ante homogeneous; however, the analyst may prefer the status quo policy ex ante because of,
for example, possible deployment costs.15 Throughout, we use the shorthand r1f2 for “reject policy
1 in favor of policy 2”, and so on. Denote θj,1 by the true population (average) treatment effect of
treatment policy j compared with the baseline policy 1. Let θ̂j,1 ∼ N

(
θj,1, σ

2
j,1

)
. Again, we assume

consistent estimates {σ̂j,1}Jj=2 for {σj,1}Jj=2 are available to the analyst.16

For the null hypothesis Hj
0 : θj,1 ≤ 0, the maximum Type I regret at the current effect-size

estimate θ̂j,1 is the maximum regret of the event r1f2 (rejecting option 1 in favor of option 2).17

One can then run comparisons for each of the new policies {2, 3, 4, ..., J} with the status quo policy
{1}. We propose the following algorithm:

1. Calculate the respective maximum Type I regrets R̄r1f2

(
θ̂2,1; σ̂2,1

)
, R̄r1f3

(
θ̂3,1; σ̂3,1

)
, ...,

R̄r1fJ

(
θ̂J,1; σ̂J,1

)
and maximum Type II regrets R̄r2f1

(
θ̂2,1; σ̂2,1

)
, R̄r3f1

(
θ̂3,1; σ̂3,1

)
, ..., R̄rJf1

(
θ̂J,1; σ̂J,1

)
.

2. Find the associated optimal thresholds
{
T ∗
j,1

}J

j=2
for each j ∈ {2, 3, ..., J}, taking the weighting

factor K1 as fixed.

3. Take the index set I =
{
j : θ̂j,1 > T ∗

j,1

}
, i.e., the subset of the new policies that exceeds the

respective optimal threshold.

(a) If the set I is empty, stick with the status quo policy 1.

(b) If the set I is nonempty, sort I by the maximum Type I regrets evaluated at θ̂j,1

(i.e., by R̄r1fj

(
θ̂j,1; σ̂j,1

)
), and then choose the new policy that achieves the lowest

R̄r1fj

(
θ̂j,1; σ̂j,1

)
.

The procedure provides a total ordering over set I, leading to the unique best policy that achieves
the lowest maximum Type I regret.18

15Our sorting algorithm below can be easily extended to when the analyst decides all the Kjs.
16Note, for any reasonable estimator θ̂j,1 for θj,1, the following symmetry should hold: θ̂j,1 = −θ̂1,j with σj,1 =

σ1,j =

√
V ar

(
θ̂j,1

)
.

17For example,

R̄r1fj

(
θ̂j,1 = 0.5; σ̂j,1 = 1

)
≡ R̄j

Type I

(
θ̂j,1 = 0.5; σ̂j,1 = 1

)
= 0.0814

R̄rjf1

(
θ̂j,1 = 0.5; σ̂j,1 = 1

)
≡ R̄j

Type II

(
θ̂j,1 = 0.5; σ̂j,1 = 1

)
= 0.3102.

18The policy filtering and sorting procedure we propose is based only on the maximum Type I regrets, not the
maximum Type II regrets, to ensure a total ordering of the policies. In principle, one might consider the policy
sorting algorithm by comparing both the maximum Type I and Type II regrets pairwise for all the policies considered.
However, such a pairwise comparison and sorting may violate transitivity (e.g., 2 ≻ 3, 3 ≻ 4, and 4 ≻ 2 can occur).
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The minimax-regret-based best policy selection favors the policy with higher t-values and lower
σ̂j,1; that is, it favors a higher effect-size estimate with higher precision, which is intuitive. Notably,
our minimax-regret best policy-selection rule, which also accounts for the magnitude of the foregone
payoff by committing a decision error, may give a different ordering compared to those obtained by
simply sorting the respective t-values or p-values that only account for the probability of committing
an error. Suppose, for instance, policies 2 and 3 attained the same t-value of 1 = θ̂j,1/σ̂j,1 with(
θ̂2,1, σ̂2,1

)
= (1, 1),

(
θ̂3,1, σ̂3,1

)
= (2, 2), and the optimal threshold T ∗

2,1 = T ∗
3,1 = 0 so both

policies 2 and 3 exceeded the t-value thresholds. If the analyst simply sorts the policies according
to their t-values or p-values, policies 2 and 3 should be indifferent. However, R̄r2f1

(
θ̂2,1; σ̂2,1

)
=

0.0334, whereas R̄r3f1

(
θ̂3,1; σ̂3,1

)
= 0.0668, and therefore, policy 2 is more favorable than policy 3

according to our minimax-regret multi-arm decision criteria. Another intuitive explanation is that
our minimax-regret multi-arm policy-selection rule favors the sample evidence obtained from a larger
sample (smaller σ̂j,1) better if the attained t-stats are the same.19

3 The Minimax-Regret-Decision-Rule-Based Experiment Design: The
Efficient Traffic Allocation

In the previous section, we developed the minimax-regret experiment-evaluation scheme of two-arm
and multi-arm experiments, taking the experiment design as given. Our novel contribution in this
section is to develop the minimax-regret optimal experiment-design scheme, where the goal of the
analyst is to minimize the wait time of sample collection until the desired level of max-minimax
regret is attained. The basic idea is again to control for the height of the asterisks in Figure 2.2
in Section 2, but here, we optimize the traffic-allocation ratio to control for the highest height of
the asterisks across all the treatment arms. To this end, we propose an adaptive, efficient traffic-
allocation scheme in which the analyst monitors the current variance estimates of the effect-size
estimators and allocates the incoming traffic accordingly.20

3.1 The Efficient Traffic-Allocation Probabilities across Experiment Arms

In online A/B tests, an analyst typically does not have control over the overall rate of the incoming
traffic, but s/he may have control over the random-assignment probability of the incoming sample

19See Online Appendix G for a real-world example.
20Our optimal traffic-allocation scheme differs from the popular Thompson sampling in the following ways. First,

the benefits/losses from the experiment sample can be ignored in our experiment setup (i.e., the “pure-exploration
bandits” problem), which is different from the setup where Thompson sampling is known to work well (i.e., where the
“exploration-exploitation tradeoff” for the payoff matters in the test sample). Second, our approach is frequentist in
that it does not require assuming the shape of the true parameter’s prior distribution. Third, we propose monitoring
only the variance estimate of the effect-size estimator, not the estimate itself. Last but not least, the optimal
traffic-allocation scheme is derived in close relation to the experiment-stopping criteria that explicitly control for the
maximum regrets, the measure directly relevant to the payoffs undergoing experiments.
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to treatment arms or the control group. That is, at any given time, the total sample size n is
exogenously given, but the random-assignment probability over the experiment arms can be chosen
by the analyst. As the analyst changes the assignment probability, σ in (2.8) in Section 2.2 would
change. Furthermore, in multi-arm experiments, different σ’s would correspond to each treatment
arm.

In this section, we assume either the absence of a pretreatment-period sample, or that the analyst
can utilize a size-n0 pretreatment sample as a part of the common control group, as follows:

Assumption 2. If pretreatment-period data with size n0 > 0 are used for the analysis, they are part
of the common control group for all treatment arms {2, 3, ..., J}.

The assumption is innocuous to the extent that the assignment of the incoming samples to the
experiment arms is randomized, which is the fundamental premise of online A/B tests. It allows for
controlling for the common time trends and other covariates. However, it rules out using the same
treatment-arm-specific subsample as the respective control group, and in turn, using the estimators
that hinge upon a non-random assignment of the samples. For example, a difference-in-differences
estimator would not work well with our efficient traffic-allocation algorithm.21

We seek for the efficient treatment-period random-assignment probability {p1, p2, ..., pJ} that
minimizes the maximum (over k = 1, 2, ..., J) worst-case (over T ) maximum Type I regret over
the pairs {1, 2}, {1, 3}, ..., {1, J}, where we denote j = 1 by the control group as before. Define
nk for k = 2, 3, ..., J such that pk = nk

n−n0
and denote p0 = n0

n−n0
. Denote Y by the outcome of

interest and Dj = 1 (Observation is treated in arm j). Because we assume the unconfoundedness
and the propensity score is assigned by the analyst so it is known, that is, {Y (j)}j∈J ⊥⊥ Dj |x and
Pr (Dj = 1|x) is known, a

√
n-consistent estimator θ̂j,1 for the effect size θj,1 is generally available

(e.g., Horvitz and Thompson, 1952; Kitagawa and Tetenov, 2018; Athey and Wager, 2021; Farrell
et al., 2021).

We also impose the following assumption in the remainder of this section about the structure of
σ2j,1, the asymptotic variance of the effect-size estimator.

Assumption 3. σ2j,1, the variance of the effect-size estimator θ̂j,1 has the form

σ2j,1 =
η2j
nj

+
η21

n0 + n1
+ op (1) =

1

n

(
η2j
pj

+
η21

p0 + p1

)
+ op (1) , (3.1)

where η2j and η21 are specific to group j and 1, respectively.

op (1) is a term that converges in probability to zero when n is large, which does not depend
on the assignment probabilities {p0, p1, . . . , pJ} asymptotically. (3.1) encompasses a broad class of

21We note our efficient traffic-allocation algorithm would still provide an approximately efficient solution with
treatment-arm-specific pretreatment samples when the pretreatment-period sample size is relatively small.
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the widely used effect-size estimators that assume unconfoundedness, including but not limited to
a linear regression estimator with and without covariates, a regression-adjustment estimator (e.g.,
Wooldridge, 2010, p.918), and any efficient semiparametric estimator (Hahn, 1998). We implicitly
imposed the

√
n-rate of convergence for θ̂j,1, but the results we provide below are likely to be

generalized with a rate-of-convergence adjustment for a non/semiparametric estimator that has a
slower rate of convergence (e.g., Wooldridge, 2010, pp. 917-918). We work out some commonly used
estimators’ variance formulas in Appendix D.1.

Under Assumptions 2 and 3, the analyst wants to randomly allocate the incoming sample opti-
mally so that the maximum (across treatment arms) max-minimax regret V (σj,1;K1) is minimized,
which translates directly to minimizing the wait times.22 Mathematically, the analyst’s optimal
traffic-allocation problem is given by

min
{p1,p2,...,pJ}

{
max

j∈{2,3,...,J}
{σj,1V (1;K1)}

}
(3.2)

s.t. n = n0 +

J∑
j=1

(n− n0) pj

σ2j,1 =
η2j
nj

+
η21

n0 + n1
,

where n is the total sample size at any given time and (n− n0) is the treatment-period sample size.
Note σj,1 in (3.2) is determined by (3.1), a function of (pj,p1). Consistent estimates for η2j s can be
plugged in during implementation.

Problem (3.2) is a J-dimensional optimization problem. However, exploiting the optimality
conditions, we prove (3.2) can be effectively reduced to a one-dimensional numerical optimization
problem over p1, as follows:

p∗1 = arg min
p1∈[0,1]

{
η21

p0 + p1
+

∑J
j=2 η

2
j

1− p1

}
(3.3)

p∗j = (1− p∗1)
η2j∑J
k=2 η

2
k

for j > 1.

