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Abstract

This paper considers an experimental-based approach to the optimal design and targeting of

compliance promotions. Compliance promotions involve optional participation on the behalf of

customers. For example, physicians must consent to see detailers, and consumers must redeem coupons

to obtain discounts. Individual compliance decisions affect the mix of customers participating in the

promotion, and therefore how the promotion affects sales. Optional compliance is an especially acute

problem in the context of field experiments, as policy optimization often necessitates extrapolation

beyond the observed cells of the experiment to a different mix of complying customers.

Our approach to extrapolation from field experiments involves: i) an experiment to exoge-

nously vary promotion features; ii) a means to identify which promotion features can be causally

extrapolated; iii) an approach to extrapolate those causal effects, and iv) an optimization over

the promotion features, conditioned on the extrapolation. The extrapolation approach is easy to

estimate, accommodates two-sided non-compliance due to unobserved heterogeneity, and establishes

partial identification bounds of causal effects. Applying the approach to a hotel loyalty promotion

where customers must visit enough hotels to earn bonus loyalty points, we find extrapolations that

ignore effects of unobserved heterogeneity on outcomes can lead to sub-optimal promotional designs
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1 Introduction

1.1 Overview

Consider a credit card retention offer designed to prevent customers from attriting. The card issuer

faces two major questions when developing this promotion: i) who should receive the offer (targeting),

and ii) what the level of the retention offer should be (design). To aid these decisions, firms often

conduct field experiments to ascertain how different consumer segments respond to promotions with

various features (Ascarza, 2018). Upon observing customer responses in the field experiment, the firm

can simply choose, for each segment, the offer with the highest expected customer profit, net of reward

costs. For example, a common credit card promotion offers a retention bonus to customers who renew,

in the hopes that the subset of customers encouraged by the bonus to renew then spends enough

to offset the total cost of the retention bonuses. Using an experiment, the credit card issuer might

learn that a $50 retention bonus generates higher net profit than a $25 bonus. However, this simple

example raises the question of whether a lower ($20), intermediate ($40), or higher ($60) retention

bonus might be even more profitable. Unless the card issuer includes $20, $40, and $60 reward levels as

part of the original experiment, it will be necessary to interpolate or extrapolate customer spending

and promotion costs to these new reward levels.1

One option available to the card issuer is to regress customer spending on the reward levels included

in the experiment, and use a linear extrapolation to predict spending at other reward levels. But such

an approach might ignore how different reward levels affects the mix of customers retained by the

promotion, and how average spending after renewal varies: i) across different mixes of customers for

the same promotion, and ii) within the same mix of customers for different promotions. For example,

customers who renew their cards when offered larger bonuses might be more price-sensitive than those

who renew when offered smaller bonuses. If retention rates and the average spending among retained

customers are both linear functions of the reward offered, then a linear extrapolation might make sense.

But even small changes to the mix of retained customers might correspond with large differences in

post-retention spending, contradicting the assumed linearity, and thereby biasing predictions. Moreover,

unobserved factors that simultaneously affect: i) which customers satisfy the terms of promotion (e.g.,

renewal), and ii) the outcome of interest (e.g., post-renewal spending), can further complicate the task

Science Conference; as well as Bryan Bollinger, Andrey Fradkin, Xiang Hui, Przemyslaw Jeziorski, Garrett Johnson,
Aurélie Lemmens, Martina Pocchiari, Kosuke Uetake, and Levin Zhu for helpful comments and suggestions; and Siddharth
Prusty for research assistance.

1 Hereafter we use extrapolation to refer to both interpolation and extrapolation, and interpolation when referring
exclusively to interpolation.
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of extrapolation from experimental results, and thus the optimization of the promotion.

The goal of this paper is to clarify the nature of these complications, demonstrate how ignoring

them can lead to suboptimal promotions, provide practical guidance for how to overcome these issues,

and illustrate our approach with an empirical application. We consider the optimal design of promotions

in settings where: i) the promotion’s features and unobserved customer heterogeneity jointly determine

the mix of customers whose behavior satisfies the terms of the promotion; and where ii) this particular

mix of customers determines the incremental, net profit generated by the promotion. We refer to such

promotions as compliance promotions because they are characterized by what is termed two-sided

noncompliance in field experiments—customers who are not offered the promotion may nevertheless

behave in a way that satisfies its terms, and customers who are offered the promotion might not take

advantage of it.

