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Abstract

We study the effectiveness of influencer marketing in the video game industry. To this end,

we construct a novel dataset on video game streaming on Twitch.tv, the largest video game

streaming platform in the world, by monitoring live streams every 10 minutes for eight months.

Leveraging these high-frequency data, we isolate plausibly exogenous variation in streamers’

daily schedules and use it to estimate the extent to which live streaming brings additional

players into broadcasted games. We find that organic live streams only marginally increase the

number of concurrent players in these games. We also find that sponsored streams solicited by

game publishers are even less effective than organic streams, implying that sponsored streams

generate, on average, negative return on investment (ROI). This result suggests that influencer

promotions are less effective than previously thought. We then examine heterogeneous returns

to streaming by estimating generalized random forests, and we find that sponsored streaming

can significantly benefit games released by small publishers, inexpensive games, and “niche”

games that strongly appeal to small groups of consumers. Therefore, despite the negative

average ROI, influencer promotions may generate high returns when they promote games by

lesser-known publishers or inform consumers about appealing game attributes.
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ilya.morozov@kellogg.northwestern.edu. We thank seminar and conference participants at University of Delaware,
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1 Introduction

Over the last decade, influencer marketing has grown into a $14 billion industry.1 This rapid
growth is partly driven by the increasing popularity of major video content platforms, such as
Twitch, YouTube, and TikTok, where influencers distribute their content and build their own fan
communities. By 2022, YouTube has become the second most visited website in the world that
attracts 30 million visitors per day, and Twitch has grown into a video game streaming giant that
hosts over 100,000 live channels and attracts over 2.5 million viewers at any point in time.2 These
large audiences create a unique opportunity for companies to promote products and services by
having video influencers showcase them during live streams. In fact, many practitioners believe
that because influencers can better engage with their audiences and appear more trustworthy, in-
fluencer promotions have greater return on investment (ROI) than traditional advertising.3

This general excitement about influencer marketing, as it turns out, has little empirical support.
When explaining why influencer promotions are effective, many practitioners cite anecdotes in
which influencer marketing supposedly generated extraordinarily high ROI.4 Nevertheless, indus-
try observers caution against putting too much weight on these anecdotes, emphasizing that the
industry has yet to devise reliable ways of measuring the effectiveness of influencer promotions.5

Absent experimental variation, measuring the effects of influencer marketing poses a significant
empirical challenge. Influencers can often choose which products to promote and when to pro-
mote them. They may choose to promote high-quality products at a time when product sales are
already trending up, which generates a simultaneity bias familiar from the literature on the effects
of word-of-mouth (Seiler et al., 2018) and advertising (Shapiro et al., 2020). In fact, the prior work
on influencer marketing emphasizes this simultaneity bias as the central empirical challenge (Li
et al., 2021; Yang et al., 2021). Addressing this challenge would help researchers and practitioners
understand whether influencer promotions are indeed a highly effective marketing channel.

We study the effectiveness of influencer marketing in the video game industry, and we collect
unique high-frequency data that enable us to address the main identification challenge. Specifically,
we ask how video game streaming on Twitch affects the popularity of broadcasted games, defined
as the number of their concurrent players. Twitch is the largest video game streaming platform in
the world, hosting over 90% of all streaming content.6 Streamers broadcast their gaming sessions

1Influencer marketing industry has grown to $13.8 billion by 2021 (Influencer Marketing Hub, 2021).
2YouTube statistics come from the official platform’s blog (www.blog.youtube), and Twitch statistics are taken

from a third-party Twitch monitoring website (twitchtracker.com/statistics).
3See the 2019 industry report by MediaKix (Bailis, 2019).
4Nielsen Catalina Solutions conducted a correlational study, concluding that influencer marketing generates 11

times higher ROI than online banner ads.
5See https://influencermarketinghub.com/influencer-marketing-roi/.
6See the Streamlabs and StreamHatchet Quarterly Report for Q3 (2020).
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live while commenting on the game and reacting to viewers’ chat messages. We construct an
original high-frequency dataset on Twitch streaming and video game usage to estimate the causal
effect of streaming. For eight months, from May to December 2021, we continuously monitor the
broadcasting activities of 60,000 pre-selected Twitch streamers and gather information about their
live streams every 10 minutes. In each 10-minute window, we record which streamers are live,
what games they are streaming, and how many viewers are watching each stream. We also collect
data on the number of concurrent players in each game with the same 10-minute frequency. When
combined, these high-frequency data allow us to examine how the number of players in a game
responds to broadcasting activities in real time, which proves crucial to our empirical strategy.

Video games gain and lose popularity due to general market trends as well as in-game events,
new version releases, and esports competitions. Responding to these temporal changes, streamers
tend to broadcast trending games, thus generating a simultaneity bias. In an ideal experiment,
we would make streamers broadcast random games at random times of the day and measure the
corresponding lift in the number of concurrent players in the games they broadcast. Our empirical
strategy mimics this ideal experiment. We assume that, although streamers strategically decide
which days to work on and which games to broadcast, their exact streaming schedules within a day
do not respond to real-time changes of game popularity. Streamers often shift their work hours to
accommodate other demands on their time, such as university classes and part-time jobs. They may
finish broadcasting earlier than planned due to fatigue or later than planned if events that occur in
the game lead to a longer gaming session. Because of these idiosyncratic decisions, many Twitch
streamers follow irregular streaming schedules when broadcasting a given game. Our strategy uses
this within-day variation in streaming schedules as an exogenous shifter of the game’s viewership
on Twitch. Using this variation, we estimate how increasing the Twitch viewership of a given game
affects the number of this game’s concurrent players.

We find that organic (non-sponsored) streams bring additional players into the broadcasted
games. We estimate an elasticity of 0.033, implying that doubling the number of people watching
a game on Twitch in a given hour increases the number of this game’s concurrent players by 3.3%.
This effect is both small and short-lived: the initial effect becomes 17% weaker in every subsequent
hour and dissipates to 15% of its initial magnitude within about ten hours. These estimates inform
the ongoing debate in the video game industry on whether live streaming benefits game publishers.
We find that organic live streams have positive effects on the short-term popularity of video games.
This finding contradicts a common belief that live streams divert consumers from playing games
by providing an alternative source of entertainment and allowing them to experience the game-
play without paying (Johnson and Woodcock, 2019).7 In other words, we find that watching live

7Concerned about this substitution, Nintendo restricted streaming of their games, and a creative director of Google
Stadia suggested that publishers should charge streamers royalty fees (PC Gamer, 2020; SVG News 2020).
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streams and gaming are complementary leisure activities rather than substitutes. In this sense, our
results reinforce those of Li et al. (2021), who empirically show that YouTube videos and e-sports
tournaments serve as complements to gaming.

We also find that sponsored streams are much less effective than organic streams at bringing
additional players to the broadcasted games. Specifically, organic streams are four times as effec-
tive as sponsored streams, with the estimated elasticities of 0.030 and 0.007. In fact, the estimated
elasticity of sponsored streams is half the size of the median effect of TV advertising on sales
estimated by Shapiro et al. (2020). We therefore do not find any evidence that influencer promo-
tions are more effective than traditional advertising. To assess how profitable it is for publishers to
sponsor live streams, we collect daily data on the subscription revenues of individual streamers and
use it to proxy their hourly income. Combining this hourly income with the estimated streaming
elasticities, we find that sponsored streams generate negative ROI for most games in our sample.
Put another way, a typical game publisher in this industry would find that sponsoring influencer
promotions is not worth the investment.

Although Twitch influencer promotions generate negative average returns, they might still be
effective at promoting relatively unknown games and at informing consumers about the quality
and gameplay of these games. We enrich our analysis by allowing streaming elasticities to de-
pend on game attributes that might be revealed during live broadcasts and on variables proxying
which games are relatively unknown. We then estimate heterogeneous streaming elasticities using
generalized random forests (Athey et al., 2019). This heterogeneity analysis helps us understand
when and why influencer promotions work, distinguishing our paper from the prior literature that
focuses on estimating the average effect of such promotions on product usage and sales (Li et al.,
2021; Yang et al., 2021).

Our results show substantial heterogeneity in streaming elasticities across games. We find that
live streaming has large positive effects on games released by small publishers. Traditionally, these
publishers have significantly lower marketing budgets than major video game conglomerates, and
consumers might often be unaware of the games they release. By contrast, live streaming may
increase this awareness by informing consumers about “indie” games released by these publishers.
Such an effect is consistent with the prior work that documents the awareness effect of advertising
(Honka et al., 2017; Tsai and Honka, 2021). Thus, one implication of our result is that the growth
of live streaming might reduce the entry barriers in this industry by providing small publishers a
new promotion channel.

We also find that Twitch streaming has large positive effects on inexpensive games as well as
“niche” games that strongly appeal to some consumers. This result suggests that, by watching
several hours of gameplay on Twitch, consumers might learn about both vertical and horizontal
game attributes. In this sense, our results suggest that one can view live streams as informative
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advertising for video games (Grossman and Shapiro, 1984; Ackerberg, 2003). As a whole, our
results show that despite the negative average ROI, Twitch influencer promotions may generate
high positive returns when they are used to promote games by lesser-known publishers or to inform
consumers about appealing game attributes.

Our paper contributes to the literature on the effectiveness of marketing media. Much of the
existing literature focuses on estimating the effects of TV advertising (Lodish et al., 1995; Li-
aukonyte et al., 2015; Shapiro et al., 2020), online advertising (Johnson et al., 2017; Gordon et al.,
2019), and word-of-mouth (Lovett and Staelin, 2016; Seiler et al., 2017). We contribute by study-
ing the effects of influencer marketing, an emerging marketing channel that has gained momentum
over the past few years. The closest related papers are Li et al. (2021) on the effect of YouTube
influencer content about gaming and Yang et al. (2021) on the effect of TikTok influencer videos.
Both papers use within-product variation in video uploads across days and examine the impact of
these uploads on the usage and sales of promoted products. We attempt to improve upon their anal-
ysis by constructing a novel dataset and developing an identification strategy that leverages high-
frequency data. By leveraging within-day variation in streamers’ schedules, our approach brings
the analysis to the level of granularity at which the simultaneity bias is less plausible.8 Given the
increasing availability of high-frequency data, this empirical strategy might prove helpful in future
research on influencer marketing. Using our empirical strategy, we find that sponsored streams
only marginally increase the popularity of broadcasted games. Our findings therefore question
the conventional wisdom that influencer marketing generates much greater returns on investment
(ROI) than that of traditional advertising.9

2 Measuring Video Streaming on Twitch

2.1 What is Twitch?

Twitch.tv is an Amazon-owned video live streaming platform mostly dedicated to streaming video
games and broadcasting esports competitions. The platform has experienced tremendous growth
over the last decade. In 2012, it had only several thousand registered channels and 70,000 concur-
rent viewers. By 2022, it grew into a video streaming giant that hosts over 100,000 live channels
and attracts over 2.5 million viewers at any point in time.10 This growth was mainly driven by

8In this sense, our paper resembles the prior work that measures the effectiveness of TV ads using high-frequency
data and discontinuity-in-time research designs (Liaukonyte et al., 2015; He and Klein, 2019).