Problem (3.3) is a convex minimization problem with one variable, which can be easily solved
numerically using any standard nonlinear optimizer. See Appendix D.2 for the derivation of (3.3)
and Appendix D.3 for the solution when η21 = η22 = ... = η2J .

22We note again that the Assumptions 2 and 3 are not required if the analyst wants to only evaluate the results
from a multi-arm experiment without optimizing the traffic-allocation probabilities.
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3.2 Automation Algorithm of the Adaptive Randomized Traffic Allocation and
Stopping of the Experiment

Using the efficient traffic-allocation and optimal stopping rules developed above, we provide the
automation algorithm below. The algorithm outlined below adaptively and dynamically applies the
efficient traffic-allocation rule over the course of sample collection, monitors σj,1’s continuously, and
stops the experiment when the worst-case minimax regret is below the analyst’s pre-set decision
variable ψ.

1. The analyst is endowed with p0, and decides (K1, ψ).

2. Begin from assuming pks, for example, p1 = p2 = ... = pJ .

3. Wait until enough samples (typically at least thousands) are collected to estimate η2k’s consis-
tently.

4. Estimate the current
{
η21, η

2
2, ..., η

2
J

}
.

5. Solve (3.3) to find {p∗1, p∗2, ..., p∗J} and, in turn, the target {n∗1, n∗2, ..., n∗J} at the current moni-
toring cycle. Note, n∗1 < n1 is possible when p0 = n0

n−n0
is not sufficiently small at the current

n, and hence, not allocating any incoming sample to the control arm j = 1 at the current
monitoring cycle can be optimal.

6. Calculate {σ1,j}Jj=2 and evaluate whether maxj∈{2,3,...,J} {σj,1V (1;K1)} ≤ ψ.

(a) If the condition is satisfied, terminate the experiment and make a decision following the
steps outlined in Section 2.3.

(b) If the condition is not satisfied, wait until more samples are collected, and go back to
Step 4.

In practice, Steps 4-6 can be conducted in periodic cycles, for example, hourly, daily, every other day,
and so on. Also, a smooth transition of the target {n∗1, n∗2, ..., n∗J} from the previous sample-collection
cycle can be considered when Steps 4-6 are conducted with high frequency.

4 Empirical Application: A Mobile Game Company’s Multi-Arm
Experiment

In this section, we apply our minimax-regret decision framework to a real-world multi-arm exper-
iment. Our finding in this section shows the decision rules based on our minimax-regret decision
framework and the conventional hypothesis testing may diverge drastically.
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4.1 Background and Experiment Setup

We collaborate with a large mobile gaming studio in the Asia-Pacific region. The flagship app
developed by this studio is a casual gaming app with over 20 million daily active users. A major
source of the company’s revenue is in-app purchases, where users purchase game items using in-game
currency (“Gold Coins” henceforth), which in turn are bought using real-world currency. These items
give an advantage to the users in solving the level and advancing to the next level. The only way to
obtain Gold Coins in the game is to purchase them using the real currency in the game store. The
exchange rate between the Gold Coins and 1 USD is around 100:1,23 and the average daily revenue
from in-app Gold Coin purchases ranges from 100,000 USD to 1 million USD per day.24

Each game stage consists of solving a puzzle within a set number of “steps,” and the company
was interested in the effect of the game difficulty on the users’ in-game currency spending behavior.
Adjusting the difficulty of the game can lead to drastic changes in the company’s revenue, and it is
one of the most important levers that the company can use to maximize revenue. When the game
is too easy, users will find it not challenging enough and will not buy in-app items that would help
them solve the puzzles. When the game is too difficult, users will lose motivation and give up. The
company therefore ran a multi-arm experiment varying the difficulty level of the game for 34 days,
from 7/28/2022 to 8/30/2022.

The outcome variable of interest is the in-game currency spending. In-game currency spending
is defined at the user-day level. The company was interested only in the instantaneous (i.e., daily)
treatment effects, because the company can switch policies relatively frequently.25

The pre-intervention period is 14 days, and the intervention period is 20 days, which is a common
experiment duration (e.g., Lewis and Rao, 2015; Berman and Van den Bulte, Forthcoming). The
company randomly allocated users into control and treatment groups according to a 2:1:1:1 ratio.
The status quo policy, which constitutes our control group, gives the hardest puzzles to the users.
Each treatment group varies in the difficulty of the puzzles given, as described in Table 1. We note
the company determined the traffic-allocation ratio for each group in an ad-hoc manner.

4.2 Multi-Arm Experiment Results

We compare the estimator θ̂s for the following regression specification across different treatment
groups j ∈ {Easy,Medium,Hard}:

coin_consumptionit = γj,Baseline · 1 (post_expt) + θj,Baseline · 1 (treati) · 1 (post_expt) + ϵit. (4.1)
23The price of 1 Gold Coin is around 0.07-0.08 RMB, which, corresponds to 0.01 USD.
24Because the company is a private entity, we cannot disclose the exact number of daily users and daily Gold Coin

purchases, due to the nondisclosure agreement.
25Measuring the long-term causal effects of the change in game difficulty on users’ Gold Coin spending behavior

exceeds the scope of the present research.
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Table 1: Description of Treatment and Control Groups

Traffic
Group Pre-treat nj Post-treat nj nj Allocation

Control Baseline (Hardest) 1,554,851 2,135,684 3,690,535 40%

Treat
Easy 773,395 1,069,090 1,842,485 20%

Medium 774,929 1,069,873 1,844,802 20%
Hard 775,953 1,075,810 1,851,763 20%

Note. This table reports the description, size, and randomized traffic-allocation probabilities of the control
and treatment groups, respectively.

We include 1 (post_expt) to control for time fixed effects, and we do not include group fixed effects,
because the users are assigned randomly into control/treatment groups. We run three separate
regressions for each of the treatment groups, obtain the respective θ̂j,Baseline, and then apply the
decision criteria developed in Sections 2.1-2.3.26 We use the weighting factor K1 = K2 = 1 for our
minimax-regret decision framework; that is, we place the same weight on the maximum Type I and
Type II regrets, respectively, and we provide the robustness-check results for K1 = 3 in Appendix
F.

Table 2: Summary of the Multi-arm Experiment Results with K1 = 1

Control Baseline (Hardest)

Treatment Easy Medium Hard

θ̂ 0.02849 0.02430 0.04827
σ̂ 0.02627 0.02788 0.03230
θ̂/σ̂ 1.08439 0.87158 1.49417

R̄ (T ∗; σ̂) ≡ V (σ̂; 1) 0.00447 0.00474 0.00549
R̄Type I

(
θ̂; σ̂
)

0.00074 0.00119 0.00038

R̄Type II

(
θ̂; σ̂
)

0.01432 0.01257 0.02432

Minimax Regret T ∗ 0 0 0
α = 0.01 HT Threshold 0.06112 0.06486 0.07515

Minimax -Regret Decision Accept New Accept New Accept New
Hypothesis-Testing Decision Reject New Reject New Reject New

Note. The minimax-regret decision threshold T ∗s are derived using K1 = K2 = 1. Standard errors are
clustered at the user level to calculate σ̂, because the same user can be sampled across multiple days.

26We use the linear regression estimator, following what the company used to evaluate the treatment effects, and
estimate the treatment effects pairwise for each treatment group. All the results presented below are robust with
insignificant group-dummy estimates when the group fixed effects are included, that is, in the usual difference-in-
differences specification.
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Table 2 summarizes the results. The minimax-regret optimal threshold T ∗, which θ̂s are com-
pared against, is zero for all the columns as derived in Section 2.1 because K1 = K2 = 1. Notice
all three new policies exceed the minimax-regret optimal threshold, thereby implying either Easy,
Medium, or Hard could be accepted if compared pairwise against the Baseline (Hardest). By con-
trast, none of the new policies’ θ̂ exceeds the hypothesis-testing thresholds at the 1% significance
level. If the company followed the hypothesis-testing-based decision rules, the company should make
no changes to the game difficulty.27

Our next question is which of the three new policies should be adopted in place of the Baseline
policy. Among them, Hard achieves the lowest maximum Type I regret at the current

(
θ̂, σ̂
)

estimates. Therefore, the company should adopt Hard difficulty to minimize the maximum possible
loss of revenue by in-game currency expenditure.

Our minimax-regret decision criteria provide an interpretable and decision-relevant measure to
the analyst, unlike the t-value- or p-value-based decision criteria. R̄Type I

(
θ̂; σ̂
)
, the maximum Type

I regret of Hard, is 0.00038, implying the worst-case net expected loss from rejecting the Baseline
in favor of Hard, scaled by 20 million underlying users would be only 7,600 Gold Coins (USD 76)
per day. By contrast, R̄Type II

(
θ̂; σ̂
)
= 0.02432, which is around 64 times larger than the maximum

Type I regret, implying the worst-case net expected loss compared with Hard would be around
486,400 Gold Coins (USD 4,864) per day if the company sticks with the Baseline policy.

The experiment results and the decision rules presented in this section reconfirm that the decision
rules based on our minimax-regret framework and the conventional hypothesis testing may diverge
dramatically in practice. Specifically, the decisions diverge drastically when the t-value is positive
but not “large enough.” However, evaluating and comparing the performances of the decision rules
is impossible without knowing the true effect sizes of the underlying data-generating process. There-
fore, in the following Section 5, we run a series of simulation exercises in which the data-generating
process closely mimics the experiments analyzed above and the underlying true parameter values are
known. In Online Appendix G, we analyze another multi-arm experiment run by our focal company,
in which, interestingly, our minimax-regret-based policy preference orderings turn out to be different
from ordering the new policies by their respective p-values.

5 Monte Carlo Experiments

In this section, we validate the proposed minimax-regret decision framework by running a series
of Monte Carlo simulations, in which the data-generating process closely replicates the multi-arm
experiments we analyzed in the previous section. This section is divided into two parts. In the
first part (Section 5.1), we evaluate and compare the performance of our minimax-regret decision
rule against the hypothesis-testing decision rule, taking the sample size and traffic-allocation rules

27The hypothesis-testing thresholds are different across columns because they are calculated using different sub-
samples of treatment/control groups.
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as given by what our focal company arbitrarily set during the experiment. In the second part
(Section 5.2), we evaluate the performance of the efficient traffic allocation rule we proposed in
Section 3, by examining the reduction of the wait time and the required sample size to reach the
same max-minimax-regret threshold.28

5.1 Monte Carlo Study 1: Performance Comparison of the Minimax-Regret
Decision Rule and Hypothesis Testing

We generate our Monte Carlo datasets in a way that closely mimics our focal mobile game com-
pany’s experiment. Specifically, we take the θ̂j estimates presented in Table 2 as the true effect-size
parameter θj ≡ µj − µ1’s. We also use the same underlying daily user size of 20,000,000 and the
same traffic allocation probabilities as reported in Table 1 of Section 4.1. Because the Gold Coin
consumption is nonnegative and the distribution is positively skewed, we generate the Gold Coin
consumption variables from a lognormal distribution.29

We repeat the same data-generating process independently for 1,000 times and implement our
minimax-regret decision rules and the hypothesis-testing decision rules, respectively. Because we
know the true effect-size parameter during the data-generating process, we can evaluate the realized
regret R

(
T = θ̂; θ, σ = σ̂

)
at the current θ̂ and σ̂ estimates, that is, at T = θ̂ and σ = σ̂.