Compliance promotions in marketing are commonplace. The credit card retention offer described

above is one example. Another is coupons: Only a fraction of consumers who receive coupons end up

using them, those who do redeem coupons may differ from those who do not, and some customers

who redeem coupons might have purchased even without the coupon (Venkatesan and Farris, 2012;

Noble et al., 2017; Ghose et al., 2019). Another example is pharmaceutical detailing, where physicians

who consent to meet with detailers might already exhibit prescribing behavior that differs from

physicians who decline to meet (Narayanan and Manchanda, 2009; Montoya et al., 2010). Loyalty

reward promotions are yet another example, where only a small portion of customers reach the

promotion’s purchase threshold as a consequence of being offered a reward, with the remainder reaching

or not reaching the threshold irrespective of the reward offer (Kumar and Reinartz, 2018). Our empirical

application (Section 2) is based on a major hotel chain’s field experiment of loyalty reward promotions.

For these and other compliance promotions, the incremental margin (revenue less selling costs) from

the promotion is generated entirely (or nearly so) by the subset of customers who will satisfy the terms

of the promotion if they are offered the coupon, meeting, or reward—but who, without the offer, would

not satisfy the terms of the promotion. In the literature on experiments with two-sided noncompliance,

these individuals are referred to as compliers.2 Customers who meet the terms of the promotion,

regardless of whether they are offered it, are referred to as always-takers in the literature. Although

their behavior does not affect the gains from the promotion, it may contribute to the promotion’s fixed

2 Here and throughout this paper, we make the standard assumption that there are no defiers—customers who would
satisfy the promotional terms if they were not offered the promotion, but would not satisfy the terms if they were offered
the promotion.
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costs (e.g., if all customers making a purchase receive a reward).

Thus, central to the task of optimizing most compliance promotions with data from field experiments

is: i) obtaining consistent estimates of the proportions of compliers and always-takers, and the average

change in the outcome variable (e.g., margin from purchases) among compliers; and ii) extrapolating

these estimates to promotions that were not part of the original experiment. We outline an approach

to identify when the extrapolation of these causal effects is feasible. We further show that while some

approaches to extrapolation may be appropriate when compliance is not a concern, they are usually

ill-suited for compliance promotions. Such approaches are typically predicated on an unconfoundedness

assumption—that there are no unobserved factors that simultaneously affect: i) whether a customer

satisfies the terms of the promotion, and ii) the (potential) outcomes that arise if that customer does

nor does not satisfy the promotion’s terms. We show, theoretically and empirically, that failing to

account for these unobserved factors can lead to biased predictions and suboptimal promotion designs.

There are situations in which optimizing compliance promotions using data from a field experiment

is not as complicated as we have characterized. First, if one can observe (in data) all of the factors that

are believed to jointly affect whether a customer meets the terms of a promotion and their potential

outcomes, then the unconfoundedness assumption is appropriate. One can then apply a wide array of

tools to estimate (and extrapolate) causal effects, and use these to find a set of optimal promotions (see

Powers et al., 2018 and Jacob, 2020 for recent summaries). Second, in settings where the optimality of a

promotion is invariant to the mix of customers (within each segment) who meet the terms, then one can

sidestep issues of two-sided noncompliance entirely by focusing on intent-to-treat (ITT) effects. Hitsch

and Misra (2018), for example, use a randomized experiment to consider the effect of catalog targeting

on profits across customer segments. Whether a customer uses a catalog is likely confounded with how

much profit they generate, but due to random assignment within the experiment, the intent-to-treat

effect of mailing catalogs is not confounded with profits. Moreover, the retailer incurs the cost of the

promotion when they mail a catalog, not when the customer uses it to make a purchase. Because the

effect of catalog use on compliers’ spending is accounted for by the ITT effects, and the promotion’s

costs are independent of which customers are compliers, the task of finding an optimal promotion can