9Outside of studying the promotional effect, Simonov et al. (2020); Rajaram and Manchanda (2020); Hwang
et al. (2021); Ershov and Mitchell (2020) examine characteristics of influencer media and the extent to which these
characteristics explain how viewers choose what to watch and whom to follow.

10These aggregate statistics are from twitchtracker.com, a third-party website that monitors the streaming activity
on Twitch.tv and reports historical data going back to 2012.
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Figure 1: A famous streamer Pokimane broadcasting her gameplay of the shooter game Valorant on
Twitch.tv. The main window shows the gameplay that Pokimane is broadcasting live. The window in the
top left corner shows the streamer’s web camera video. The vertical window on the right is the chat where
viewers can send the streamer text messages in real time.

the increasing worldwide popularity of esports and was further enhanced by stay-at-home orders
of 2020-2022, which made millions of people around the globe look for new entertainment op-
tions. At the time of this writing, Twitch remains the largest video game streaming platform in
the world, accounting for 63.6% of total hours of content watched and hosting 91.1% of all video
game streaming content.11 During peak hours, Twitch often attracts 5-6 million viewers, more than
major TV networks such as Fox News, CNN, or MSNBC.

Twitch streamers broadcast their gameplay live by sharing their screen and web camera video
on the platform. Figure 1 shows what these streams look like from the viewers’ perspective. A
typical streamer plays a video game live while commenting on the gameplay and engaging with
viewers by replying to their chat messages. Popular Twitch streamers follow different styles of live
streaming. Some are professional esports players who focus on streaming one game and impress
viewers with their gaming skills. One example is a professional “Fortnite” player Ninja, who once
had 650,000 people watching him play Fortnite live (The Verge, 2018). Other streamers, such as
Auronplay and Summit1G, stream different games every week to introduce variety to their content
and expose viewers to video games of different genres. To make their broadcasts more engaging,
streamers often attempt to make their content funny and entertaining (see Figure F.1 for some

11See the Streamlabs and StreamHatchet Quarterly Report for Q3 (2020). https://blog.streamlabs.com/streamlabs-
stream-hatchet-q3-live-streaming-industry-report-a49adba105ba
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notable examples). One such example is a streamer DrDisrespect whose vibrant personality and
unique look – mullet hairstyle, 80s-style mustache, and polarized sunglasses – made him one of
the most popular streamers on the platform.

2.2 Data on Twitch Streaming and Game Usage

To study how Twitch streaming affects the popularity of broadcasted games, we require a dataset
that contains information about both live streaming and game usage. We construct a novel dataset
by combining several data sources. First, we collect high-frequency data from Twitch by continu-
ously monitoring live streaming and game viewership on the platform. These data describe when
individual streamers go live, what games they stream, and how many viewers they attract at each
point in time. Second, we also collect high-frequency data on the number of people currently play-
ing each game. To obtain these data, we continuously monitor Steam, the largest online video game
platform in the world. These data help us track changes in the popularity of several hundred games
during periods when streamers broadcast these games on Twitch. Finally, we complement these
two datasets with information on daily (self-reported) subscription counts of individual streamers,
which helps us estimate their hourly income.

Video streaming data from Twitch. We monitored video game streaming on Twitch for almost
eight months between May 11, 2021 and December 31, 2021. We first pre-selected a list of 60,000
streamers during a three-week pilot period. Each streamer was selected with the probability pro-
portional to the total number of viewers they attracted on Twitch during this pilot period (see Ap-
pendix A for details). Then, during the following eight months, we sent high-frequency requests
to Twitch API to retrieve information about each streamer. Every 10 minutes, we requested the
status of each streamer (online or offline), the concurrent number of viewers, the game they were
streaming, and the title of each stream. Most streamers went live on Twitch at least once during
the sample period, so our sample covers 96.8% of the streamers we attempted to track (58,060 out
of 60,000). Tracking streamers at high-frequency enables us to record the exact times at which a
streamer starts and ends broadcasting any game, which serves as the main input to our empirical
strategy (see Section 3).

Table 1 summarizes live streaming activity on Twitch, both overall and for the most popular
streamers. Throughout the paper, we measure streamer popularity using the average number of
concurrent viewers. In the last two rows, the table reports averages (1) across top 5% most popular
streamers, and (2) across all 58,060 streamers. The average streamer attracts only around 150
viewers and streams about 5.4 hours per day conditional on working on that day (14.6 hours per
week). By contrast, the top 15 streamers attract over 30,000 viewers at any given time and often
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Table 1: Streaming activity on Twitch.
Twitch Primary Game Average Maximum Daily Weekly Stream Stream

# Streamer Streamed on Concur. Concur. Hours Hours Start Time End Time
Twitch.tv Viewers Viewers Stream Stream Avg (S.D.) Avg (S.D.)

1 AuronPlay GTA V 104,930 318,181 4.0 5.3 15:20 (0:50) 19:20 (0:50)

2 RanbooLive N/A 75,695 234,626 2.5 21.0 21:00 (2:50) 23:40 (3:10)

3 Ibai GTA V 75,513 1,538,645 4.9 10.0 16:30 (2:50) 21:20 (2:30)

4 Sapnap UNO 72,992 186,592 2.0 3.0 22:20 (3:20) 0:20 (2:40)

5 xQcOW GTA V 72,481 175,453 15.7 52.3 14:00 (7:20) 5:40 (4:30)

6 loud coringa GTA V 65,142 307,450 7.6 10.8 21:10 (5:30) 4:50 (3:10)

7 RocketLeague Rocket League 58,233 208,124 5.0 30.8 18:00 (3:30) 23:10 (3:40)

8 Flashpoint CS: GO 52,655 128,800 7.3 22.3 15:10 (1:50) 22:30 (3:30)

9 Asmongold Final Fantasy 52,135 135,042 7.4 18.3 15:10 (1:20) 22:40 (2:20)

10 thisisnotgeorge Among Us 50,243 113,707 3.5 3.2 21:40 (7:00) 1:10 (6:20)

11 MontanaBlack88 GTA V 48,447 159,731 6.3 5.5 15:20 (2:50) 21:40 (2:20)

12 Rubius GTA V 44,377 207,592 5.3 16.5 17:30 (1:00) 22:50 (1:50)

13 Mizkif Jump King 35,246 189,851 5.9 13.5 20:20 (2:30) 2:20 (3:10)

14 karlnetwork Golf w/Friends 33,127 93,412 5.5 3.3 20:40 (8:50) 2:10 (7:50)

15 shroud N/A 30,979 334,836 11.3 30.0 16:30 (5:20) 3:50 (5:10)

Average (top 5% streamers) 2,375 17,988 8.2 22.0 15:20 (4:00) 23:40 (4:20)

Average (all streamers) 148 1,277 5.4 14.6 17:40 (4:20) 23:00 (4:20)

This table summarizes live streaming activity on Twitch.tv, both overall and for the most popular streamers, across
all games and non-game activities. We measure streamer popularity using the average number of concurrent viewers
in our dataset. The primary game of each streamer is defined as a game that this streamer broadcasted for the largest
number of hours and that attracted at least 25% of total viewers of this streamer. The last two columns show the
average start and end times of live streams and report the standard deviations of start and end times in the parentheses.
The time is in the UTC time zone (Coordinated Universal Time). The last two rows report the averages (1) across top
5% most popular streamers, and (2) across all 58,060 streamers.

attract hundreds of thousands of viewers in peak times. A Spanish streamer Ibai, for example,
peaked at 1,538,645 active viewers by streaming a series of boxing matches that featured other
Spanish streamers, establishing a viewership record in our sample. On average, top streamers work
8.2 hours a day and 22 hours a week (see the second-to-last row of Table 1). Column 3 reports
the primary game of each streamer, which we define as a game that this streamer broadcasted
for the largest number of hours and that attracted at least 25% of total viewers of this streamer.
Although many top streamers broadcast hit games with international following, such as “GTA V”
and “CS:GO,” several of them have risen to the top by broadcasting relatively unknown games like
“Jump King” and “Golf with Friends.”

Table 2 shows summary statistics for this sample of 599 games, describing how often these
games are streamed and watched on Twitch. Panel A reports the total streaming and viewership
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numbers, whereas Panel B reports the same statistics in terms of daily averages. As daily numbers
show, the average game was streamed 102 hours a day in 33 different streams, which generated
24,700 hours of the total watch time. This distribution is largely skewed toward popular games, as
the median game in the sample was only streamed three-four times a day for eight hours in total.

Game usage data from Steam. We also collected data on the number of people playing video
games at any given point in time. We collected these data from Steam, the largest online video
game platform in the world that attracts 62.6 million active players every day (steampowered.com).12

Because consumers who buy games on Steam have to be logged into their accounts to play, the plat-
form collects accurate data on the number of concurrent players in each game. We first pre-selected
599 games that were most frequently streamed and watched on Twitch during the three-week pilot
period (see Appendix A for details). We then sent high-frequency requests to Steam API, retriev-
ing the number of concurrent players of the pre-selected games every 10 minutes, synchronized
with Twitch data collection. Tracking the player counts at a high-frequency allows us to study how
Twitch broadcasts affect the number of players in a given game in real time, which is critical for
our empirical strategy.

Video game attributes. We additionally collected data on video game attributes. Specifically, we
gathered each game’s publisher name, release date, and price history from Steam’s official website,
as well as customer ratings and professional critic ratings from the website metacritic.com. We use
these attribute data in Section 4 when studying the heterogeneous effects of live streaming across
games. Panel C in Table 2 summarizes the distribution of game attributes, and Table F.1 in the
Appendix provides specific game examples. The average game is around 3.9 years old, have a
Metacritic rating of 78.8 out of 100, and has been released by a small publisher that produced five
other games among the 599 titles. Most games in the sample are relatively new and have been
released within the last two to three years. Some notable examples are games “Apex Legends” and
“Among Us” that experienced a massive surge of popularity often attributed to Twitch streaming
(PC Gamer, 2020). Almost half of all games have been released by indie publishers that released
only one other game. Many of these indie games have become remarkably popular and established
a significant presence on Twitch. For instance, the game “Rocket League,” which can be best
described as “soccer, but with rocket-powered cars,” has become an internationally recognized
esports game with prize pools reaching $6 million.