Table 3 summarizes the Monte Carlo data-generating process and reports the results from 1,000
independent trials. Table 3a summarizes the data-generating process. For all the treatments, of
which θ values are positive, the correct decision should be to accept the new policy. All the true
treatment effects are fairly small in terms of the relative magnitude, ranging from 2.22% to 4.43%30

of the Baseline average Gold Coin consumption.
Turning to Table 3b Average Estimates columns and comparing the results with Table 2 in Section

4.2, we confirm the Monte Carlo data-generating process closely replicates the field experiment. Next,
comparing Table 3b’s Minimax Regret and α = 0.01 HT columns, the divergences in the realized
decisions across different decision rules are striking. Because the magnitudes of the true treatment
effects are not large compared with the Baseline policy, only 5.4%-25.0% of the 1,000 trials’ t-values
exceeded the α = 0.01 hypothesis-testing threshold if compared pairwise. By contrast, decisions
based on our minimax-regret decision criteria achieve very good performance, designating the correct
decision in 81.2%-95.6% of trials if compared pairwise.

We calculate the columns Revenue Lost / Day as (100% – % Correct)×θ, which is the ex-post
28Ideally, one could evaluate the performance and validate the proposed minimax-regret decision framework by

implementing it in the field. However, a reliable validation would require horse-racing the performances of our
minimax-regret decision framework against the hypothesis tests across hundreds of field experiments at a minimum.
Due to time and resource constraints, we instead run extensive Monte Carlo experiments.

29To generate X ∼ lognormal
(
µ, σ2

)
with E [X] and V ar (X), the parameters can be set as µ =

ln

(
{E[X]}2√

{E[X]}2+V ar(X)

)
, σ2 = ln

(
1 + V ar(X)

{E[X]}2

)
.

300.02430/1.0874 = 0.0223 and 0.04827/1.0874 = 0.0443.
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Table 3: Monte Carlo 1: Data-Generating Process and the Evaluation Results

(a) Setup and Data-Generating Process

Avg. Coin Traffic
Consumption θ Allocation

Baseline (Hardest) 1.0874 — 40%

Easy 1.1159 0.02849 20%
Medium 1.1117 0.02430 20%

Hard 1.1357 0.04827 20%

(b) Results and Performance Comparison

Average Estimates Minimax Regret α = 0.01 HT

% Revenue % Revenue
θ̂ σ̂ θ̂/σ̂ Correct Lost / Day Correct Lost / Day

Easy 0.03095 0.02833 1.05687 85.6% $820.80 7.5% $5,272.50
Medium 0.02533 0.02732 0.86812 81.2% $913.68 5.4% $4,597.56

Hard 0.04956 0.03020 1.67338 95.6% $425.04 25.0% $7,245.00

(c) Scaled Regrets and Scaled Max. Regrets

Scaled Regrets Scaled Max. Regrets

Scaled Scaled Scaled Scaled Scaled Scaled
RType I

(
θ̂; θ, σ̂

)
RType II

(
θ̂; θ, σ̂

)
R
(
θ̂; θ, σ̂

)
R̄Type I

(
θ̂; σ̂
)

V (σ̂; 1) R̄Type II

(
θ̂; σ̂
)

Easy 0 $2,766.33 $2,766.33 $407.11 $ 963.08 $3,561.19
Medium 0 $2,328.38 $2,328.38 $506.39 $ 928.78 $3,084.04

Hard 0 $4,511.68 $4,511.68 $184.84 $1,026.68 $5,446.49

Note. The tables summarize the data-generating process and results for 1,000 independent Monte Carlo
studies. Results reported in Tables 3b and 3c are averages across 1,000 trials. The sample size for each
trial is 9,229,585, identical to the field-experiment data analyzed in Section 4. The Baseline (Hardest)
group’s average Gold Coin consumption is obtained from the intercept estimate of (4.1) in Section 4.2. The
treatment groups’ Gold Coin consumption amounts are obtained by taking the θ̂j estimates as the true
parameter values. % Correct columns are the percentage of the correct decisions out of 1,000 independent
trials. Revenue Lost columns report the average ex post revenue loss by making an error in decisions, scaled
by 20 million underlying daily users and converting to USD. Scaled Regrets columns are calculated by scaling
the average realized regret R

(
θ̂; θ, σ̂

)
by 20 million underlying users and converting to USD. Scaled Max.

Regrets columns are calculated by scaling the respective maximum regret by 20 million underlying daily users
and converting to USD. Conversion to USD used the 100:1 exchange ratio between Gold Coins and USD.
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realized loss from making a mistake in the decision, because θ is the known, true effect size during
the simulated data-generating process. The associated actual ex-post relative revenue loss from
our minimax-regret decision rule, reported in Revenue Lost columns, is only 1/5.4-1/17.0 of the
loss from the hypothesis-testing decision rule. Because we run experiments on three different new
policies concurrently, among which Hard is the best policy, the actual lost revenue from following the
hypothesis-testing decision rule would be USD 7,245.00. The results imply our focal company can
achieve substantial potential gains by switching to the proposed minimax-regret decision framework.

Finally, we turn to Table 3c, where we compare the scaled regrets and scaled maximum regrets.
We provide the comparison to demonstrate the maximum regrets, which can be evaluated without
knowing the true parameter value θ, are very informative regarding regrets and ex-post revenue
lost. Scaled Regret columns are calculated by scaling the average regret R

(
T = θ̂; θ, σ = σ̂

)
by

20,000,000 underlying users and converting the unit of regret to USD. Notice the Type I regret is
zero because the true effect size θs are all positive, and the scaled Type II regret is smaller when
the true effect-size parameter θ is small in magnitude. Next, comparing the Scaled RType II

(
θ̂; θ, σ̂

)
column with the Scaled R̄Type II

(
θ̂; σ̂
)

shows they differ little in magnitude – the Type II regrets are
75%-80% of the maximum Type II regrets, thereby suggesting maximum regrets are good proxies
for the corresponding regrets.

5.2 Monte Carlo Study 2: Efficient Traffic Allocation and Sample-Size/Wait-
Time Reduction

In the field-experiment data we analyzed in Section 4, the company sets the traffic-allocation prob-
ability in an ad-hoc manner at 2 (Baseline):1 (Easy):1 (Medium):1 (High) ratio. In this section,
we apply the experiment-design scheme of the efficient traffic allocation developed in Section 3 to
demonstrate how much wait time could have been reduced if the company had adopted the proposed
optimal traffic-allocation scheme.

The Monte Carlo setup is as follows. We leave the data-generating process summarized in Table
3a intact, except for the duration of the pretreatment period and traffic-allocation probabilities,
which we now optimize. Following the field-experiment data analyzed in Section 4, we assume
the analyst can randomly allocate 271,458 users daily.31 The goal of the adaptive efficient traffic-
allocation algorithm is to attain the max-minimax regret R̄ (T ∗; σ̂) across the three policies reported
in Table 2 of Section 4.2, which is max {0.00447, 0.00474, 0.00549} = 0.00549 ($1,098 when scaled by
20 million users and converted to USD) with the minimal amount of wait time. That is, the analyst
monitors σ̂j,1s across the three treatment arms j ∈ {Easy, Medium, Hard}, with the maximum
tolerable daily loss from committing either type of mistake as $1,098. We assume the analyst re-
assesses the traffic-allocation probabilities every other day.32 Because we use the linear-regression

31271,458=9,229,585/34 days, where 34 days were the span of the original field experiment.
32The results presented are almost identical to the daily adjustment of the traffic-allocation probabilities.
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estimator with covariates (4.1) throughout, η2k follows the formula developed in Appendix D.1.3.
We vary the duration of the pretreatment period across 0, 1, 2, 3, 4, 5, 7, and 14 days, during

which none of the samples are treated. Given the daily sample flow-in rate as fixed, a longer
pretreatment period would imply the proposed optimal traffic-allocation algorithm will take longer to
reach an interior optimum, thereby lowering the efficiency of the proposed optimal traffic-allocation
algorithm. For each pretreatment duration we examine, we independently repeat the same data-
generating process and evaluation 1,000 times. Lastly, for the benchmark, we also repeat the process
with the same stopping max-minimax-regret criteria, using the ad-hoc traffic-allocation probability
set by the company at 2 (Baseline):1 (Easy):1 (Medium):1 (High).

Table 4 reports the results, where the numbers reported are the averages across 1,000 inde-
pendent trials. The Wait Days columns report the time taken to stop the experiments from the
beginning of the treatment period. Comparing the Wait Days columns across Efficient Allocation
and Benchmark, we find the substantial reduction of wait time required to achieve the same level
of max-minimax regret and make the decision. Our proposed efficient traffic-allocation procedure
can reduce the sample-collection time by more than 30% when it’s employed without delay, that is,
with no pretreatment sample – the wait time is only 14.1 days under the efficient allocation versus
20.9 days under the benchmark. Although the gain from adopting our efficient traffic-allocation
procedure wanes as the pretreatment period increases, due to the increased suboptimality of the
sample allocation, it still achieves a reduction in the wait time across all the pretreatment periods
examined.

Our next question would be whether the remarkable reduction in wait time is obtained by
sacrificing the accuracy of the decision. We find it is not. Comparing the Minimax Regret % Correct
columns across Efficient Allocation and Benchmark, the loss of accuracy in the decision is only
a few percentage points at most. Therefore, we confirm that continuously monitoring only the
standard error of the effect-size estimator throughout the sample-collection stage and controlling for
the max-minimax regret works well as the experiment-stopping criteria.

In sum, the efficient traffic-allocation scheme we develop would help the analysts make timely
decisions without sacrificing the accuracy of the decisions.