proceed by: i) ignoring compliance altogether by assuming that the unobserved factors driving catalog

use have the same effect on spending for all customers, and ii) extrapolating incremental intent-to-treat

effects to new groups of customers. Third, and perhaps trivially, on rare occasions there may be only

a finite set of promotions under consideration. If one can design a field experiment measuring the
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net profit from each promotion (plus a control condition of no promotion offer), then the optimal

design can be derived directly from the experimental data without the need for extrapolation. In

all other settings—where unobserved customer heterogeneity jointly affects who meets the terms of

the promotion and their outcome of interest; where the profitability of the promotion depends on

this mix of customers; and where extrapolation outside the cells of a field experiment is desired—the

complications just described are consequential.

1.2 Understanding and Overcoming Challenges When Optimizing Compliance

Promotions

To illustrate our approach, consider a hypothetical supermarket loyalty promotion. In this promotion,

customers who spend at least $50 during a shopping trip in the next week will earn a $10 discount on

tickets to a popular, local theme park. The net profit from the promotion depends on two factors.

One is the increase in store margin generated by compliers—customers spending $50 or more, but

only because they are offered the promotion (otherwise they would spend less than $50). The other

factor is the cost of the ticket discounts, which depends on the total number of customers spending

$50 or more, regardless of whether they are compliers or always-takers. The optimal design of this

compliance promotion would consider: i) the minimum level of spending (the hurdle), and ii) the size

of the discount on tickets (the reward). The optimal targeting of this promotion would consider which

designs are best for which customers. The objective of the firm is typically to first choose the target,

and then optimize the design of the promotion offered to each target in order to maximize short-term

profits.

Our approach assumes that the firm is able to conduct a randomized field experiment among a

random sample of (potentially) targeted customers. In this field experiment, customers are randomized so

that some are offered a promotion (the offer group), and the remainder are not offered a promotion (the

control group). Within the offer group, customers are further randomized to be offered promotions with

different features. In the supermarket example, the store might randomize the hurdle (minimum spend)

over the values {$40, $50, $60}, and the reward (ticket discount) over the values {$7.50, $10, $15}.

After the experiment, the store would observe for each customer: i) which promotion they were offered,

if any; ii) their promotion status—whether their behavior met the terms of the promotion (spend ≥

hurdle, D = 1) or not (D = 0), regardless of whether they were in the offer or control group; and iii)

their outcome—how much store margin they generated during the promotion, Y . The causal effects of

primary interest are, for each promotion design, the changes in margin among compliers and the total
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cost of the rewards. Furthermore, the store would like to extrapolate these causal effects to hurdles and

rewards that were not in the experiment. As we show, the supermarket in this example faces several

challenges when attempting to extrapolate its outcomes.

The first challenge arises due to the unobserved factors that affect both promotion status (D) and

the outcome (Y ), as this unobserved confounding raises the risk of selection bias. To address this

issue, we use methods based on marginal treatment effects (MTEs) and instrumental variables for the

estimation and extrapolation of causal effects in the face of unobserved heterogeneity and experimental

noncompliance (Heckman and Vytlacil, 1999; Heckman and Vytlacil, 2005; Mogstad and Torgovitsky,

2018; Mogstad et al., 2018). An MTE is the expected causal effect of a treatment (e.g., a change

in promotion status) on an outcome of interest (e.g., spending), conditioned on a specific realized

level of observed and unobserved customer heterogeneity. The MTE serves as a building block for

defining, estimating, and extrapolating more complex treatment effects (Heckman and Vytlacil, 2007).

A causal effect that is especially relevant for compliance promotions is the policy-relevant treatment

effect (PRTE; Heckman and Vytlacil, 2001). The PRTE of interest in the supermarket example is

the incremental, net profit from offering a promotion with a particular hurdle and reward (versus

not offering a promotion). This PRTE is increased by the incremental margin among customers who

comply with the promotion offer, and decreased by the reward costs of the promotion.3 By comparing

(extrapolated) PRTEs for promotions with different features, we can identify a subset of promotions

that yield the greatest expected, incremental profit.