Subscription counts of individual streamers. To estimate the ROI of sponsoring live streams
in Section 4.4, we need to estimate how much publishers would need to pay streamers per hour

12See “Steam 2020 Year in Review” (Steamcommunity, 2021).
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Table 2: Streaming activity, usage, and attributes of games.
Mean Std.dev P5 P25 P50 P75 P95

Panel A. Streaming activity, viewership, and usage (total during the observation period)
No. Streams (All Streamers) 9,079 42,206 14 178 959 4,481 31,464
No. Streams (Top Streamers) 666 3794 2 15 61 239 2093
Hours Streamed (thousands) 28.2 135.8 0 0.4 2.2 12.5 100.8
Hours Viewed (thousands) 6,842 52,482 5 72 394 1,689 17,109
Hours Played (thousands) 30,165 167,518 5 252 1,710 12,267 101,523

Panel B. Streaming activity, viewership, and usage (per day)
No. Streams (All Streamers) 32.8 152.4 0.1 0.6 3.5 16.2 113.6
No. Streams (Top Streamers) 2.4 13.7 0.0 0.1 0.2 0.9 7.6
Hours Streamed 101.7 490.3 0.1 1.3 8.0 45.0 363.8
Hours Viewed 24,700 189,467 19 262 1,423 6,097 61,767
Hours Played 130,585 725,187 23 1,092 7,406 53,105 439,493

Panel C. Game attributes
Publisher Size (no. games) 4.9 5.6 1.0 1.0 2.0 9.0 17.0
Years Since Release 3.9 4.2 0.1 0.8 2.7 5.5 12.5
Rating Metacritic Score 78.8 9.7 62.0 75.0 80.0 85.0 91.0
Regular Price (dollars) 21.1 16.3 0.0 10.0 20.0 30.0 60.0
Customer Rating St. Dev. 2.3 0.7 1.0 1.9 2.4 2.8 3.1

This table shows streaming, viewership, and usage statistics for 599 Steam games in our sample. To estimate the
number of people watching a stream at any given point in time, we multiply the number of current viewers obtained
from Twitch API by 10 minutes (the frequency of data collection). We construct the streaming time statistics in a
similar fashion. The variable “years since release” captures the number of years passed between the official game
release and the first day of our data collection. The publisher size is the number of games a publisher released among
599 titles in our sample. The regular price is the 95-th percentile of the distribution of daily prices for a given game,
which usually corresponds to the non-discounted price.

of broadcasting on Twitch. To this end, we gathered additional data on the number of active
subscribers of each streamer. Because viewer subscriptions represent a significant share of stream-
ers’ regular income, the estimate we obtain gives us an informative lower bound on the daily and
hourly income of top streamers (see Appendix A.2 for details). Twitch does not publish any official
data on subscriptions, so we instead obtained subscription data from a third-party website twitch-
tracker.com, which tracks the number of active subscriptions for Twitch streamers who chose to
publicly disclose this information. By tracking 10,000 most-subscribed streamers on a daily basis,
we collected the current number of active subscriptions and its breakdown by subscription type
(i.e., Tier 1, Tier 2, Tier 3, or Amazon Prime), each of which has a fixed dollar value per subscrip-
tion. We then converted these subscription counts into daily and monthly income estimates. The
resulting estimates capture pre-tax income after the streamer has paid the commission to Twitch.

10



The main limitation of these data is that streamers self-select into disclosing subscription counts, so
we cannot assume our dataset on subscription revenues includes a random subsample of streamers.

We find that the average streamer in our sample has 983 active subscriptions and earns around
$3,800 per month in subscription revenues. In contrast, the average top 5% streamer earns about
$20,000-30,000 in subscription revenues each month. Dividing their monthly subscription income
on streaming hours, we obtain that the average top streamer earns about $144 per hour of live
streaming. In Section 4.4, we use this number as an estimate of the hourly income of top streamers.

3 The Effect of Stream Viewership on Game Usage

3.1 Empirical strategy

We aim to estimate the causal effect of Twitch stream viewership on the broadcasted games’ pop-
ularity, defined as the number of concurrent players. In an ideal experiment, we would make
streamers broadcast random games at random times of the day and measure the corresponding lift
in the number of concurrent players. Such an experiment is impossible to implement because nei-
ther Twitch nor we can control when streamers go live and which games they broadcast. As Seiler
et al. (2017) point out, this lack of experimental variation makes it difficult to measure the effect
of organic content on product popularity.

We adopt an instrumental variable strategy that mimics the ideal experiment and control for
confounding factors using fixed effects. We leverage our high-frequency data and focus on vari-
ation in the exact broadcast schedules of top streamers within a given day. Although streamers
can strategically decide which days to work on and which games to broadcast, our main identify-
ing assumption is that within a given day, their streaming schedules do not respond to real-time
changes of game popularity. This assumption is reasonable in the context of Twitch streaming.
Instead of working regular hours, many streamers start working whenever it is convenient for them
given other demands on their time, such as university classes and part-time jobs. They may fin-
ish broadcasting earlier than planned due to fatigue or later than planned if events that occur in
the game lead to a longer gaming session. Because of these idiosyncratic decisions, many Twitch
streamers follow irregular streaming schedules when broadcasting a given game. By leveraging
this unpredictable variation in streaming schedules, we estimate how Twitch viewership affects
game popularity. We now present model-free evidence that supports this empirical strategy.

We first demonstrate that individual streamers follow irregular broadcast schedules. Figure 2
visualizes the variation in broadcast schedules of three streamers, randomly drawn from the pool
of the 5% most popular streamers (“top streamers”). In each graph in Figure 2, a row corresponds
to 24 hours of a given day, and square markers indicate whether the streamer was live on Twitch in
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Figure 2: Daily work schedules of top Twitch streamers. This figure visualizes the daily work schedules
of three streamers, which we randomly selected from the pool of 5% most popular Twitch streamers. Each
of the three graphs visualizes the time slots in which each person was streaming live on Twitch (colored
squares), with the horizontal axis showing the time of the day and the vertical axis showing different dates
during the first month of our sample. We use color to depict whether a streamer was broadcasting their
primary Steam game (dark orange), or some other game (light blue), or was “just chatting” (light gray).

each hour of that day. Marker colors represent primary Steam games (dark orange), other games
(light blue), and “just chatting” with the audience (light gray). The figure shows that streamers
xQcOW and Ibai have haphazard schedules that change every day. They often shift their work
schedules by several hours and switch between games. Streamer Sykkuno follows a more stable
schedule, but even his schedule exhibits substantial variation across days. In the Appendix, we
visualize schedules of several other top streamers and show that most of them have highly variable
streaming schedules, similar to the three examples here (see Figure F.4).

Table 3 further summarizes this variation in broadcast schedules by reporting the standard de-
viations of start times, end times, and stream durations. We decompose this variation into three
components: (a) variation across games, (b) variation across streamers within a game, and (c) vari-
ation across dates within a streamer-game combination. Within-streamer-game variation explains
50-60% of the total variation of broadcast timing. In contrast, about 40% of the total variation is
across streamers for a given game and less than 10% is across games. This decomposition confirms
that individual streamers follow variable schedules and frequently change the timing of their live
broadcasts within a day, thus further supporting our empirical strategy.

Next, we show that, when a top streamer starts to broadcast a game, both Twitch viewership
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Table 3: Variance decomposition for start times, end times, and duration of streams.
Variance decomposition (% of total variance)

Std.dev Across games Across
streamers (for a

given game)

Across dates
(for a given

game-streamer)
All streamers:

Stream start time 6.08 2.0% 46.7% 51.3%
Stream end time 6.16 1.9% 42.8% 55.3%
Stream duration (hrs) 3.31 4.4% 35.2% 60.4%

Top 5% streamers:
Stream start time 6.06 3.3% 47.4% 49.3%
Stream end time 5.92 4.7% 42.9% 52.3%
Stream duration (hrs) 5.67 6.1% 34.7% 59.2%

The table shows the standard deviations of start times, end times, and duration of streams (column 1) for the main 599
Steam games in our sample. We decompose this variance into three components: (a) variation across games (column
2); (b) variation across streamers within a game (column 3); and (c) variation across dates within a given streamer
(column 4). The table reports statistics for all streamers in the upper panel and the same statistics for top 5% streamers
in the lower panel.

and the number of players sharply increase. To isolate the effect of a single broadcast, we identify
all days on which a given game was broadcasted by at most one top 5% streamer. We call the top
streamer’s broadcast a focal stream. We select focal streams that do not overlap with any other
stream of the same game—that is, no other top streamer broadcasts the same game within 10 hours
before the start and 20 hours after the start of the focal stream. We then examine the change in the
number of viewers and players of the broadcasted game during this 30-hour window. Although
these selection criteria help us simplify visualization, we only use them for illustration purposes
and relax them in the formal regression analysis.13

Panel A in Figure 3 shows the number of viewers before and after the start of the focal stream.
The figure plots the regression coefficients from a linear model that regresses the log number of
viewers on a set of dummies, each capturing one-hour time periods for the 10 hours before and 20
hours after each stream. To account for systematic variation in game popularity that might correlate
with broadcast activities, both across days and within a given day, the regression also controls for
game-date, game-hour of the day, and time fixed effects—the same set of fixed effects as in our
formal model, which we explain in detail below. As Panel A shows, the number of viewers remains
roughly constant before the start of the focal stream, increases sharply after its start, remains high
for two hours, and then gradually declines to its initial level before the stream. Panel B shows that

13This strategy of isolating discontinuous responses using high-frequency data is similar to that of He and Klein
(2019) who estimate the effects of radio ads on the sales of national lottery tickets and Liaukonyte et al. (2015) who
leverage exogenous variation in the timing of TV ads to estimate how advertising affects online purchases.

13



(A) Log Viewers (B) Log Players
0

1
2

3
L
o
g
 V

ie
w

e
rs

−8h −4h start +4h +8h +12h +16h +20h

Time interval relative to the focal stream

Number of viewers before, during, and after the focal stream

−
.0

0
5

0
.0

0
5

.0
1

.0
1
5

L
o
g
 P

la
y
e
rs

−8h −4h start +4h +8h +12h +16h +20h

Time interval relative to the focal stream

Number of players before, during, and after the focal stream

Figure 3: The number of viewers and players before, during, and after a focal stream. Both graphs
plot the estimated regression coefficients from a linear model that regresses the log number of viewers (left
panel) or the log number of players (right panel) on a set of dummy variables for one-hour time intervals,
which capture 10 hours before and 20 hours after each stream. The regression controls for game-date, time
interval, and hour of the day fixed effects in order to account for predictable changes in game popularity
both across days and within a given day. The average focal stream lasts for about four hours.

the number of players of the broadcasted game changes in a similar fashion, suggesting that streams
indeed bring additional players into the broadcasted game. Notably, the number of players does not
immediately peak after the start of the focal stream when the lift in viewership is the highest, and
it slowly returns to its initial level in about eight hours. We interpret this apparent lagged response
as preliminary evidence that the increase in stream viewership generates persistent effects on game
usage. Motivated by this observation, we now specify a more formal model that allows for (but
does not assume) the persistent effects of Twitch viewership.

3.2 Empirical model and estimation

We specify a model that captures both the immediate effect of Twitch viewership on game usage
as well as its persistent effects in subsequent time periods. Let j index games, and let t index
hour-long time periods. We model the number of players in game j in time t as follows:

log
(
1+ players jt

)
= β log

(
1+Vjt

)
+λ j,d(t)+µ j,h(t)+ηt + ε jt (1)

where Vjt is the stock of total viewership explained below; λ j,d(t) are game-date fixed effects,
where d(t) is the date to which the time period t belongs; µ j,h(t) are game-hour of the day fixed
effects; ηt are time fixed effects; and ε jt are idiosyncratic shocks. The game-date fixed effects
λ j,d(t) capture that games often become more or less popular over time, e.g., due to in-game events
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or new version releases, which may affect both viewership and game usage. The game-hour of
the day fixed effects µ j,h(t) account for predictable within-day shifts in game popularity, which
might occur if different games are played from different time zones (see Figures F.2-F.3 in the
Appendix). Finally, time fixed effects ηt , common across games, capture unobserved events that
affect the opportunity cost of time of both players and streamers, such as the effects of holidays or
major sports events. In this model and the subsequent analysis, we aggregate data to one-hour time
intervals to reduce computational complexity. We obtain almost identical estimates when using the
original 10-minute time intervals (see Appendix C.1).