6 Concluding Remarks

We proposed the minimax regret decision framework for online A/B tests, an integrated decision
framework of multi-arm experiment evaluation and experiment design. Our minimax decision frame-
work accounts for not only the probability of making an error in a decision, but also the magnitudes
of the relevant payoffs. The real-world field-experiment data confirms that the decisions implied by
our minimax regret decision criteria can be very different from what is implied by the conventional
Neyman-Pearson hypothesis testing. In our Monte Carlo simulations, we show that the decisions
implied by our minimax-regret decision criteria are not only different from hypothesis testing, but
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Table 4: Monte Carlo 2: Performance of the Minimax-Regret Efficient Traffic-Allocation Algorithm

Efficient Allocation Benchmark

Minimax α = 0.01 Minimax α = 0.01

Pretreat Wait Base Treat Regret % HT % Wait Base Treat Regret % HT %

Days Days N N Correct Correct Days N N Correct Correct

Easy

0 14.1 1,195K

842K 77.8% 9.1%

20.9 2,537K

1,132K 84.9% 8.6%

Medium 951K 74.7% 8.0% 1,132K 80.2% 3.6%

Hard 1,109K 92.6% 25.3% 1,133K 93.9% 23.7%

Easy

1 13.4 1,226K

931K 76.2% 8.8%

19.6 2,508K

1,118K 80.4% 8.0%

Medium 926K 71.7% 6.9% 1,118K 78.5% 5.6%

Hard 1,088K 90.7% 21.8% 1,118K 94.5% 22.8%

Easy

2 14.5 1,329K

1,000K 79.2% 7.9%

19.6 2,775K

1,116K 83.4% 7.3%

Medium 1,102K 73.9% 8.1% 1,116K 77.7% 4.3%

Hard 1,325K 91.5% 20.7% 1,116K 93.2% 24.8%

Easy

3 15.6 1,514K

1,170K 80.5% 7.3%

18.9 2,972K

1,079K 83.8% 6.5%

Medium 1,213K 75.9% 6.3% 1,079K 76.6% 5.1%

Hard 1,420K 93.1% 21.1% 1,079K 94.8% 21.7%

Easy

4 16.4 1,739K

1,238K 82.3% 8.4%

19.2 3,282K

1,098K 84.2% 9.2%

Medium 1,296K 75.4% 6.9% 1,098K 81.0% 4.2%

Hard 1,534K 92.6% 23.3% 1,098K 94.2% 24.4%

Easy

5 17.0 1,992K

1,274K 82.2% 7.8%

20.0 3,638K

1,140K 84.0% 8.6%

Medium 1,369K 77.4% 6.9% 1,140K 77.6% 4.7%

Hard 1,618K 92.8% 23.5% 1,140K 93.8% 22.8%

Easy

7 17.7 2,544K

1,366K 79.8% 9.0%

19.9 4,168K

1,134K 85.6% 8.6%

Medium 1,436K 74.4% 6.7% 1,134K 80.8% 5.6%

Hard 1,636K 93.0% 21.8% 1,134K 94.6% 23.3%

Easy

14 18.7 4,451K

1,383K 80.8% 10.1%

19.3 6,004K

1,102K 85.4% 6.1%

Medium 1,538K 77.2% 7.4% 1,102K 78.9% 4.9%

Hard 1,763K 94.3% 23.0% 1,102K 92.8% 21.9%

Note. The table summarizes the data-generating process and results for 1,000 independent Monte Carlo
studies. Efficient Allocation columns correspond to the results from our efficient traffic-allocation rule, and
Benchmark columns correspond to the benchmark where the company allocated the post-treatment traffic
arbitrarily at the 2:1:1:1 ratio. Wait Days columns report the post-treatment duration until the experiments
are stopped by meeting max-minimax-regret criteria of 0.00549. Base N and Treat N columns report the
sample sizes including the pretreatment duration, where K is a shorthand for 1,000. % Correct columns
report the percentages of the correct decisions out of 1,000 trials.

26



also much more accurate, especially when the magnitudes of the per-unit effect sizes are small. Fi-
nally, the efficient traffic-allocation algorithm reduces the wasted time and data remarkably without
impairing the accuracy of the decisions.

We close with a caveat. Just as the Neyman-Pearson hypothesis-testing scheme may not be
optimal in many contexts, we do not want to claim our minimax-regret decision framework can be
or should be used universally without explicitly setting up a decision-maker’s objective function and
solving for the optimal solution. As such, an interesting direction for future research would consist of
developing the optimal decision criteria where the decision environment being considered is different
from the A/B test setup that we considered in this paper.
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Appendix

A Continuity of the Maximum-Regret Functions and the Optimal
Threshold T ∗ in σ

Tetenov (2012)’s Lemma 1 shows R̄Type I (T ;σ) and R̄Type II (T ;σ) are continuous in T , respec-
tively. Below, we show R̄Type I (T ;σ), R̄Type II (T ;σ), and T ∗ are continuous in σ, respectively. The
continuity results established by the following Lemma 1 are used in various places throughout the
paper.

Lemma 1. Let σ > 0.
(i) R̄Type I (T ;σ) = σR̄Type I

(
T
σ ; 1
)

and R̄Type II (T ;σ) = σR̄Type II
(
T
σ ; 1
)
.

(ii) V (σ;K1) = σV (1;K1).
(iii) Suppose T ∗

σ=1 solves the equation (2.6) when σ = 1. Then, for any σ > 0, T ∗ = σT ∗
σ=1.

Proof. Let h = θ
σ . Equation (2.4) in Section 2.1 can be equivalently formulated as

R̄Type I (T ;σ) = σmax
h≤0

{
−hΦ

(
h− T

σ

)}
R̄Type II (T ;σ) = σmax

h>0

{
hΦ

(
T

σ
− h

)}
.

From the above, for any T ∈ R, we have

R̄Type I (T ;σ) = σR̄Type I

(
T

σ
; 1

)
(A.1)

R̄Type II (T ;σ) = σR̄Type II

(
T

σ
; 1

)
, (A.2)

which shows (i).
Now, suppose the following holds for a general T ∗:

V (σ;K1) ≡ K1 · R̄Type I (T
∗;σ) = R̄Type II (T

∗;σ) .

Then, by (A.1)-(A.2), we have

V (σ;K1) = σK1 · R̄Type I

(
T ∗

σ
; 1

)
= σR̄Type II

(
T ∗

σ
; 1

)
(A.3)

≡ σV (1;K1) , (A.4)

which shows (ii). For (iii), because T ∗

σ should be the optimal threshold when σ = 1, that is,
T ∗

σ = T ∗
σ=1, we get the desired conclusion that T ∗ = σT ∗

σ=1.
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B Argument to Exploit Asymptotic Normality of θ̂ and Plug-In of
the Variance Estimator

In the usual Neyman-Pearson asymptotic hypothesis-testing framework, an asymptotically Gaussian
test statistic θ̂n with

√
n
(
θ̂n − θ

)
→d N

(
0, s2

)
is compared with the N

(
0, s

2

n

)
’s quantile when the

sample size n is “large enough.” Put differently, when the sample size is “large enough,” the approxi-
mate distribution N

(
0, s

2

n

)
is taken as if it were exact. Furthermore, when σ2 = s2

n is unknown and
needs to be estimated, “plugging in” its consistent estimator σ̂2 yields a consistent quantile (see, e.g.,
Chapter 13 of Lehmann and Romano, 2022). In this section, we provide the necessary consistency
results for the regret and maximum-regret functions. We introduce the subscript n in the remainder
of the section to emphasize that the estimators depend on the sample size n. We establish the point-
wise convergence in probability of R̄Type II (T ; σ̂n) to R̄Type II (T ;σ) when σ̂n →p σ, in the following.
Assume

√
n
(
θ̂n − θ

)
→d N

(
0, s2

)
and σ2 = s2

n . Further, let sn be a consistent estimator for s2 and
define σ̂n = sn√

n
. For pointwise convergence in the probability of R̄Type II (T ; σ̂n) to R̄Type II (T ;σ),

it suffices to show that for any sequence σ̂n → σ, R̄Type II (T ; σ̂n) → R̄Type II (T ;σ).

First, we have
√
n(θ̂n−θ)/σ

sn/σ
→d N (0, 1) because sn/σ →p 1 and the Slutsky’s theorem. That is,

∀T ∈ R, we have

Pr
(
θ̂n ≤ T

)
= Pr

(
θ̂n − θ ≤ T − θ

)
= Pr

(
θ̂n − θ

σ̂n
≤ T − θ

σ̂n

)

= Pr

(
√
n

(
θ̂n − θ

sn

)
≤ T − θ

sn/
√
n

)

→ Pr

(
θ̂n − θ

σ
≤ T − θ

σ

)

= Φ

(
T − θ

σ

)
.

Then, by the Continuous Mapping Theorem, it follows that ∀θ > 0 and ∀T ∈ R,

RType II (T ; θ, σ̂n) = θPr
(
θ̂n ≤ T

) ∣∣
σ̂n

= θPr

(
θ̂n − θ

σ̂n
≤ T − θ

σ̂n

)

converges in probability to

RType II (T ; θ, σ) = θPr
(
θ̂ ≤ T

) ∣∣
σ
= θΦ

(
T − θ

σ

)
pointwise. Now, the remaining task is to show ∀T ∈ R, ∀σ > 0, R̄Type II (T ; σ̂n) = maxθ>0RType II (T ; θ, σ̂n)
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converges in probability to R̄Type II (T ;σ) as σ̂n →p σ. Because Lemma 1 (i) establishes the nec-
essary continuity condition, invoking the Continuous Mapping Theorem again leads to the desired
conclusion. The argument for the maximum Type I regret function is similar.

C Minimizing the Expected Regret Under a Symmetric Prior Around
Zero

We derived the optimal decision criteria and solved the efficient traffic-allocation problem for two-
arm and multi-arm A/B tests. Our approach has been frequentist, in that we did not specify the
shape of the true/prior distribution of θ. Absent the deployment costs, and hence K1 = 1, the
resulting optimal decision cutoff T ∗ is zero. In this section, we investigate whether the same cutoff
can be derived from the perspective of minimizing the expected regret, and what conditions need to
be imposed on the prior distribution over θ.33

Minimizing the expected regrets with respect to an assumed prior distribution G (θ) can be
of interest from both Bayesian and frequentist perspectives. From the Bayesian perspective with
subjective interpretation of the prior, G (θ) may reflect the possibly biased subjective belief of the
analyst. From the frequentist perspective, G (θ) represents an unknown, true distribution of the
treatment effect. Such a frequentist interpretation is suitable in a circumstance where, for example,
an analyst runs many different A/B tests concurrently without having prior knowledge about the
effects of the new policies. Indeed, in our focal mobile game company studied in Section 4, many
different experiments are live concurrently at any given time (hundreds of experiments in a year),
across game features, banner advertisements, promotions, and so on.

In this section, we show that if the analyst’s prior is symmetric around zero, the decision threshold
T ∗ = 0 minimizes the expected regret as well. It implies T ∗ = 0 minimizes the expected net
opportunity cost of making a decision, and thereby maximizes the expected revenue. Furthermore,
we show the conventional hypothesis-testing threshold of 1.645 or 2.326 (95% and 99% Standard
Gaussian quantile) can be justified in the revenue-maximizing perspective only if the analyst has a
biased prior toward very negative expected gains from experiments.

The argument is as follows. Throughout this subsection, we assume the prior distribution G (·)
has a density g (·). As before, we take σ as given, for which a consistent estimate σ̂ will be “plugged
in.” Recall the definition of the regret function given by (2.3) in section 2.1:

R (T ; θ, σ) = 1 (θ ≤ 0)RType I (T ; θ, σ) + 1 (θ > 0)RType II (T ; θ, σ) .