The variable Vjt in (1) represents the total Twitch viewership stock for game j in time t. One
can think of Vjt as measuring the cumulative amount of time that viewers have recently spent
watching the streams of game j on Twitch, which might cause them to play the game. We define
Vjt as a weighted sum of the recent number of viewers with geometrically decaying weights:

Vjt =
T

∑
τ=0

δ
τviewers j,t−τ . (2)

where viewers jt is the total number of people watching Twitch streams of game j in time t, and δ

is between zero and one. In estimation, we assume T = 72, which allows the effects of viewership
to persist for up to three days. This geometric weight specification is similar to the models used to
capture persistent advertising effects in the prior work (Shapiro et al., 2020). When put together,
equations (1) and (2) yield a model in which an increase in Twitch viewership can influence game
usage both concurrently and in future periods.

The parameters of interest are β and δ . We interpret β as the elasticity of game usage with
respect to the cumulative viewership stock Vjt . We refer to β as the streaming elasticity. By
contrast, we interpret δ as the decay parameter that captures the persistent effects of viewership.
Some viewers might immediately download the game once they see it on Twitch (an immediate
effect), while others might research the game later, or they can immediately download it but keep
playing it after the stream (a carry-over effect). The decay parameter δ captures the magnitude of
the carry-over effect relative to the immediate effect.

The primary source of identification is within-day variation in the broadcast schedules of top
streamers. Having controlled for game-date fixed effects λ j,d(t) and for other fixed effects in (1),
we ask how these live broadcasts drive the game’s viewership on Twitch, and how a lift in view-
ership translates into changes in game usage, both during and after the broadcast. To this end, we
construct a vector of instruments Z jt =

{
z j,t ,z j.t−1, . . . ,z j,t−12

}
that capture how many top stream-

ers broadcast game j in time t and in the 12 hours preceding t (Appendix C.1 shows that our results
are robust to including a different number of lagged variables z jt). As we show in Appendix B.1,
most variation in these instruments comes from days on which a game was either broadcasted by
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one top streamer or not broadcasted by top streamers at all. The main identifying assumption is
that, conditional on fixed effects, the broadcast decisions of top streamers in the past 12 hours are
orthogonal to idiosyncratic shocks in game popularity, ε jt , so that

E
[
ε jt |Z jt ,λ j,d(t),µ j,h(t),ηt

]
= 0. (3)

One might worry that streamers strategically schedule their broadcasts to coincide with significant
in-game events (e.g., new version releases or tournaments), which may create a correlation between
the instruments Z jt and shocks ε jt even within a day. However, if this was the case, the number
of players would increase even before a top streamer goes live, reflecting that the game is already
trending up on Twitch by the time the live stream starts. By contrast, Figure 3 shows that the
number of players remains relatively constant before the stream and increases sharply right after
the start of the stream. We also demonstrate in Appendix C.1 that controlling for game-week
instead of game-date fixed effects produces similar estimates of β and δ , suggesting that streamers
do not strategically choose their broadcast days within a week based on game-specific demand
shocks. By implication, it might be even less likely that they respond to these demand shocks
when choosing the exact broadcasting time within a day. We therefore do not find any indication
that within-day endogeneity poses a substantial threat to our empirical strategy.

The identifying assumption in (3) implies the condition E
[
ε jtZ jt |λ j,d(t),µ j,h(t),ηt

]
= 0, which

we use to estimate parameters β and δ . Specifically, we minimize the sum of squared interactions
between residuals ε jt and instruments Z jt :

(β̂ , δ̂ ) = arg min
(β ,δ )

∑
j
∑
t

Z′jtZ jt
(
log

(
1+ players jt

)
−β log

(
1+Vjt (δ )

)
−λ j,d(t)−µ j,h(t)−ηt

)2
.

(4)
This objective function corresponds to GMM estimation with the identity weighting matrix, which
under the assumption (3) yields consistent estimates of β and δ . To solve the minimization problem
in (4), we perform a golden-section search for the parameter δ , and for a given guess of δ , we
estimate parameter β using a closed form 2SLS formula (see Appendix B.2 for details). We obtain
clustered standard errors via bootstrap by sampling game-date combinations with replacement.

3.3 The average effect of Twitch streaming

Table 4 presents parameter estimates from the model in (1). The first column shows the estimates
from an OLS regression that assumes away persistent effects (i.e., setting δ = 0) and does not
include any fixed effects. Because viewership and game usage are highly correlated, the OLS
estimate without controls returns a high estimated elasticity of 0.606. The next two columns show
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Table 4: The effect of Twitch viewership on video game usage
Variable Parameter OLS IV IV
Log Viewership Stock Vjt β 0.606*** 0.015*** 0.033***

(0.002) (0.002) (0.009)
Effect Persistence δ 0.828***

(0.060)

Game-Date FE No Yes Yes
Game-Hour of day FE No Yes Yes
Time FE No Yes Yes
Observations 3,277,728 3,277,728 3,277,728

Column 1 shows results from an OLS regression that fixes the persistence parameter to zero (δ = 0) and
does not control for any fixed effects. Columns 2-3 shows results from our main specification in (1), without
persistence (column 2) and with persistence (column 3). Bootstrap standard errors are clustered at the game-
date level. *, **, and *** represent significance at the 10%, 5%, and 1% level.

IV estimates obtained using the GMM estimator in equation (4). Column 2 reports IV estimates
from a specification that sets persistence to zero (δ = 0), which yields an elasticity estimate of
0.015. This estimate is much lower than that from the OLS regression, consistent with the idea
that including instruments Z jt and fixed effects helps remove the simultaneity bias. But because
this specification ignores persistent effects, it might still generate a biased estimate of the streaming
elasticity β . For example, if the true effect persists several hours after a stream, this model will
fail to attribute the elevated post-stream game usage to the effect of the broadcast and might bias
the estimated β toward zero. Consistent with this observation, we find that allowing for persistent
effects raises the estimated streaming elasticity from β̂ = 0.015 to β̂ = 0.033 (column 3 in Table
4). We also estimate the persistence parameter to be δ̂ = 0.828, suggesting that the initial effect
becomes 17% weaker in every subsequent hour and dissipates to 15% of its initial magnitude
within about ten hours.

The estimated streaming elasticity of 0.033 is broadly in line with the previous work on the ef-
fects of word-of-mouth and advertising. For example, Seiler et al. (2017) estimate the elasticity of
0.016 when studying how the number of organic comments on a microblogging platform increases
the viewership of discussed TV shows. Their estimates can be compared to ours because they study
the impact of word-of-mouth activity, which is analogous to Twitch viewership in our analysis, and
they also adopt a measure of consumption (i.e., TV show audience) as the main outcome variable.
Similarly, Shapiro et al. (2020) report the mean elasticity of 0.023 and the median elasticity of
0.014 when estimating the effect of TV advertising viewership on the sales of packaged goods.14

14Seiler et al. (2017) find no strong evidence of persistent effects. Since their estimation leverages one specific
shock, i.e., the blocking of microblogging platform Sina Weibo in China, these results might reflect that the persistent
effects are difficult to identify from their data. Shapiro et al. (2020) use a similar construction of viewership stock
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Table 5: Streaming elasticities of sponsored and partnered streams.
All sponsored Partner program

Log Viewership Stock Vjt Parameter streams streams
(IV) (IV)

Organic stream viewership β ns 0.030*** 0.032***
(0.005) (0.005)

Sponsored stream viewership β s 0.007*** 0.006***
(0.002) (0.001)

Game-Date FE Yes Yes
Game-Hour of day FE Yes Yes
Time FE Yes Yes
Observations 3,277,728 3,277,728

Standard errors are clustered at the game-date level. *, **, and *** represent significance at the 10%, 5%,
and 1% level. All specifications include game-date, game-hour of day, and time fixed effects.

In both papers, the authors argue that addressing the simultaneity bias substantially reduces the
estimated elasticities. Our results point in the same direction (e.g., see columns 1 and 3 in Table
4), suggesting that one needs to address the simultaneity bias in order to estimate the causal effect
of influencer marketing.

Robustness analyses. Our geometric decay model imposes that the concurrent effect of stream-
ing has the same sign and is stronger than the carry-over effect. In practice, however, streaming
might divert viewers from playing the broadcasted game, thus creating a negative concurrent effect
and a positive carry-over effect on game usage. To explore this possibility, in Appendix C.2, we
estimate a distributed lag specification that nonparametrically regresses game usage on the lagged
values of viewers jt . We find positive concurrent and carry-over effects. Additionally, the estimated
effects roughly follow a geometric decay pattern, confirming that our geometric decay model spec-
ification does not impose overly rigid assumptions regarding the lagged streaming effects.

Another concern is that game-date fixed effects absorb the carry-over effects of Twitch streams,
especially if these effects materialize several days after the stream. If this was the case, our esti-
mated streaming effect would be too small and too short-lived. To examine this possibility, we
estimate an alternative specification in which, instead of controlling for game-date and game-hour
of the day fixed effects, we control for game-week, game-day of the week, and game-hour of the
day fixed effects (see Appendix C.1). We obtain the estimates β̂ = 0.034 and δ̂ = 0.794, remark-
ably similar to our main specification.

Vjt and find a persistence parameter around 0.9 at the weekly level. Our estimated δ = 0.828 is at the hourly level,
suggesting that the effect of Twitch viewership has a much shorter time span compared to TV advertising of consumer
packaged goods.
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3.4 Sponsored versus organic streams

Most of the streams in our data are organic in the sense that streamers broadcast their gaming
sessions without getting paid by publishers. If a publisher were to sponsor streams, compensating
a top streamer for the time spent broadcasting their game, the effect of such a sponsored stream
might be substantially lower than that of organic streams. This might happen because sponsored
streams tend to be less engaging or because viewers might negatively react to sponsored content
(Ershov and Mitchell, 2020). To empirically assess this conjecture, we identify sponsored streams
in our data and estimate the effect of these sponsored streams separately from the effect of organic
streams.

We identify sponsored streams in our data by searching for specific keywords in stream titles.
Streamers are required to disclose the sponsored status of their streams due to several official
requirements. First, the Federal Trade Commission requires all influencers to publicly disclose
the sponsorship status (FTC, 2019).15 Second, Twitch facilitates the match between streamers
and game publishers via the internal platform “Bounty Board,” which also requires streamers to
disclose the sponsored status to viewers. We can therefore identify sponsored streams in our data
by searching for the keywords in stream titles that directly reveal the sponsorship status (e.g.,
#sponsored, #ad). Additionally, several publishers offer partnership programs to streamers who
are willing to regularly broadcast their games. Because partnered streamers are also required to
disclose their partner agreement on Twitch, we can identify partnered streams by locating stream
titles that mention an official partnership program (e.g., #ApexLegendsPartner, #PubgPartner).
Using these criteria, we find that around 3% of broadcasts by top streamers are sponsored, and 1%
are partnered. Although we do not consider how prominent these disclosures are, the recent work
of Li (2022) suggests that some Twitch streamers use long stream titles to make the sponsorship
appear less prominent on the platform.

We then separately estimate the streaming elasticities for sponsored and organic streams using
the following model:

log
(
1+ players jt

)
= β

ns log
(
1+V ns

jt
)
+β

s log
(
1+V s

jt
)
+λ j,d(t)+µ j,h(t)+ηt + ε jt . (5)

where V ns
jt is the cumulative viewership stock of non-sponsored streams, V s

jt is the viewership
stock of sponsored streams, and both viewership stocks are constructed based on the previously
estimated decay parameter δ = 0.828. We interpret β ns and β s as streaming elasticities of organic
and sponsored streams. We estimate equation (5) via two-stage least squares, using as instruments
the current and lagged number of sponsored and organic streams by top 5% streamers. As Table

15Source: https://www.ftc.gov/news-events/press-releases/2019/11/ftc-releases-advertising-disclosures-guidance-
online-influencers (accessed in February, 2022).
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5 shows, organic streams are four times as effective as sponsored streams, with the estimated
elasticities of 0.030 and 0.007. We find similar results when we consider sponsored streams funded
by official partnership programs (estimated elasticities 0.032 vs 0.006).

We draw several conclusions from these results. First, organic live streams have positive ef-
fects on the short-term popularity of video games. This finding contradicts the belief of some
practitioners in the video game industry that live streams divert consumers from playing games
by providing an alternative source of entertainment and allowing them to experience the gameplay
without paying (Johnson and Woodcock, 2019). In other words, we find that live streaming and
gaming should be viewed as complementary leisure activities rather than substitutes. Second, our
results show that sponsored streams are relatively ineffective at bringing additional players to the
broadcasted games. Later in Section 4.4, we use our elasticity estimates to compute the return on
investment (ROI) and find that paying for sponsored streams is not profitable for the average game.
Our findings therefore question the conventional wisdom that influencer marketing generates much
greater ROI than that of traditional advertising.

Although Twitch influencer promotions generate negative returns on average, they might still
be effective at promoting relatively unknown games. Given the long format of Twitch broadcasts,
such promotions might also reveal rich information about the game’s price, quality, and gameplay.
In the next section, we empirically explore these conjectures and study what kind of games might
substantially benefit from being promoted in sponsored streams on Twitch.

4 Which Games Benefit the Most from Twitch Streaming?

4.1 Overview of potential mechanisms

To understand whether sponsored streams might be effective at promoting certain games, we need
to first understand what kind of games are most likely to benefit from live broadcasts. To answer
this question, we need to first understand what mechanisms drive the effect of streaming on game
popularity. We hypothesize that Twitch streams either inform consumers about the existence of the
broadcasted games or reveal information about their price, quality, or gameplay. First, consumers
face an enormous choice set and might not be aware of all offered titles. On Steam alone, they
encounter an assortment of more than 60,000 games, which grows with thousands of new titles
introduced every year. Twitch streams can draw consumers’ attention to specific games, thus
generating an awareness effect (Honka et al., 2017; Tsai and Honka, 2021). An example of such
an awareness effect is the game “Among Us” by a small indie studio, which stayed dormant on
Steam for almost two years and only became popular when consumers learned about it from Twitch
broadcasts. Additionally, even if consumers are aware of a game, they might learn something about
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its price, quality, or gameplay by watching streamers play it live on Twitch. For example, while
many consumers know that “Dark Souls” is a monster fighting game, they might realize after
watching Twitch streams that this game stands out with its intricate level design and combat depth.
In other words, live streams might serve as informative advertisements that reveal the horizontal
and vertical attributes of broadcasted games (Grossman and Shapiro, 1984; Ackerberg, 2003).

If streams provide any information at all, they should have stronger effects on relatively un-
known games. To proxy consumer knowledge, we assume that consumers are less informed about
new games and games released by small publishers, who lack the reputation and marketing bud-
gets of large publishers. We start by testing whether the streaming elasticity β negatively correlates
with game age and publisher size. To understand what information consumers might learn after
watching Twitch streams, we also study whether β varies across games with different vertical
game attributes, such as price and quality. We measure quality using Metacritic ratings, a widely
recognized quality metric analogous to Rotten Tomatoes ratings for movies. Streams may either
directly reveal information about quality, or they can encourage consumers to research the game
and learn its quality. A similar effect may arise with prices: although our informal observation
suggests that streamers rarely talk about game prices during live streams, consumers might still
learn the game’s price while doing their own research after the stream. Both mechanisms, direct
and indirect, would make consumers more likely to adopt inexpensive or high-quality games after
seeing them on Twitch. Finally, we analyze whether streaming disproportionately benefits “niche”
games that strongly appeal to some consumers despite the mediocre quality. We proxy “niche”
games by using the standard deviation of customer ratings on Metacritic.

4.2 Estimates from median sample splits

We start by subsampling games and comparing the estimated streaming elasticities across subsam-
ples. Table 6 presents the estimated streaming elasticities β̂ from the main specification in (1)-(2)
for different subsamples. Throughout this section, we simplify estimation by fixing the persistence
parameter at the level estimated in Section 3 (δ̂ = 0.828).

In rows 1-4 of Table 6, we estimate stream elasticities by game age and publisher size. To
this end, we define new games as those released within 2.7 years prior to our sample period. We
additionally define small publishers as those who only sell one game from our sample of 599 titles.
Both definitions roughly correspond to the median splits of variables “game age” and “publisher
size.” We find that new games have a somewhat higher estimated elasticity, although the difference
is small and not statistically significant (elasticities of 0.034 vs 0.032). Nevertheless, we find that
the games produced by small publishers benefit from streaming almost three times more than
the games of large publishers (elasticities of 0.052 vs 0.019). This result is consistent with the
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Table 6: Streaming elasticities by game characteristics
Log viewership stock Vjt Number of observations
β̂ Estimate β̂ S.E. No. games No. obs.

By game age: New games (<2.7 years old) 0.034*** (0.004) 299 1,636,128
Old games (≥2.7 years old) 0.032*** (0.008) 300 1,641,600

By publisher size: Small publisher (1 game) 0.052*** (0.011) 283 1,548,576
Large publisher (2+ games) 0.019*** (0.003) 316 1,729,152

By price: Inexpensive (<$20) 0.044*** (0.010) 281 1,537,632
Expensive (≥$20) 0.023*** (0.004) 318 1,740,096

By quality: High quality (Metacritic score >80) 0.041*** (0.010) 219 1,198,368
Low quality (Metacritic score ≤80) 0.028*** (0.004) 247 1,351,584

By rating variance: Niche games (rating std. >2.4) 0.050*** (0.010) 212 1,160,064
Mainstream games (rating std. ≤2.4) 0.008*** (0.002) 213 1,165,536

This table presents the estimates of streaming elasticity β̂ for games with different characteristics, holding
the persistence parameter δ at the level estimated in Table 4. All specifications include game-date, game-
hour of day, and time fixed effects. Standard errors are clustered at the game-date level. *, **, and ***
represent significance at the 10%, 5%, and 1% level.

information effect, considering that small publishers have modest advertising budgets and do not
get the same media coverage as big conglomerates like EA Games and Ubisoft. Consumers might
therefore be unaware of these publishers’ games, and Twitch broadcasts might break this awareness
barrier.

We further study what kind of information consumers acquire from Twitch broadcasts. Rows
5-8 of Table 6 show that Twitch streams are more effective for inexpensive games and for high-
quality games. We define inexpensive games as having the regular price below the median level
of $20. We estimate an elasticity of 0.044 for inexpensive games, twice larger than the elasticity
for expensive games. Similarly, we obtain a higher estimated elasticity for high-quality games,
defined as games whose Metacritic ratings are above the median. The estimated elasticity is about
50% larger for high-quality than low-quality games (elasticities of 0.041 vs 0.028). These results
suggest that by watching live streams, consumers acquire information – directly or indirectly –
about the vertical attributes of broadcasted games.

Twitch streams might also help consumers understand whether the game matches their idiosyn-
cratic preferences. This mechanism might be especially relevant for low or medium-quality games,
whose mediocre ratings reflect that not all consumers enjoy them. These might be “niche” games
that appeal to some consumers but leave others indifferent. Using the standard deviation of user
ratings to proxy “niche” games, we compare the estimated elasticity for games above and below
the median value of this proxy. Rows 9-10 of Table 6 show that niche games have a much higher
streaming elasticity of 0.050. On the other hand, Twitch broadcasts barely affect mainstream games
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Figure 4: Distribution of estimated streaming elasticities. The graph shows the distribution of estimated
elasticities β̂ across games obtained from the generalized random forests.

with less dispersed user ratings (elasticity 0.008). This stark contrast supports our hypothesis that
consumers learn about horizontal game attributes by watching Twitch broadcasts.

4.3 Estimates from generalized random forests

The median splits in Section 4.2 divide games based on somewhat arbitrary criteria. Additionally,
splitting on each variable does not rule out the possibility that the effect is driven by other game
attributes omitted from each pair of regressions. To address these concerns, we estimate heteroge-
neous streaming effects using generalized random forests, a nonparametric estimation method pro-
posed by Athey et al. (2019). The method estimates heterogeneous treatment effects as a flexible
function of observables using a set of local moment conditions. The local moment conditions are
weighted across nearby observations, and the weights are adaptively computed using the random
forest algorithm (Breiman, 2001). By using these local moment conditions, this approach effec-
tively generalizes our instrumental variable strategy. The method also generates estimates with
known asymptotic distributions, enabling us to construct confidence intervals for the estimates.

We generalize our main model in (1) by making the streaming elasticity β a function of game
characteristics X j:

log
(
1+ players jt

)
= β (X j) · log

(
1+Vjt

)
+λ j,d(t)+µ j,h(t)+ηt + ε jt (6)

Because we fix the persistence parameter δ , the viewership stock Vjt is observed. The vector of
game attributes, X j, includes five variables: game age, publisher size, regular price, Metacritic
rating, and the standard deviation of consumer ratings. These are the same five variables we used
for the univariate median splits. Following Athey et al. (2019), we estimate the function β (X j)
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using local moment conditions stated in Appendix D.
Figure 4 visualizes the distribution of the estimated elasticities β̂ (X j). The average estimated

elasticity is 0.029, somewhat lower than the average elasticity of 0.033 from our main specification
in Table 4. We also find substantial heterogeneity: the estimated elasticities vary between -0.003
and 0.183 with the interquartile range from 0.008 to 0.040. Out of 599 games in our sample, 403
games (67%) have statistically significant estimates β̂ , suggesting that the game-specific stream-
ing elasticities are precisely estimated. The estimated elasticities are positive for 97% of games,
implying strong complementarity between Twitch viewership and game usage. Table F.2 in the Ap-
pendix compares the average attributes X j between the games with highest and lowest estimated
elasticities β̂ . In line with our results below, we find that games with the highest elasticities are on
average newer, produced by smaller publishers, less expensive, and have more dispersed consumer
ratings.

Figure 5 visualizes the estimated streaming elasticities. The three graphs on the left visualize
the estimated function β̂ (X j) by focusing on two dimensions at a time while holding all other
attributes X j fixed at their average levels (see details in Appendix D.4). One might worry that
some attribute combinations in these graphs are unrealistic because they never appear in the actual
data. To address this concern, in the right panel of Figure 5 we plot the empirical density of the
same game attributes, thus showing which estimated elasticities β̂ (X j) rely on extrapolation.