33We only focus on K1 = 1 in this subsection because varying K1 and location-shifting the prior distribution lead
to the same effect of shifting the optimal threshold T ∗.
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The objective function would be∫
R (T ; θ, σ) g (θ) dθ

=

∫ 0

−∞
RType I (T ; θ, σ) g (θ) dθ +

∫ ∞

0
RType II (T ; θ, σ) g (θ) dθ. (C.1)

(C.1) is the expected regret, and the expected-regret-minimization problem is as follows:

min
T

{∫ 0

−∞
RType I (T ; θ, σ) g (θ) dθ +

∫ ∞

0
RType II (T ; θ, σ) g (θ) dθ

}
=min

T

{∫ 0

−∞
−θΦ

(
θ − T

σ

)
g (θ) dθ +

∫ ∞

0
θΦ

(
T − θ

σ

)
g (θ) dθ

}
. (C.2)

Under regularity conditions for differentiating under the integral sign,34 we take the first-order and
second-order condition for minimization below in Lemma 2.

Lemma 2. Assume the regularity conditions for differentiating under integral sign holds. The first-
order condition of the problem (C.2) reduces to∫ ∞

−∞
θϕ

(
θ − T ∗

σ

)
g (θ) dθ = 0. (C.3)

Furthermore, if T ∗ ∈ R solves (C.3),

∂

∂T

[∫ ∞

−∞
θϕ

(
θ − T

σ

)
g (θ) dθ

] ∣∣∣∣
T=T ∗

> 0; (C.4)

that is, the second-order condition for minimization is also satisfied at T ∗.

Then, the following Lemma 3 establishes the conditions for the symmetry of the object ϕ
(
θ−T
σ

)
g (θ)

in (C.3).

Lemma 3. A probability density function g (θ) is symmetric around T ∈ R if and only if h (θ) :=
ϕ
(
θ−T
σ

)
g (θ) is a symmetric density function around T .

It follows that if the analyst has no prior information about θ so g (θ) can be modeled as being
symmetric around zero, the optimal cutoff T ∗ must be zero, which is in line with the optimal
cutoff derived from the minimax-regret decision problem in section 2.1. The following Proposition
1 provides a formal statement.

Proposition 1. Consider the expected-regret-minimization problem (C.2). If g (θ) is a symmetric
density function around zero, T ∗ = 0 is the unique solution for the problem (C.2)

34See, for example, section A.5 of Durrett (2019).
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We work out a result for a Gaussian prior below. Interestingly, we find the conventional
hypothesis-testing threshold implies a very negative prior.

Corollary 1. (Gaussian Prior) Let g (θ) be a Gaussian density with mean µ0 and variance σ20.
Then, it can be shown that

∫ ∞

−∞
θϕ

(
θ − T

σ

)
g (θ) dθ =

exp

(
− (T−µ0)

2

2(σ2+σ2
0)

)(
µ0σ

2 + σ20T
)

√
2π
√

1
σ2 + 1

σ2
0
σ0
(
σ2 + σ20

) .

It follows that the first-order condition (C.3) is satisfied when µ0σ
2 + σ20T = 0, or T = −σ2µ2

0

σ2
0

; that

is, the unique decision threshold that minimizes the expected regret is T ∗ = −σ2µ2
0

σ2
0

.
Notice, to rationalize T ∗ = 1.645 or 2.326, which correspond to α =0.05 or 0.01 in one-sided

z-tests, the studentized prior mean µ0

σ0
has to be negative and large enough.

D Details on the Efficient Traffic-Allocation Problem

D.1 Examples of the Variance Estimators That Have the Form in Assumption
3

In this subsection, we provide several examples of the effect-size estimators under the unconfound-
edness assumption and with known propensity scores that have the asymptotic variance of the
form (3.2). As is common in online A/B test practices, we assume the analyst assigns the sam-
ple to treatments/control without taking the covariates into account. Without losing general-
ity, we denote the control and the treatment groups by subscripts k = 1, 2, respectively. De-
note s2k (x) = V ar (Y |x, Dk = 1) and ŝ2k (x) as a

√
nk-consistent estimator for s2k (x). We denote

n = n1 + n2, p̂k = nk
n with p̂k → pk as n → ∞, where pk is the propensity score of being assigned

to group k.

D.1.1 Asymptotic Variance for an Efficient Semiparametric Estimator

Hahn (1998) shows the efficient variance bound is

Exi

[
s21 (xi)

p1
+
s22 (xi)

p2
+ (θ (xi)− θ)2

]
. (D.1)

Note (θ (xi)− θ)2 = 0 when θ (xi) = θ; that is, the treatment effect does not depend on the
covariates. Then, the following form of the asymptotic variance estimator,

1

n

n∑
i=1

(
ŝ21 (xi)

p1
+
ŝ22 (xi)

p2

)
, (D.2)
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is consistent for (D.1). Therefore, it satisfies Assumption 3 with η2k = s2k. Hahn (1998) provides an
ATE estimator that achieves the lower bound (D.1).

D.1.2 Sampling-Based Frequentist Inference (Linear Regression without Covariates)

Suppose no covariate xi exists. Consider the simple estimator constructed using the analogy principle
(e.g., Abadie and Cattaneo, 2018):

θ̂ =
1

n2

∑
i∈{i:i is treated}

Yi −
1

n1

∑
i∈{i:i is not treated}

Yi.

The estimator θ̂ coincides numerically with the OLS coefficient on the indicator variable di =

1 (i is treated); that is,
yi = β0 + θdi + ϵi.

Assuming the within-group homogeneity but possible across-group heteroskedasticity, the heteroskedasticity-
robust variance estimator for θ̂ is

nV ar
(
θ̂
)
=

n∑
i=1

(
ŝ21
p̂1

+
ŝ22
p̂2

)
→p

s21
p1

+
s22
p2
.

Therefore, it satisfies Assumption 3 with η2k = s2k. A consistent estimator for s2k = V ar (Y |Dk = 1)

can be obtained from the sample analogue; that is,

ŝ2k =
1

nk

∑
i∈{i:i in group k}

(yi − ȳk)
2 ,

where ȳk is yi’s sample mean within group k ∈ {1, 2}.

D.1.3 Linear Regression with Covariates

We impose an additional assumption that the treatment effect is constant over xi so that the linear
regression estimators identify the corresponding average treatment effect. The xi may include but is
not limited to group and time fixed effects, and di = 1 only when the observation is actually treated.
Now consider the linear regression model

yi = x′
iβ + θdi + ϵi.

It can be shown that the asymptotic variance does not depend on the annihilator matrix Mx =

I −X (X′X)−1X′ as long as the rank of X does not grow with n (see Online Appendix E for the
proof) and has the form

nV ar
(
θ̂
)
→p

s21
p1

+
s22
p2
. (D.3)
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Note (D.3) satisfies Assumption 3 with η2k = s2k. A consistent estimator for s2k = V ar (yi|Dk = 1)

can be obtained from the regression residuals:

ŝ2k =
1

nk

∑
i∈{i:i in group k}

û2i =
1

nk

∑
i∈{i:i in group k}

(
yi − x′

iβ̂ − θ̂di

)2
.

D.1.4 Regression-Adjustment Estimators

Wooldridge (2010, pp. 917-918) works out the variance formula for the regression-adjustment esti-
mators. Specifically, consider the following data-generating process:

Y1,i = m1 (xi,β1) + ϵ1,i

Y2,i = m2 (xi,β2) + ϵ2,i,

with known functional forms of mk (xi,βk)s. Note the simplest form is mk (xi,βj) = x′
iβk. The

average treatment effect is estimated by first estimating (β1,β2) at
(√
n1,

√
n2
)

rates, respectively,
and then, plugging in

(
β̂1, β̂2

)
:

1

n

n∑
i=1

{
Ŷ2,i

(
β̂2

)
− Ŷ1,i

(
β̂1

)}
.

The corresponding asymptotic variance estimator is given by[
1

n

n∑
i=1

∇β1m1

(
xi, β̂1

)]′
ÂV ar

(
β̂1

)[ 1
n

n∑
i=1

∇β1m1

(
xi, β̂1

)]

+

[
1

n

n∑
i=1

∇β2m2

(
xi, β̂2

)]′
ÂV ar

(
β̂2

)[ 1
n

n∑
i=1

∇β2m2

(
xi, β̂2

)]
.

Under the usual regularity conditions, 1
n

∑n
i=1∇βk

mk

(
xi, β̂k

)
→p Exi

[
∇βk

mk

(
xi, β̂k

)]
. Invoking

the continuous mapping theorem, the relative convergence rate of the two terms boils down to the
respective convergence rates of ÂV ar

(
β̂1

)
and ÂV ar

(
β̂2

)
, which are Op

(
1
n1

)
and Op

(
1
n2

)
. Define

η2k as the corresponding probability limit as follows:

nk

[
1

n

n∑
i=1

∇βk
mk

(
xi, β̂k

)]′
ÂV ar

(
β̂k

)[ 1
n

n∑
i=1

∇βk
mk

(
xi, β̂k

)]
→p η

2
k

as nk → ∞ with nk/n→ pk ∈ (0, 1). Then, the regression-adjustment estimator satisfies Assumption
3.
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D.2 Simplification of the Efficient Traffic Allocation Problem to (3.3)

We begin by characterizing the optimal traffic-allocation probabilities for treatment arms except for
the control arm, that is, for j = 2, 3, ..., J .

Lemma 4. For each of the treatment arms except for the status quo policy, the optimal traffic-
allocation probability for the treatment arms are proportional to η2j , that is, p∗j ∝ η2j for j > 1.

Proof. Recall we have V (σj,1;K1) = σj,1V (1;K1) from Lemma 1 in Appendix A. Note, for the
optimal solution,

σj,1V (1;K1) = σk,1V (1;K1)

must hold because the minimax problem (3.2) achieves the optimal solution when all the arguments
are the same. Invoking (3.1) for j ̸= k > 1 and equating, we get

η21
n0 + n∗1

+
η2j
n∗j

=
η21

n0 + n∗1
+
η2k
n∗k

for the optimal post-treatment sample size
{
n∗j

}J

j=2
. Reducing the above and combining with

(n− n0) p
∗
j = n∗j , the conclusion follows.