Panel A visualizes the estimates by game age and publisher size. We confirm the previous
finding that games by small publishers benefit more from Twitch broadcasts. In contrast, we find
more nuanced patterns for game age than those discussed above. Streaming elasticities β̂ are
highest for the newest games (less than one year old) and the oldest games (more than eight years
old). Whereas the high elasticities among new games are aligned with our median-split results,
one plausible explanation for the high elasticities among old games is that Twitch streams make
consumers aware of the games forgotten by the current generation of players. Indeed, because
Twitch viewers are between 16 and 24 years old, in 2021 many of them had not yet reached the
legal age when these older games were launched.16

16This statistic is based on a 2019 survey. Source: https://www.statista.com/statistics/634057/twitch-user-age-
worldwide/.
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(B) By Metacritic rating and price
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(C) By Metacritic rating and std.dev. of the user rating
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Figure 5: Estimated streaming elasticities from Generalized Random Forests. Each graph on the left visualizes
the estimated function β̂ (X j) by focusing on two dimensions at a time, while holding all other attributes X j fixed at
their average levels (see details in Appendix D.4). Each figure on the right shows the empirical distribution of the
same two game attributes and presents the contour lines of the estimated density function.
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Panel B shows the estimated elasticities β̂ by game price and rating. We find higher elasticities
for inexpensive games, especially those priced under $5, which is consistent with our earlier anal-
ysis. The density plot on the right suggests that this pattern is mostly driven by the high streaming
elasticities of free games. As for the ratings, we find a nonlinear pattern whereby games with rat-
ings around 80-85, slightly above the median, have the highest estimated elasticities. Somewhat
counterintuitively, estimated elasticities drop as the rating approaches 90-95. We observe a similar
pattern in Panel C. It is possible that games with high ratings already get extensive media coverage
and therefore do not benefit from additional exposure on Twitch, although we cannot directly test
this hypothesis with our data.

Panel C visualizes the estimated elasticities by Metacritic expert rating and the standard devi-
ation of consumer ratings. Consistent with our previous results, we find that games with highly
dispersed consumer ratings benefit more from Twitch streaming than games with more uniform
consumer ratings. This result suggests Twitch streams reveal the gameplay of the broadcasted
game, thus helping consumers understand whether the game matches their preferences.

When put together, these results suggest that despite the modest average streaming elasticity, a
small fraction of games benefit considerably from streaming. For example, Twitch streams might
be effective at promoting games by lesser-known publishers, informing consumers about appealing
game attributes (e.g., low price), or promoting niche games that appeal to a small group of con-
sumers. In fact, the promotional effects for some games might be sufficiently high for sponsored
streams to generate positive ROI. We now demonstrate this point by calculating ROI separately for
each game.

4.4 When is it profitable to sponsor live streams?

To calculate the implied returns on investment, we consider a counterfactual in which a publisher
pays top streamer a fixed fee for broadcasting a game for one hour. Using the estimated streaming
effects β̂ (X j) from equation (6), we predict how many new players will be brought into the game
in this hour of streaming and how this increase will affect the expected profits of the sponsoring
publisher.

We predict the increase in the expected profit as

Profit lift j = Conversion Rate×∆Players j×Profit Margin j−Streaming Costs (7)

where the first term captures the expected revenue lift and the second term is the fixed fee that
the publisher pays for one hour of streaming. We calculate the lift in the number of players,
∆players j, by combining the game-specific streaming elasticity β̂ (X j) with the game-specific lift
in the number of viewers generated by the broadcast of a top streamer. Since sponsored streams
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Figure 6: Is It Profitable to Sponsor Live Streams? The figure shows the predicted increase in the
number of active players (top panel) and in the expected dollar revenues (bottom panel) from a one-hour
live stream on Twitch. The predicted increase the number of active players in the top panel is computed using
the formula (11), whereas the predicted revenue increase in the bottom panel corresponds to the left-hand
side expression in the profit lift formula (7).

are less effective than organic ones, we discount the streaming elasticity by a factor of 0.233 =

0.007/0.030, the ratio between the average sponsored and organic stream elasticities in Table 5.
See Appendix E for details on how we compute ∆players j. To obtain the profit margin of paid
games, we assume that a per-unit profit margin equals 70% of the game’s price because Steam
charges a 30% fee for publishing games on its platform. Although some games in our sample are
free, they often bring comparable margins to their publishers via in-game transactions. To compute
the profit margin for such games, we assume that their sales revenues are equal to the median sales
revenue among the paid games.

The conversion rate in (7) reflects the share of players brought into the game by the stream who
will buy a game copy. Because we do not have sales data to estimate the conversion rate, we need
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to make an assumption about its value. We consider an optimistic scenario by fixing the conversion
rate at 100%, noting that this number is not far from the 79% conversion rate estimated by Li et al.
(2021).17 As we show below, even this optimistic scenario implies negative ROI for most games in
the sample. Finally, we assume that to incentivize one additional hour of streaming, the publisher
has to pay the equivalent of this streamer’s average hourly wage on Twitch. We proxy hourly wage
using data on individual revenues from subscriptions, which yields the estimated hourly wage of
$144 (see Section 2.2 for details). This estimated hourly fee of $144 is close to the standard fee
that publishers pay streamers on the internal Twitch’s platform “Bounty Board” (see Figure F.5).

Figure 6 summarizes our results by plotting the distribution of the lift in the number of play-
ers (top panel) and the lift in the expected revenue (bottom panel) across games. In line with our
estimates in Table 5, we find that for the median game, a one-hour sponsored stream increases the
number of players by around 0.7% relative to the baseline. However, the predicted lift in the num-
ber of players differs dramatically across games, reaching 1.8-2% for at least a quarter of games.
The bottom panel of Figure 6 additionally shows the implied increase in the expected revenues.
Three quarters of games have a negative expected profit from sponsored streams because their
predicted revenue lift falls short of the $144 hourly wage. Notably, most games obtain negative
ROI despite the optimistic assumption of 100% conversion rate, which is unsurprising given that
sponsored streams only marginally increase the short-term popularity of games.

Nevertheless, we predict substantial returns for a small set of games in the right tail of Fig-
ure 6 (bottom panel). At the 80th percentile of the profit distribution, we predict that sponsored
streams increase the expected profit by $60, implying ROI of 42%. Around the 90th percentile,
this predicted profit increase reaches $418, thus predicting extremely high ROI of 290%. Most
games in the right tail of this distribution are games for which we estimated high estimated stream-
ing elasticities in Section 4.3. Our estimates suggest that publishers of these games could extract
substantial benefits from sponsoring additional live streams on Twitch.

4.5 Discussion and implications

The ROI calculations above have two main managerial implications. First, despite the negative av-
erage ROI, some game publishers may find it highly profitable to sponsor live streams on Twitch.
Sponsored streams might be especially profitable for games that have high predicted streaming
elasticities (see Section 4), including games released by small publishers, inexpensive games, and
niche games that strongly appeal to some consumers. For these games, the ROI of sponsored
streams might be as high as several hundred percent, which makes sponsored Twitch streams prof-
itable for the publisher.

17Li et al. (2021) find that a release of a YouTube video about a game increases this game’s purchase rate by 6.2%
and usage by 7.8%. The ratio between the two effects implies a conversion rate of 79.4%.
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Second, we find that most publishers benefit little from directly sponsoring Twitch streams.
One practical implication is that, instead of directly sponsoring streams, publishers may want to
encourage streaming of their games in some other way. For example, they can make their games
more streaming-friendly, offer Twitch viewers in-game perks (e.g., unique items or characters), or
create Twitch apps that allow viewers to participate in live streamed game sessions.18 Interestingly,
such alternative strategies have become more common in the last few years. A recent example
was the developer Amazon Games that released its new online multiplayer game “Lost Ark” in
February 2022. Using its corporate affiliation with Twitch, Amazon Games launched a special
event letting Twitch streamers compete with each other in teams in exchange for in-game perks
and special items (see Figure F.6). Over the new few weeks, the game became a huge hit and
reached over one million active players, becoming the first most popular game on Steam. The
game developer reported having to add additional 15 servers to deal with the influx of players
(NME News, 2022). This remarkable success of “Lost Ark” may encourage other game developers
to make their games more Twitch-friendly, which might, in turn, simulate streamers to generate
additional organic content.

5 Concluding remarks

We use within-day variation in top streamers’ broadcasting activities to estimate the effect of live
streaming on game usage. Our results reveal that organic streams bring additional players into
the broadcasted games, but the estimated effect is small and short-lived. We also find that organic
streams are four times as effective at sponsored streams at bringing additional players to the broad-
casted games. Exploring plausible mechanisms behind the streaming effects, we find evidence
that live streams make consumers aware of lesser-known games from small publishers and help
consumers learn about the game attributes. Although sponsored streams generate negative average
ROI, they might generate much higher returns for a small set of games.

18Consistent with this direction, Twitch has recently released a so-called “Game Developer Playbook,” which gives
developers a long list of suggestions for how to make their games more Twitch-friendly (Twitch Official Blog, 2019).
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Online Appendix

A Industry and Data: Additional Details

A.1 Selection of streamers and games

During a preliminary three-week period on 6-26 April 2021, we sent repeated high-frequency
requests to Twitch API to record which video games are streamed on Twitch most often and attract
the largest audiences. To this end, each 10 minutes we requested from Twitch API the list of 200
games that had the largest total number of viewers on Twitch at the time of the request. Each of
these games had a corresponding game ID assigned to it by Twitch. We selected all game IDs that
appeared in our top-200 list at least once, which generated the list of 1010 game IDs. We then
manually removed game IDs of non-Steam games (e.g., “Fortnite” and “League of Legends”), for
which we have no way of tracking player counts; game IDs for non-gaming streams (e.g., “Just
Chatting,” “Music,” “Sports”); and game IDs for which we could not access data on player counts
from Steam API (23 games for which Steam does not report player counts). Only eight games from
our sample had zero active players throughout the whole period, so these games are omitted from
our analysis. This selection process yields a list 599 games which constitutes our main sample
throughout the paper.

In the same preliminary period on 6-26 April 2021, we sent hourly requests to Twitch API
collecting the lists of most popular active streamers. Each hour, we requested the list of 100,000
most-viewed streamers that were live on Twitch at the time of the request, and we recorded which
game they streamed and how many viewers they had at that time. We then made a list of all
streamers in these data, and we randomly sampled 60,000 streamers using weighted sampling in
which weights were proportional to the total number of viewers the streamer attracted in three
weeks. This sampling procedure allowed us to construct a comprehensive sample that covers
both popular streamers and lesser-known streamers who often broadcast small “indie” games. We
could not simultaneously track more than 60,000 streamers without exceeding the daily quota of
Twitch API requests. We kept this list of pre-selected streamers constant throughout the main data
collection period in May-December 2021.