Derivation of (3.3) Denote p0 = n0
n−n0

. Invoking Lemma 4 as the constraints with nk =

(n− n0) pk, the original problem (3.2) can be equivalently formulated as follows:

min
(p1,pj)

{
η21

p0 + p1
+
η2j
pj

}
(D.4)

s.t.
J∑

j=1

pj = 1 (D.5)

η2j
pj

=
η2k
pk

for j ̸= 1, k ̸= 1. (D.6)

Take any 2 ≤ j ≤ J . Using the equivalent relation (D.6), define ν =
pj
η2j

for all j > 1. The
minimization problem can then be reformulated as follows:

min
p1∈[0,1]

{
η21

p0 + p1
+

1

ν

}
. (D.7)

Invoking (D.5), we have

ν

J∑
j=2

η2j = 1− p1.
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Rearranging and substituting back into (D.7) gives

min
p1∈[0,1]

{
η21

p0 + p1
+

∑J
k=2 η

2
k

1− p1

}
. (D.8)

Using νη2j = p∗j for all j > 1 with 1− p1 =
∑J

k=2 pk = ν
∑J

k=2 η
2
k, the relation

p∗j = (1− p∗1)
η2j∑J
k=2 η

2
k

∀j > 1

follows at the optimum, as desired.

D.3 Illustration of the Solution When η21 = ... = η2J

We illustrate the solution when η21 = ... = η2J . Solving the problem (D.8) gives

p∗1 =


(
√
J−1−1)−p0((J−1)−

√
J−1)

J−2 if J ≥ 3

1−p0
2 if J = 2

p∗j =
1

J − 1
(1− p∗1) . (D.9)

If p∗1 < 0, implying the problem does not have an interior solution because p0 is not sufficiently
small, set p∗1 = 0 and p∗j = 1

J−1 . Note p0 ≡ n0
n−n0

declines to zero as n increases, and the optimal
traffic-allocation problem (D.8) will have an interior solution with a large-enough sample.
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Appendix for Online Publication

E The Proofs Omitted in Appendices C and D.1.3

E.1 Proofs Omitted in Appendix C

E.1.1 Proof of Lemma 2

Proof. Using Φ (x) = 1− Φ (−x), the problem (C.2) can be rewritten as

min
T

{∫ 0

−∞
−θΦ

(
θ − T

σ

)
dG (θ) +

∫ ∞

0
θ

{
1− Φ

(
θ − T

σ

)}
dG (θ)

}
.

Differentiating w.r.t. T , scaling with σ, and invoking the first-order condition at the optimum T ∗

yields ∫ ∞

−∞
θϕ

(
θ − T ∗

σ

)
dG (θ) = 0

⇒
∫ ∞

−∞
θϕ

(
θ − T ∗

σ

)
g (θ) dθ = 0, (E.1)

where the second line follows because we assumed G (θ) has a density with respect to the Lebesgue
measure. Expression (E.1) can be rewritten as Eh [θ] |T=T ∗ = 0, where Eh [·] denotes the expectation
of a random variable against the measure

h (x) dx = ϕ

(
x− T

σ

)
g (x) dx. (E.2)

Note, h (·) is a mixture of Gaussian density with the mixing weight g (·).
For the second-order condition, we have

∂

∂T

[∫ ∞

−∞
θϕ

(
θ − T

σ

)
g (θ) dθ

]
=

∫ ∞

−∞
θϕ

(
θ − T

σ

)
g (θ) dθ

=
1

σ2

∫ ∞

−∞
θ (θ − T )ϕ

(
θ − T

σ

)
g (θ) dθ. (E.3)

We claim the right-hand side of (E.3) is strictly positive when evaluated at T = T ∗. To show this,
first denote

Eh [θ (θ − T )] =

∫ ∞

−∞
θ (θ − T )h (θ) dθ,

where h (·) is given by (E.2). Then, consider the transformation φ (θ) = θ (θ − T ). Applying the
Jensen’s inequality gives

φ (Eh [θ]) = Eh [θ] (Eh [θ]− T ) < Eh [θ (θ − T )] = Eh [φ (θ)] ,
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where the inequality is strict because φ (θ) is a strictly convex function in θ and h (·) is a nondegen-
erate density. When T satisfies the first-order condition, that is, when T = T ∗, Eh [θ] = 0 by the
first-order condition (E.1). Therefore,

Eh [θ (θ − T )]
∣∣
T=T ∗ > Eh [θ] (Eh [θ]− T )

∣∣
T=T ∗ = 0 · (−T ∗) = 0,

as desired.

E.1.2 Proof of Lemma 3

Proof. Recall the standard Gaussian density ϕ
(
θ−T
σ

)
is symmetric around T and its support is the

entire real line, so we denote ϕ
(
θ−T
σ

)
= q (θ), where q (T + δ) = q (T − δ) holds for any δ ∈ R.

(⇒) Assume g (·) is symmetric around T . We only need to show the h (θ) = q (θ) g (θ) is a
symmetric density around T . Let θ = T − δ. We have

h (T − δ) = q (T − δ) g (T − δ)

= q (T + δ) g (T + δ)

= h (T + δ) .

(⇐) Assume h (·) is symmetric around T . For the sake of contradiction, suppose a g (·) and a δ
exist such that g (T + δ) ̸= g (T − δ) with g (T + δ) > 0 and g (T − δ) > 0. Take such a {g (·) , T, δ}.
Then,

h (T − δ) = q (T − δ) g (T − δ)

= q (T + δ) g (T − δ)

̸= q (T + δ) g (T + δ)

= h (T + δ) ,

which is a contradiction to the assumption that h (·) is symmetric around T .

E.1.3 Proof of Proposition 1

Proof. T ∗ = 0 being a solution for the problem (C.2) follows from Lemma 2 that h (θ) = ϕ
(
θ−T
σ

)
g (θ)

is a symmetric density around 0 if and only if T = 0, and therefore, T = 0 satisfies the first-order
necessary condition (C.3) and the second-order sufficient condition (C.4).

The proof for uniqueness of T ∗ is as follows. If g (θ) is a symmetric density around zero, h (θ) :=
ϕ
(
θ−T
σ

)
g (θ) is a symmetric density around zero by Lemma 3, and therefore,

∫∞
−∞ θϕ

(
θ−T ∗

σ

)
g (θ) dθ =

0, where T ∗ = 0 is a solution. Suppose, for the sake of contradiction, that another solution T1 ̸= 0
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exists such that ∫ ∞

−∞
θϕ

(
θ − T1
σ

)
g (θ) dθ = 0. (E.4)

Without loss of generality, let T1 > 0.
Let us first break down (E.4) as∫ ∞

−∞
θϕ

(
θ − T1
σ

)
g (θ) dθ =

∫ 0

−∞
θϕ

(
θ − T1
σ

)
g (θ) dθ +

∫ ∞

0
θϕ

(
θ − T1
σ

)
g (θ) dθ. (E.5)

Invoking the symmetry of ϕ
(
θ−T1
σ

)
g (θ) around zero, the absolute value of each term in the right-

hand side of (E.5) must be the same; that is,∣∣∣∣∫ 0

−∞
θϕ

(
θ − T1
σ

)
g (θ) dθ

∣∣∣∣ = ∫ ∞

0
θϕ

(
θ − T1
σ

)
g (θ) dθ. (E.6)

Now observe the left-hand side of (E.6) becomes∣∣∣∣∫ 0

−∞
θϕ

(
θ − T1
σ

)
g (θ) dθ

∣∣∣∣ = ∫ 0

−∞
−θϕ

(
θ − T1
σ

)
g (θ) dθ

=

∫ ∞

0
uϕ

(
u+ T1
σ

)
g (u) du,

where we substituted u = −θ. Then, the equality (E.6) can be rewritten as∫ ∞

0
θϕ

(
θ + T1
σ

)
g (θ) dθ =

∫ ∞

0
θϕ

(
θ − T1
σ

)
g (θ) dθ. (E.7)

We claim the equality (E.7) cannot be true, and in fact, the following strict inequality holds:∫ ∞

0
θϕ

(
θ + T1
σ

)
g (θ) dθ <

∫ ∞

0
θϕ

(
θ − T1
σ

)
g (θ) dθ. (E.8)

The reason is that ϕ
(
θ+T1
σ

)
< ϕ

(
θ−T1
σ

)
for any θ > 0. To see why, let T1 > 0. For any δ ∈ (0, T1⌉,

we have
ϕ

(
δ + T1
σ

)
< ϕ

(
T1
σ

)
< ϕ

(
δ − T1
σ

)
= ϕ

(
T1 − δ

σ

)
because the function ϕ (x) is decreasing for x > 0. For any δ > T1,

ϕ

(
δ + T1
σ

)
< ϕ

(
δ − T1
σ

)
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because δ + T1 > δ − T1 > 0. It follows from (E.8) that∣∣∣∣∫ 0

−∞
θϕ

(
θ − T1
σ

)
g (θ) dθ

∣∣∣∣ < ∫ ∞

0
θϕ

(
θ − T1
σ

)
g (θ) dθ,

and therefore, ∫ ∞

−∞
θϕ

(
θ − T1
σ

)
g (θ) dθ > 0. (E.9)

(E.9) is a contradiction to (E.4).

E.2 The Proof Omitted in Appendix D.1.3

Consider the linear regression model

yi = x′
iβ + θdi + ϵi.

We assume all the conditions for θ to identify the ATE are satisfied. We further assume xi includes
the column of 1’s, E [|xi|] is bounded, and di ∈ {0, 1}. Let p = Pr (di = 1). As usual, we assume
s2i = O (1) and is bounded away from zero, that is, ∃B, B̄ > 0 such that max1≤i≤n

(
s2i
)
≤ B̄ and

min1≤i≤n

(
s2i
)
≥ B, where B and B̄ do not depend on n. Finally, we also assume (xi, di) is i.i.d.

across i. Note we allow the conditional heteroskedasticity so that V ar (ϵi|xi, di) = s2i .
Denote X̃ and d̃ as the demeaned variables of X and d, respectively. We know the demeaned

version gives the identical variance when the error term is homoskedastic (up to degree-of-freedom

adjustments), and hence, σ2 (Ed [d
′Mxd|X])−1 = σ2

(
Ed̃

[
d̃′Mx̃d̃|X̃

])−1
, which, in turn, estab-

lishes d′Mxd = d̃′Mx̃d̃. Note X̃ does not include the column of 1’s.
Our main object of interest, the heteroskedasticity-robust variance estimator, is

V ar
(
θ̂|X,d

)
=
(
d′Mxd

)−1
d′MxVMxd

(
d′Mxd

)−1

=
(
d̃′Mx̃d̃

)−1
d̃′Mx̃VMx̃d̃

(
d̃′Mx̃d̃

)−1
, (E.10)

where

Vij =

s2i diagonal entries

0 otherwise.

Preliminary Results We first establish two preliminary results. First is the characterization of
d̃′d̃. Without losing generality, sort d such that (1, 1, ..., 1, 0, 0, ..., 0), where the first n1 elements
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are 1 and the remaining n− n1 elements are 0. Then, we have

d̃′d̃ =

n1∑
i=1

(
1− n1

n

)2
+

n∑
i=n1+1

(
−n1
n

)2
= n1

(
1− n1

n

)2
+ (n− n1)

(n1
n

)2
= n1 − 2

n21
n

+ n1
n21
n2

+ n
n21
n2

− n1
n21
n2

=
n2n1 − nn21

n2

= n1 −
n21
n
. (E.11)

Second is the characterization of Ed

[
d̃d̃′|X̃

]
. Note

d̃i =

1− p with prob. p

−p with prob. 1− p.