A.2 Monetary incentives of Twitch streamers

One might wonder why streamers spend hours broadcasting video games on Twitch, considering
that anyone can watch their broadcasts free of charge. As it turns out, however, live streaming video
games can be a lucrative business for the top streamers and a steady source of extra income for
many others. Streamers begin their careers as Twitch Affiliates who mostly earn income from the
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donations and subscriptions of viewers.19 Most donations are direct PayPal transfers from viewers
(streamer gets 100% of income) or “virtual bits” that viewers donate through the chat window
(streamer gets 75% of income). In addition, viewers can subscribe to a channel for a $4.99, $9.99,
or $24.99 monthly fee or use one free subscription that comes with Amazon Prime. Subscribing
to a streamer gives viewers access to exclusive content, custom emotes, and sometimes to ad-free
viewing of the streamer’s content. The most popular streamers can make Twitch Partner, which
requires them to stream at least three times a week and consistently average at least 75 concurrent
viewers. While Twitch Affiliates retain only 50% of subscription income, Twitch Partners retain
60-70% and get access to exclusive contracts for promoting games and non-gaming products on
their channels. According to survey data, a typical Twitch Affiliate earns $100-$1,000 per month,
and a full-time streaming Partner earns $3,000-$6,500 per month (Goodman, 2021). Although
most streamers do not publicly disclose their incomes, the payout data recently leaked from Twitch
suggests that the most popular streamers earn as much as $115,000-370,000 per month (Scullion,
2021).

To estimate the cost of sponsoring live streams, we collected daily data on the number of
active subscriptions from twitchtracker.com, a third-party website that reports the number of active
subscriptions of Twitch streamers who chose to publicly disclose this information. We tracked on
the daily basis the 10,000 most-subscribed streamers reported on Twitchtracker and collected the
current number of active subscriptions and their breakdown by subscription type (i.e., Tier 1, Tier
2, Tier 3, or Amazon Prime). Using these subscription counts, we then constructed estimates
of monthly income by computing the pre-tax income after the streamer has paid the commission
to Twitch. One might worry that subscription revenues are not the primary source of income
for streamers. Whereas we do not have systematic data on all income sources, anecdotal evidence
suggests that subscription revenue is the most important income source for top streamers. Mediakix
estimates that streamer Ninja makes three quarters of his income from subscription.20 Additionally,
streamers xQcOW, Auronplay, and Asmongold received total monthly payouts from Twitch of
$325,170, $117,436, and $98,139 in subscription and advertising revenues, about two times as
high as the subscription income we observe in our data.21

19Streamers can also run ads during their live streams, which earn them about $250 monthly per 100 subscribers.
20Source: https://influencermarketinghub.com/twitch-money-calculator/.
21These monthly figures are from the article “The entirety of Twitch has reportedly been leaked” which uses dataset

of payouts leaked from Twitch in September 2021 (Video Games Chronicle, 2021).
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B Additional Estimation Details

Distribution of daily averages across games
Mean S.E. Q 5% Q 25% Q 50% Q 75% Q 95%

No. unique streamers 2.29 12.49 0.01 0.05 0.22 0.85 8.12
Max no. streamers live 1.80 5.33 1.00 1.00 1.01 1.14 4.30
Stream duration (hrs) 2.89 1.86 0.81 1.67 2.58 3.75 5.78

Appendix Table B.1: Broadcasting activity of top streamers across different games. These summary
statistics illustrate the variation we isolate with instrumental variables z jt , which measure how many top 5%
Twitch streamers are broadcasting game j in time period t. We first compute the daily averages across all
days in our sample and then report the distribution of these averages across 599 games.

B.1 Variation captured by instruments z jt

In this section, we describe variation isolated by instruments z j,t ,z j.t−1, . . . ,z j,t−12 in Section 3.2.
Table B.1 describes the variation in the number of active top 5% streamers captured by these
instruments. In this table, we compute the daily numbers of unique streamers broadcasting a
specific game, maximum number of streamers broadcasting simultaneously at any point in time,
and average stream duration. We then report the distribution of these game-specific averages in
Table B.1. As these statistics show, the average game is broadcasted by only 2-3 unique streamers
on a given day and is broadcasted by no more than 1-2 streamers at the same time. Additionally,
when top streamers do broadcast a game, those broadcasts are on average almost three hours long.
This long average stream time suggests that most top streamers spend several hours exploring a
given game and showcasing its gameplay rather than picking it up for a few minutes during breaks
in their main activity. Lastly, we note a median game in this sample is never broadcasted by more
than one streamer at any given time. Therefore, for a typical game, our instrument zi j captures the
variation between time periods when nobody broadcasts game j and other periods when one of the
top streamers picks up a game and plays it for several hours.

B.2 Grid search algorithm for δ and β

To solve the minimization problem in (4), we use the following algorithm. We use a golden-section
algorithm for the persistence parameter δ starting from a wide interval (0.001,0.999) and termi-
nating search when the length of the search interval falls below the tolerance level 0.01. Given a
candidate value of δ , we compute a point estimate for the parameter β using the standard closed
form 2SLS formula. The main challenge is how to deal with three high-dimensional fixed effects
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(game-date, time interval, and game-hour of the day). Given that our sample includes approxi-
mately 600 games and 5,300 one-hour time intervals, we need to include approximately 150,000
million fixed effects. To handle the problem of this scale, we use packages reghdfe and ivreghdfe

that rely on an iterative algorithm that was proposed by Guimaraes and Portugal (2010) and was
further optimized by Correia (2016). This algorithm relies on a simple fixed-point iteration prin-
ciple whereby all regression coefficients are partitioned into groups (e.g., by the class of fixed
effects), and the algorithm iterates group-specific first order conditions while fixing the values of
coefficients in all other groups. Guimaraes and Portugal (2010) show that this algorithm converges
to the correct least squares estimates but manages memory more efficiently than the standard esti-
mators.

By combining this algorithm with the golden-section search described above, we obtain point
estimates of parameters β and δ . To compute standard errors clustered at the game-date level, we
perform a block bootstrap that samples game-date pairs from the original sample with replacement
and draws in total 50 bootstrap samples (Efron and Tibshirani, 1994, p. 86). For specifications in
Sections 3-4 in which we do not estimate δ , we do not use bootstrap and instead obtain standard
errors using the standard asymptotic theory of the 2SLS estimators.
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C Robustness Analyses

C.1 Alternative specifications

We explore the robustness of our main results from Section 3 with respect to the (a) included fixed
effects, (b) definition of the instrument Z jt , (c) definition of the time period t, and (d) sample def-
inition. Table C.1 presents the estimates β̂ and δ̂ for different specifications. Rows 1-4 show that
our results are robust to controlling for game-week fixed effects and changing the definition of the
instrument Z jt . Our initial motivation for including game-date fixed effects was that they allow us
to better control for unobserved game-specific events. Nevertheless, the estimate β̂ barely changes
when we instead use game-week fixed effects (an estimate of 0.034 vs 0.033). This result suggests
that, even if game popularity changes within a given week, streamers do not systematically sched-
ule their live streams on days when a game is trending. Similarly, constructing the instrument
Z jt using a different number of lagged values z jt does not seem to affect our estimates. Row 5
shows how the estimates change when we switch from 1-hour time to 10-minute time intervals t.
While this switch makes the estimation computationally burdensome, it changes our results only
marginally. We obtain the estimated elasticity of 0.032 and an implied hourly persistence param-
eter of (0.956)6 = 0.763, which are reasonably similar to our main specification. Row 6 shows
that dropping games that are never broadcasted by the top 5% streamers (i.e., zero variation in the
instrument Z jt) returns estimates 0.034 and 0.849, which, once again, are close to those in the main
specification.

Finally, in row 7 we explore whether our functional form assumptions in (1), especially the
log expressions log(1+ players jt) and log(1+Vjt), generate bias. When removing all games that
have on average less than 10 concurrent viewers or less than 10 concurrent players, we obtain
results similar to our main specification. This finding suggests that our estimates are unlikely to
be mainly driven by the functional form assumptions. Note, however, that we find a somewhat
higher estimate of the elasticity β (0.042 vs 0.033 in the main specification), likely because we are
focusing on more popular games that are likely to be of higher quality.

Appendix Table C.1: Robustness analyses for the main specification in Section 3.
Specification Elasticity β̂ Persistence δ̂

(1) Main specification 0.033 0.828
(2) Main + game-week FEs 0.034 0.794
(3) Main + 6 lags in the instrument Z jt 0.035 0.831
(4) Main + 18 lags in the instrument Z jt 0.033 0.831
(5) Main + 10-minute intervals t 0.032 0.956
(6) Main + drop games without Z jt variation 0.034 0.849
(7) Main + only non-zero players jt and viewers jt 0.042 0.897
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Appendix Figure C.1: Distributed lag regression results. This figure shows the coefficient estimates of
model (8). Vertical bars around point estimates are the 95% confidence intervals.

C.2 Nonparametric estimation of lagged effects

Our geometric decay model in (1) imposes that the concurrent effect of streaming has the same
sign and is stronger than the carry-over effect. However, live streams might distract viewers from
playing the game, thus creating a negative concurrent effect and a positive carry-over effect. To
explore this possibility, we now estimate a flexible distributed lag model that does not impose this
assumption. Specifically, we estimate the following model:

log
(
1+ players jt

)
=

30

∑
τ=0

βτ log
(
1+ viewers jt−τ

)
+λ j,d(t)+µ j,h(t)+ηt + ε jt (8)

We include the same fixed effects as our main specification but model the number of concurrent
players as a flexible function of lagged viewership counts. Although the model (8) does not nest
our main model in (1) as a special case, it gives us an opportunity to examine the shape of the
response function estimated in a more flexible specification. Figure C.1 visualizes the estimates.
Consistent with our main specification, we find that both the concurrent effect and the carry-over
effects are positive. In addition, the estimated effect quickly declines and dissipates almost to zero
within about 10 hours. Therefore, we do not find evidence that our geometric decay in Section 3
imposes overly rigid assumptions on streaming effects.
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D Implementation and Results from Generalized Random Forests
(GRF)

D.1 GRF implementation details

To estimate a causal forest, we use the grf R package developed by Athey et al. (2019). The model
we estimate using GRF is specified in equation (6) of Section 4.3. We estimate the heterogeneous
streaming effects β (X j) using a set of local moment conditions:

E
[
Z jt · ε(x)|λ j,d(t),µ j,h(t),ηt ,X j = x

]
= 0 (9)

where the conditional error term ε jt(x) is defined as ε jt(x) = log(1+ players jt)− β (x) · log(1+
Vjt)− λ j,d(t)− µ j,h(t)− ηt . Note that the model is additive and separable in game-date, game-
hour of the day, and time fixed effects, Using this fact, we first demean the log player counts
Yjt ≡ log(1+players jt), weighted viewership counts Wjt ≡ log(1+Vjt), and instruments Z jt from
these three sets of fixed effects. To demean these variables from three sets of high-dimensional
fixed effects, we use the alternating projection method proposed by Gaure (2013) and implemented
in the lfe R package. Applying the Frisch-Waugh-Lovell Theorem, we then estimate the function
β (x) by using the following local moment conditions:

E
[
Z̃ jt

(
Ỹjt−β (x)×W̃jt

)
|X j = x

]
= 0 (10)

where Ỹjt , W̃jt and Z̃ jt represent the demeaned values of variables Yjt , Wjt , and Z jt . Equation (10)
then represents a standard set of local moment conditions in Athey et al. (2019), which allows us to
estimate β (x) using their grf R package. The grf package only permits one endogenous variable
and one instrument. For this reason, we take the sum Z jt = ∑

t
τ=t−12 δ t−τz jτ , where z jτ is the

number of top streamers broadcasting game j at time interval τ . With these new instruments, we get
similar results to Table 6, where we use lags Z jt =

{
z jt ,z jt−1, ...,z jt−12

}
as separate instruments.