Therefore, the expectation of the diagonal entries are

E
[
d̃id̃i|X̃

]
= (1− p)2 p+ (−p)2 (1− p)

= p (1− p) .

The expectation of the non-diagonal entries are

E
[
d̃id̃j |X̃

]
= ((1− p) p)2 + 2 (1− p) p (−p) (1− p) + ((−p) (1− p))2

= 0.

Using this, we obtain

Ed

[
d̃d̃′|X̃

]
= p (1− p) I. (E.12)

d̃′Mx̃d̃ Part of (E.10) In this part of the proof, we claim

1

n
d̃′Mx̃d̃ →p p (1− p) (E.13)

as n→ ∞. We begin by decomposing
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1

n
d̃′Mx̃d̃ = d̃′ (I−Px̃) d̃

=
1

n
d̃′d̃− 1

n
d̃′Px̃d̃.

First, we have

Ed̃

[
d̃′d̃
]
= np (1− p)2 + n (1− p) p2 = np (1− p)

1

n
d̃′d̃ =

1

n

n∑
i=1

d̃2i →p Ed̃

[
d̃2i

]
=

1

n
Ed̃

[
d̃′d̃
]
= p (1− p) , (E.14)

where we used (E.11) in the second line. Next,

E
[
d̃′Px̃d̃|X̃

]
= E

[
tr
(
d̃′Px̃d̃

)
|X̃
]

= E
[
tr
(
Px̃d̃d̃

′
)
|X̃
]

= tr
(
Px̃Ed

[
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where we used (E.12) in the fourth equality. Because E
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(E.15)
as n→ ∞.
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d̃′Mx̃VMx̃d̃ Part of (E.10) In this part of the proof, we claim
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as n→ ∞.
First, decompose 1

n d̃
′Mx̃VMx̃d̃ as follows:
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n d̃
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′Px̃VPx̃d̃ are all op (1), so the three terms do not
matter asymptotically. To see this, because we assumed s2i is bounded, we have
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as n→ ∞, by recognizing all the entries of BI−V are nonnegative, and hence, BI−V is positive
semidefinite.

The last term is 1
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′Vd̃, which turns out to be the only term that matters asymptotically:
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The Expression of the Asymptotic Variance Applying the results (E.13) and (E.16), we have
the following:
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where we invoked (E.11) in (E.17). When n is large, op (1) terms become negligible, n1
n ≈ p, and

thus, (E.17) becomes (
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Note the denominators are well defined with a large n and n1 because s2i s are bounded below and
above.

Now assume the grouped heteroskedasticity so that 1
n1

∑n1
i=1 s

2
i = s21 and 1

n−n1

∑n
i=n1+1 s

2
i = s20.

Then, (E.18) becomes
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as desired. The law of iterated expectation then gives the desired result for nV ar
(
θ̂
)
.
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F Robustness Checks Using Different K1

Table 5 summarizes the multi-arm-experiment decision results for K1 = 3 and K2 = 1. Our results
presented in Section 4 are robust when K1 = 3. In fact, K1 has to be as large as 11 to stick with the
Baseline (Hardest) compared with Medium with the t-value of 0.8715.35 Note, unlike when K1 = 1,
the minimax-regret optimal threshold T ∗ differs across columns because different subsamples are
involved in calculating T ∗.

Table 5: Summary of the Multi-arm Trial Evaluation Results at K1 = 3

Control Baseline (Hardest)

Treatment Easy Medium Hard

θ̂ 0.02849 0.02430 0.04827
σ̂ 0.02627 0.02788 0.03230
θ̂/σ̂ 1.08439 0.87158 1.49417

R̄ (T ∗; σ̂) ≡ V (σ̂; 1) 0.00447 0.00474 0.00549
R̄Type I

(
θ̂; σ̂
)

0.00074 0.00119 0.00038

R̄Type II

(
θ̂; σ̂
)

0.01432 0.01257 0.02432

Minimax Regret T ∗ 0.01081 0.01147 0.01329
α = 0.01 HT Threshold 0.06112 0.06486 0.07515

Minimax Regret Decision Accept New Accept New Accept New
Hypothesis Test Decision Reject New Reject New Reject New

Note. The minimax-regret decision threshold T ∗s are derived using K1 = 3 and K2 = 1. Variance estimators
are clustered at the user level to calculate σ̂.

35See Table 9 of Online Appendix H, where T ∗ = 0.8519 when (K1 = 10, σ̂ = 1) and T ∗ = 0.8861 when
(K1 = 11, σ̂ = 1). Comparing θ̂/σ̂ = 0.87158 with the relation T ∗ = σT ∗

σ=1 given in Lemma 1 in Appendix A
yields the conclusion.
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G Empirical Application on the Mobile Game Company’s Reten-
tion Experiments

We analyze another multi-arm experiment run by our focal company. The analysis presented in this
section highlights that the minimax-regret-based ordering of the new policies can be different from
ordering the policies based on their t-values or p-values.

Another source of the company’s revenue besides users’ Gold Coin purchase is from advertisers for
every ad that has been served (pay per impression). The company was interested in finding whether
frequent exposure to advertisements may affect retention of the customers, and therefore, it ran a
multi-arm experiment across different ad-cooldown durations. The experiment ran from October
2021 to November 2021, and terminated when a sample size of 10 million had been collected. The
treatment status and result for each sample point is recorded at the user-day level. The pre-treatment
sample is 2.8 million, and the post-treatment sample is 7.2 million.

The experiment consists of five treatment groups against one control group. The traffic was
allocated into the six groups with different probabilities. Each group varies in the duration of
advertisement cooldown, as summarized in Table 6. An ad-cooldown duration of c minutes implies
that after the user watches an ad, no ad will be shown for the next c minutes. The format of the ad
is as follows: when a user fails a level, an icon pops up giving users the option to opt in to watching
a short video ad. After the user watches the ad, she will receive a reward that helps her pass the
failed level. These ads are called incentivized ads and are the most common ad format in the mobile
gaming industry. The company’s concern is two-fold: (i) Rewards from watching the ads will make
the game too easy for the users, and therefore, users would churn; (ii) even though users opt in to
watching ads, the presence of an ad option may negatively affect the user’s experience.

The status quo policy, which constitutes our control group, has c =1,800 minutes. The treatment
groups manipulate the intensity of advertising through varying cooldown durations. We note the size
of each experiment group was determined in an ad-hoc manner. The outcome variable of interest is
retention. Retention is defined at the user-day level, where retentionit = 1 if user i logs in to the
game at least once on day t; otherwise, retentionit = 0. Although revenue from advertisements is
important, we do not consider it in this section, because the company’s focus was on user’s retention.
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Table 6: Description of Treatment and Control Groups

Cooldown Traffic
Group Duration Pretreat nj Post-treat nj nj Allocation

Control Baseline 1,800 min 1,911,728 4,915,872 6,827,600 70.25%

Treat

OFF No ads 410,802 1,056,348 1,467,150 12.75%
ON1 Zero cooldown 119,868 308,232 428,100 4.25%
ON2 7.5 min 119,378 306,972 426,350 4.25%
ON3 90 min 118,188 303,912 422,100 4.25%
ON4 1,080 min 120,036 308,664 428,700 4.25%

Note. This table provides the description, size, and randomized traffic-allocation probabilities of the control
and treatment groups, respectively.

We compare the difference-in-differences estimator θ̂s for the following specification across dif-
ferent treatment groups denoted by j:

retentionit = αj,Baseline ·1 (treati)+γj,Baseline ·1 (post_expt)+θj,Baseline ·1 (treati)·1 (post_expt)+ϵit.

(G.1)
We run five separate difference-in-differences regressions for each of the treatment groups, obtain
the respective θ̂j,Baseline, and then apply the decision criteria developed in Sections 2.1-2.3.36 We
use the weighting factor K1 = K2 = 1 for our minimax-regret decision framework.

36Because our goal in this section is to analyze the existing multi-arm experiment data, not the optimal traffic
allocation, we can use the treatment-arm-specific pretreatment data and a difference-in-differences estimator. We also
note αj,Baseline estimates are insignificant and the results are similar when we do not include the treatment-group
fixed effects during estimation.
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Table 7: Summary of the Multi-arm Trial Results at K1 = 1

Control Baseline Baseline Baseline Baseline Baseline

Treatment OFF ON1 ON2 ON3 ON4

θ̂ 0.001958 –0.003378 0.003856 –0.000975 0.001684
σ̂ 0.001330 0.002317 0.002334 0.002367 0.002323

θ̂/σ̂ 1.472259 –1.457737 1.652475 –0.412028 0.725003

R̄ (T ∗; σ̂) 0.000226 0.000394 0.000397 0.000402 0.000395

R̄Type I

(
θ̂; σ̂

)
0.000016 0.001698 0.000019 0.000667 0.000129

R̄Type II

(
θ̂; σ̂

)
0.000985 0.000029 0.001964 0.000222 0.000910

Minimax Regret T ∗ 0 0 0 0 0
α = 0.01 HT Threshold 0.003093 0.005391 0.005429 0.005508 0.005403

Minimax -Regret Decision Accept New Reject New Accept New Reject New Accept New
Hypothesis-Testing Decision Reject New Reject New Reject New Reject New Reject New

Note. The minimax-regret decision threshold T ∗s are derived using K1 = K2 = 1. Variance estimators are
clustered at the user level to calculate σ̂.

Table 7 summarizes the results. Note three of the new policies {OFF, ON2, ON4} exceed the
minimax-regret optimal threshold, thereby implying either OFF, ON2, or ON4 could be accepted if
compared pairwise with the Baseline. By contrast, none of the new policies’ θ̂ exceed the hypothesis-
testing thresholds at the 1% significance level. Among the three policies, OFF and ON2 achieve
similar maximum Type I regret at the current

(
θ̂, σ̂
)

estimates, with OFF being slightly preferred
to ON2. Therefore, taking the sample as given fixed, the company should just turn off the adver-
tisements to minimize the maximum possible loss of retention. Note the t-value (θ̂/σ̂ = 1.47226) of
OFF is slightly smaller than that of ON2 (1.652475). Hence, our maximum-regret-based criteria
give different preference orderings of the new policies than comparing the t-values or the associated
p-values pairwise.
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H Tables for Max-Minimax-Regret Level and Minimax-Regret De-
cision Threshold

Table 8: Max-Minimax Regret Level V (σ;K1) Table with σ = 1

K1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.1700 0.1782 0.1860 0.1933 0.2003 0.2069 0.2132 0.2193 0.2251 0.2307
2 0.2361 0.2412 0.2463 0.2511 0.2558 0.2604 0.2648 0.2691 0.2733 0.2774
3 0.2813 0.2852 0.2890 0.2927 0.2963 0.2998 0.3033 0.3066 0.3099 0.3132
4 0.3164 0.3195 0.3225 0.3255 0.3285 0.3314 0.3342 0.3370 0.3398 0.3425
5 0.3451 0.3477 0.3503 0.3528 0.3553 0.3578 0.3602 0.3626 0.3650 0.3673
6 0.3696 0.3719 0.3741 0.3763 0.3785 0.3806 0.3827 0.3848 0.3869 0.3889
7 0.3910 0.3930 0.3949 0.3969 0.3988 0.4007 0.4026 0.4045 0.4063 0.4082
8 0.4100 0.4118 0.4135 0.4153 0.4170 0.4187 0.4204 0.4221 0.4238 0.4254
9 0.4271 0.4287 0.4303 0.4319 0.4335 0.4350 0.4366 0.4381 0.4396 0.4412

K1 0 1 2 3 4 5 6 7 8 9

10 0.4427 0.4570 0.4702 0.4825 0.4941 0.5049 0.5151 0.5248 0.5340 0.5427
20 0.5511 0.5591 0.5667 0.5741 0.5811 0.5880 0.5945 0.6009 0.6070 0.6129
30 0.6187 0.6243 0.6297 0.6350 0.6401 0.6451 0.6500 0.6547 0.6593 0.6638
40 0.6682 0.6725 0.6767 0.6809 0.6849 0.6888 0.6927 0.6965 0.7002 0.7039
50 0.7074 0.7109 0.7144 0.7178 0.7211 0.7244 0.7276 0.7307 0.7338 0.7369
60 0.7399 0.7429 0.7458 0.7487 0.7515 0.7543 0.7570 0.7598 0.7624 0.7651
70 0.7677 0.7702 0.7728 0.7753 0.7777 0.7802 0.7826 0.7849 0.7873 0.7896
80 0.7919 0.7942 0.7964 0.7986 0.8008 0.8030 0.8051 0.8072 0.8093 0.8114
90 0.8134 0.8154 0.8175 0.8194 0.8214 0.8233 0.8253 0.8272 0.8291 0.8309

1/K1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.1700 0.1620 0.1550 0.1487 0.1430 0.1379 0.1333 0.1290 0.1250 0.1214
2 0.1180 0.1149 0.1119 0.1092 0.1066 0.1042 0.1018 0.0997 0.0976 0.0956
3 0.0938 0.0920 0.0903 0.0887 0.0871 0.0857 0.0842 0.0829 0.0816 0.0803
4 0.0791 0.0779 0.0768 0.0757 0.0747 0.0736 0.0727 0.0717 0.0708 0.0699
5 0.0690 0.0682 0.0674 0.0666 0.0658 0.0651 0.0643 0.0636 0.0629 0.0623
6 0.0616 0.0610 0.0603 0.0597 0.0591 0.0586 0.0580 0.0574 0.0569 0.0564
7 0.0559 0.0553 0.0549 0.0544 0.0539 0.0534 0.0530 0.0525 0.0521 0.0517
8 0.0512 0.0508 0.0504 0.0500 0.0496 0.0493 0.0489 0.0485 0.0482 0.0478
9 0.0475 0.0471 0.0468 0.0464 0.0461 0.0458 0.0455 0.0452 0.0449 0.0446

1/K1 0 1 2 3 4 5 6 7 8 9

10 0.0443 0.0415 0.0392 0.0371 0.0353 0.0337 0.0322 0.0309 0.0297 0.0286
20 0.0276 0.0266 0.0258 0.0250 0.0242 0.0235 0.0229 0.0223 0.0217 0.0211
30 0.0206 0.0201 0.0197 0.0192 0.0188 0.0184 0.0181 0.0177 0.0174 0.0170
40 0.0167 0.0164 0.0161 0.0158 0.0156 0.0153 0.0151 0.0148 0.0146 0.0144
50 0.0141 0.0139 0.0137 0.0135 0.0134 0.0132 0.0130 0.0128 0.0127 0.0125
60 0.0123 0.0122 0.0120 0.0119 0.0117 0.0116 0.0115 0.0113 0.0112 0.0111
70 0.0110 0.0108 0.0107 0.0106 0.0105 0.0104 0.0103 0.0102 0.0101 0.0100
80 0.0099 0.0098 0.0097 0.0096 0.0095 0.0094 0.0094 0.0093 0.0092 0.0091
90 0.0090 0.0090 0.0089 0.0088 0.0087 0.0087 0.0086 0.0085 0.0085 0.0084

Note. This table presents the max-minimax-regret values when σ = 1. For instance, V (1;K1) = 0.6297 when
K1 = 32 and V (σ;K1) = 0.0544 when K1 = 1/7.3. For σ ̸= 1, the relation V (σ;K1) = σV (1;K1) shown
in Lemma 1 in Appendix A can be used. The first two blocks are V (1;K1)s when K1 ≥ 1; the last two
blocks are V (1;K1)s when 0 < K1 ≤ 1. For the last two blocks, the max-minimax-regret values for 1/K1

are calculated.
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Table 9: Minimax-Regret Decision Threshold T ∗ Table with σ = 1

K1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.0000 0.0358 0.0685 0.0986 0.1264 0.1523 0.1765 0.1993 0.2207 0.2410
2 0.2602 0.2784 0.2958 0.3124 0.3283 0.3435 0.3582 0.3722 0.3858 0.3988
3 0.4114 0.4236 0.4354 0.4468 0.4579 0.4686 0.4791 0.4892 0.4991 0.5087
4 0.5180 0.5271 0.5360 0.5447 0.5532 0.5615 0.5695 0.5775 0.5852 0.5928
5 0.6002 0.6075 0.6146 0.6216 0.6284 0.6351 0.6417 0.6482 0.6546 0.6608
6 0.6670 0.6730 0.6789 0.6848 0.6905 0.6961 0.7017 0.7072 0.7126 0.7179
7 0.7231 0.7283 0.7333 0.7384 0.7433 0.7482 0.7530 0.7577 0.7624 0.7670
8 0.7715 0.7760 0.7805 0.7848 0.7892 0.7934 0.7977 0.8018 0.8059 0.8100
9 0.8140 0.8180 0.8220 0.8259 0.8297 0.8335 0.8373 0.8410 0.8447 0.8483

K1 0 1 2 3 4 5 6 7 8 9

10 0.8519 0.8861 0.9171 0.9456 0.9719 0.9963 1.0190 1.0404 1.0604 1.0793
20 1.0972 1.1142 1.1304 1.1458 1.1606 1.1747 1.1882 1.2012 1.2137 1.2257
30 1.2373 1.2486 1.2594 1.2699 1.2801 1.2899 1.2995 1.3088 1.3178 1.3266
40 1.3351 1.3435 1.3516 1.3595 1.3672 1.3748 1.3822 1.3894 1.3964 1.4033
50 1.4100 1.4167 1.4231 1.4295 1.4357 1.4418 1.4478 1.4536 1.4594 1.4651
60 1.4706 1.4761 1.4815 1.4867 1.4919 1.4971 1.5021 1.5070 1.5119 1.5167
70 1.5214 1.5261 1.5307 1.5352 1.5396 1.5440 1.5483 1.5526 1.5568 1.5610
80 1.5651 1.5691 1.5731 1.5771 1.5810 1.5848 1.5886 1.5924 1.5961 1.5997
90 1.6033 1.6069 1.6105 1.6140 1.6174 1.6208 1.6242 1.6276 1.6309 1.6341

1/K1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.0000 –0.0358 –0.0685 –0.0986 –0.1264 –0.1523 –0.1765 –0.1993 –0.2207 –0.2410
2 –0.2602 –0.2784 –0.2958 –0.3124 –0.3283 –0.3435 –0.3582 –0.3722 –0.3858 –0.3988
3 –0.4114 –0.4236 –0.4354 –0.4468 –0.4579 –0.4686 –0.4791 –0.4892 –0.4991 –0.5087
4 –0.5180 –0.5271 –0.5360 –0.5447 –0.5532 –0.5615 –0.5695 –0.5775 –0.5852 –0.5928
5 –0.6002 –0.6075 –0.6146 –0.6216 –0.6284 –0.6351 –0.6417 –0.6482 –0.6546 –0.6608
6 –0.6670 –0.6730 –0.6789 –0.6848 –0.6905 –0.6961 –0.7017 –0.7072 –0.7126 –0.7179
7 –0.7231 –0.7283 –0.7333 –0.7384 –0.7433 –0.7482 –0.7530 –0.7577 –0.7624 –0.7670
8 –0.7715 –0.7760 –0.7805 –0.7848 –0.7892 –0.7934 –0.7977 –0.8018 –0.8059 –0.8100
9 –0.8140 –0.8180 –0.8220 –0.8259 –0.8297 –0.8335 –0.8373 –0.8410 –0.8447 –0.8483

1/K1 0 1 2 3 4 5 6 7 8 9

10 –0.8519 –0.8861 –0.9171 –0.9456 –0.9719 –0.9963 –1.0190 –1.0404 –1.0604 –1.0793
20 –1.0972 –1.1142 –1.1304 –1.1458 –1.1606 –1.1747 –1.1882 –1.2012 –1.2137 –1.2257
30 –1.2373 –1.2486 –1.2594 –1.2699 –1.2801 –1.2899 –1.2995 –1.3088 –1.3178 –1.3266
40 –1.3351 –1.3435 –1.3516 –1.3595 –1.3672 –1.3748 –1.3822 –1.3894 –1.3964 –1.4033
50 –1.4100 –1.4167 –1.4231 –1.4295 –1.4357 –1.4418 –1.4478 –1.4536 –1.4594 –1.4651
60 –1.4706 –1.4761 –1.4815 –1.4867 –1.4919 –1.4971 –1.5021 –1.5070 –1.5119 –1.5167
70 –1.5214 –1.5261 –1.5307 –1.5352 –1.5396 –1.5440 –1.5483 –1.5526 –1.5568 –1.5610
80 –1.5651 –1.5691 –1.5731 –1.5771 –1.5810 –1.5848 –1.5886 –1.5924 –1.5961 –1.5997
90 –1.6033 –1.6069 –1.6105 –1.6140 –1.6174 –1.6208 –1.6242 –1.6276 –1.6309 –1.6341

Note. This table presents the θ̂ thresholds for the minimax-regret decision rule when σ = 1. This table
can also be understood as the cutoff-threshold values for the studentized estimate θ̂/σ̂ due to the relation
T ∗ = σT ∗

σ=1 shown in Lemma 1 in Appendix A. For instance, T ∗ = 1.2594 when K1 = 32 and T ∗ = −0.7384
when K1 = 1/7.3. The first two blocks are T ∗s when K1 ≥ 1; the last two blocks are T ∗s when 0 < K1 ≤ 1.
For the last two blocks, the threshold values for 1/K1 are calculated. The first two and last two blocks are
symmetric around zero because setting K1 = 1/x while fixing K2 = 1 yields the identical threshold to fixing
K1 = 1 and setting K2 = x.
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