D.2 Tuning

The primary tuning parameter we focus on is the “leaf size” of the forest, defined as the mini-
mum number of observations in each branch of each tree. Choosing a large leaf size stops the
tree-splitting process prematurely and leads to heavily regularized estimates. On the other hand,
allowing for smaller leaves leads to more flexible but potentially noisy estimates.

In our estimation, we split trees using the time-invariant attributes of each game, X j. One should
ideally include all observations of each game into the same leaf, but this is not guaranteed due to the
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random splitting of trees in random forest algorithms. We estimate the heterogeneous streaming
elasticities using a range of tuning parameters that take values n× 5,471, with n = 1,2, ...,8. We
find that choosing a high leaf size regularizes the tail end of the β̂ distribution, whereas choosing
a low leaf size leads to noisier results in our validation exercise (see section D.3). We pick n = 2
to balance between the two considerations. We note, however, that our main qualitative findings
change little when we move to other values of the tuning parameter.

D.3 Validation of GRF estimates

We validate the generalized random forest estimates in two ways. First, we compute the average
elasticities that GRFs predict for games above and below the median of each game attribute X j, and
we compare these elasticities to our median split results from Section 4.2. To this end, we compute
elasticities β̂ j predicted by the generalized random forests for the exact same subsamples. If the
generalized random forests recover the true heterogeneity in streaming elasticities, the average
predicted elasticities should be roughly the same as our median split 2SLS estimates in Section 4.2.
Instead, if the forest does not capture meaningful heterogeneity, the average predicted elasticities
need not be aligned with the 2SLS estimates. Table D.1 compares these two sets of estimates. We
find that the conditional average elasticities β̂ generated by the two methods have the same order
of magnitude and follow analogous patterns. Based on this comparison, we do not find that GRFs
overfit the data and produce an implausible large dispersion of predicted streaming effects.

We also compare the distributions of estimated elasticities obtained in two different ways.
We first use GRF estimates to split games into four groups that correspond to the quartiles of
the estimated elasticities β̂ , and we re-estimate the streaming effect by using a 2SLS regression
with all observations in each quartile group. To obtain the second set of analogous estimates, we
estimate a GRF on 90% of randomly selected games and then predict streaming elasticities β̂ for
the remaining 10% games. We then visualize the averages of these out-of-sample predictions for
the same quartile groups as before, averaging across 10 iterations, each of which holds out a 10%
subsample of games and estimates a GRF on the remaining data. Figure D.1 compares the two sets
of estimates by reporting quartile averages and confidence intervals. We find that the out-of-sample
elasticities predicted by GRF monotonically increase across the four groups, which are defined by
in-sample GRF predicted elasticities. We also find that average out-of-sample elasticities in the
four groups align with in-sample 2SLS elasticity estimates. These findings suggest that generalized
random forests indeed recover meaningful heterogeneity in streaming effects across games.
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Appendix Table D.1: Comparison of estimated elasticities β̂ j from median splits and the GRF.
Median Splits Generalized Random Forests

Estimate
β̂

S.E. Average
β̂ j

Average
S.E.

Game age: New games (≤2.5 years old) 0.034 (0.004) 0.030 (0.015)
Old games (>2.5 years old) 0.032 (0.008) 0.028 (0.008)

Publisher size: Small publisher (1 game) 0.053 (0.011) 0.038 (0.016)
Large publisher (2+ games) 0.018 (0.003) 0.021 (0.008)

Price: Inexpensive (<$20) 0.046 (0.010) 0.037 (0.017)
Expensive (≥$20) 0.023 (0.004) 0.021 (0.007)

Quality: High quality (meta score >80) 0.041 (0.010) 0.024 (0.005)
Low quality (meta score ≤80) 0.028 (0.004) 0.031 (0.014)

Variance: Niche games (rating std. >2.4) 0.050 (0.010) 0.038 (0.009)
Mainstream games (rating std. ≤2.4) 0.008 (0.002) 0.012 (0.006)

D.4 Visualizing the GRF results

In Figure 5 of Section 4.3, we visualize the estimated elasticities β̂ (X j) for two game attributes at
a time, while holding all other attributes fixed at their average levels. To construct these graphs, we
first generate a grid of values for each dimension in X j with a step equal to a 5% quartile of the ob-
served unconditional distribution. We take the Cartesian product of these uni-dimensional grids to
create a five-dimensional grid in the space of five attributes in X j. When visualizing estimated elas-
ticities in Figure 5, we show the estimated elasticities β̂ (X) for each point on a two-dimensional
grid, for the two selected game attributes, and we average the predicted β̂ ’s across all other di-
mensions of X j. One can interpret these graphs as visualizing the conditional average treatment
effects (CATE) for selected pairs of game attributes. One concern is that some combinations of
attributes in these graphs are unrealistic and are never observed in the actual data. To this end,
in the right panel of Figure 5 we additionally visualize the empirical density of game attributes,
which helps to understand which areas of the estimated elasticities β̂ (X) rely on the extrapolation
of GRF estimates.
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Appendix Figure D.1: Out-of-sample validation of GRF results. The graph splits games into four quartiles
based on the estimated distribution of streaming elasticities β̂ . We compare two sets of estimates in each quartile. First,
we estimate a GRF on 90% of randomly selected games and then predict streaming elasticities β̂ for the remaining 10%
games. We then use the GRF estimates to predict elasticities out-of-sample and present the mean predicted elasticities
by group. Second, we estimate linear models using 2SLS, separate by each quartile, and present the in-sample average
elasticities. We fix the leaf size at 2×5471 (see Section D.2).
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Leaf size = 1×5471 Leaf size = 3×5471
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Appendix Figure D.2: GRF validation results: alternative leaf-size parameters. These four panels
report the validation exercise in Figure D.1 under alternative leaf-size parameters n× 5,471, where n =

1,3,5,7.
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E ROI Calculation Details

We compute the predicted lift in the number of players (∆players j) in (7) as follows. We assume
that prior to the sponsored broadcast, the number of viewers of game j, viewers jt , is in a “steady-
state” and is equal to the average number of viewers we observe in our sample. Therefore, the
viewership stock Vjt is also constant over time prior to the sponsored broadcast. We fix the persis-
tence parameter at δ = 0.828 to simplify the analysis. When the broadcast starts, a top streamer
goes live and increases the number of viewers who watch game j on Twitch. To predict the size
of this increase, we regress the log number of viewers log(1+ viewers jt) on the number of active
top streamers z jt observed in our data, estimating the regression separately for each game to ob-
tain game-specific viewership lifts. We then compute the predicted lift in the number of players,
∆players j, as

∆players j = β
spons
j ×

(
log

(
1+Vj1

)
− log

(
1+Vj0

))
×playersbaseline

j . (11)

where Vj0 is the observed “steady-state” viewership stock absent the sponsored stream, Vj1 is the
counterfactual viewership stock with the sponsored stream, and β

spons
j is the streaming elasticity

of game usage with respect to the number of viewers brought into the game by sponsored streams.
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F Additional Figures and Tables

Appendix Figure F.1: Many popular Twitch streamers have exuberant and memorable per-
sonalities, which makes their content funny and entertaining. The figure shows screenshots
from broadcasts of Twitch streamers Dr. Disrespekt (top left), Sydeon (top right), KayPea (bottom
left), and Tyler1 (bottom right).
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Appendix Figure F.2: When are games played and streamed?

Appendix Figure F.3: When are games played and streamed? (continued)
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Appendix Figure F.5: A screenshot of the streamer’s view of the Twitch Bounty Board. Source:
https://help.twitch.tv/s/article/bounty-board-program-information-and-faq.
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Appendix Figure F.6: The promotion campaign of Amazon Games for the new game “Lost Ark”. The
top panel shows a screenshot from the official website of the game (lostark.com), which describes in-game
perks that streamers can earn by broadcasting the game on Twitch. The bottom panel is screenshot that
shows the most popular live streams on Twitch on February 15, 2022, a few days after the release of the
game. Most major streamers on that day were playing “Lost Ark” live to take advantage of the promotion
campaign.
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Appendix Table F.1: Examples of games by age, rating, and developer size.
Value No.

games
Share
games

Most streamed games (by total hours streamed)

By game
age:

<1 years 173 28.8% Apex Legends, FIFA 21, Sea of Thieves, Phasmophobia
1-3 years 138 23.0% Destiny 2, Day Z, Hunt Showdown, Red Dead Redemption 2
3-5 years 107 17.9% Dead by Daylight, PUBG, Rust, Black Desert
5+ years 181 30.2% Grand Theft Auto V, Counter-Strike Global Offensive, Dota

2, Rocket League
By developer
size:

1 game 283 47.2% Dead by Daylight, Destiny 2, PUBG, Rocket League
2-5 games 115 19.2% Apex Legends, FIFA 21, Rainbow Six Siege, Sea of Thieves
6-10 games 135 22.5% Old School RuneScape, World of Tanks, DayZ, SMITE
11+ games 66 11.0% Grand Theft Auto V, Counter-Strike Global Offensive, Dota

2, Red Dead Redemption 2
By
Metacritic
score:

0-75 130 21.7% Dead by Daylight, FIFA 21, Sea of Thieves, Rust
75-80 117 19.5% Tom Clancy’s Rainbow Six Siege, Phasmophobia, Old

School RuneScape, World of Tanks
80-85 116 19.4% Counter-Strike Global Offensive, Destiny 2, Final Fantasy

XIV Online, Hunt Showdown
85-100 103 17.2% Apex Legends, Grand Theft Auto V, Dota 2, PUBG

no-rating 133 22.2% VRChat, Marbles on Stream, Eternal Return
Total: 599 100% Apex Legends, Grand Theft Auto V, Dead by Daylight,

Counter-Strike Global Offensive, Dota 2

The table is based on the sample of 599 Steam games we use for our main analysis. We define game age as the number
of years since its official release date. The developer size is defined as the number of games a given developer released
among the 599 titles in our sample. The variable game age captures the number of years passed between the official
release of the game and the beginning of our data collection on May 11, 2021. The regular price corresponds to the 95-
th percentile of the distribution of daily prices we observe for a given game, which usually captures the non-discounted
price.

Appendix Table F.2: Average attributes of games with the highest and lowest estimated
streaming elasticities.

Estimated streaming elasticities β̂ Welch t-statistic
Highest 10% Lowest 10% (H0: equal mean)

Game age (in years) 4.4 6.7 -3.60∗∗∗

Publisher size (# games) 3.1 10.4 -7.84∗∗∗

Regular price (dollars) 6.6 24.4 -5.00∗∗∗

Metacritic rating 77.2 80.9 -2.01∗∗

Std. consumer rating 2.8 1.9 7.42∗∗∗

This table describes the generalized random forest results by reporting the average characteristics X j of the 60 games
with the highest estimated elasticities β̂ and the 60 games with the lowest estimated elasticities β̂ . The last column
presents the Welch t-statistic (null hypothesis: the two samples have equal mean). ** and *** indicate that the mean
of the two samples are statistically significantly different at the 5% and 1% level.
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