A second challenge is that, for some features of a promotion, it might not be possible to extrapolate

causal effects to levels that were not part of the original experiment. In particular, it is only possible to

extrapolate causal effects over promotion features that are valid instrumental variables for compliance

status. That is, these promotion features need to satisfy an exclusion restriction, meaning they have a

direct causal effect on which customers comply with the promotion, but otherwise no direct effect on

the outcome. In the supermarket example, the size of the ticket discount arguably has such a property:

It provides an incentive to spend enough to reach the hurdle, but otherwise has no meaningful direct

effect on spending. For example, we would not expect customers willing to spend $50 to receive a $10

theme park discount to spend more than $50 if they were instead offered a $15 theme park discount.

3 The term comply here refers specifically to the pattern of behavior whereby: i) a customer is offered a promotion, ii)
their behavior meets the terms of the promotion (D = 1), but iii) they would not have met the promotion’s terms (D = 0)
had they not been offered the promotion. When we refer to the causal effect of compliance on an outcome, we mean the
difference between the outcomes that would arise for one of these complying customers at D = 1 if offered the promotion,
versus their outcome at D = 0 if not offered the promotion.
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By contrast, the spending hurdle in this example does not have this property: It not only affects the

incentive to meet the terms of the promotion, but also has a direct effect on how much customers

spend. For example, some customers who would spend $50 to receive the tickets might spend $60 if

their offer had $60 as the hurdle.

One key insight that emerges from our approach is that it is not possible to extrapolate causal

effects for promotion features that have a direct effect on the outcome of interest, even if the levels of

those features are manipulated experimentally. Our approach thus entails extrapolating causal effects

over promotion features that are (conditionally) excludable from the outcome (i.e. valid instruments) to

levels not observed in the original experiment. Yet these extrapolations are, by necessity, conditional on a

particular instance of all other variables that do not satisfy the exclusion restriction. In the supermarket

example, the store can estimate, conditional on any spending hurdle found in the experiment, an

extrapolated PRTE at reward levels not included in the original experiment. Moreover, it can compare

these PRTEs across different spending hurdles to obtain the promotion with the highest expected

profit. But it cannot use the results of the experiment to extrapolate the profitability of promotions

with hurdles that were not in the original experiment.

Given the subtlety of this restriction on which promotion features can be used to extrapolate causal

effects, we believe it is frequently violated in practice. To underscore this point, we offer two examples of

experimental contexts where the unconfoundedness assumption may not hold, yet extrapolation without

an instrumental variable was employed. The first example comes from Danaher (2002), who considers a

subscription plan for a telecommunications product. Analyzing a field experiment to assess the effects of

access fees and per-use charges on retention and usage levels, Danaher (2002) extrapolates both beyond

the manipulated levels to optimize plan pricing. In this context, retention corresponds with D and

post-retention usage with Y ; access fees and per-use charges are the randomized promotion features.

While the access fee might well be a valid instrument (affecting retention, but not directly affecting

usage), the per-use charge clearly has a direct effect on usage, and thus is not a valid instrument. More

recently, Tian and Feinberg (2020) explore the effect of duration-based discounts for subscriptions to an

online dating site, where the base price and a discount for longer subscriptions are both manipulated

experimentally. In their context, subscribing is D and the plan that is purchased is Y ; the base price

and discount levels are randomized promotion features. Both base price and discounts for longer

subscriptions have direct effects on the chosen plan, thus neither is a valid instrument for subscribing.

In both examples, causal effects are extrapolated over variables that simultaneously alter: i) the
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composition of customers complying with the promotion (via D), and ii) the causal effect among that

same group of customers (via Y ). But experiments with noncompliance due to unobserved heterogeneity

cannot separately identify these effects. Thus these and similar extrapolations in the literature rest on

very strong behavioral assumptions that might not be obvious.

A second set of insights from our approach pertains to the role of unobserved heterogeneity on

optimal promotional design. Our empirical application illustrates how ignoring unobserved heterogeneity

in treatment effects leads to recommended optimal incentives offered that are as much as 50% too large,

and predicted profits 100% too high. Likewise, commonly invoked assumptions such as: i) outcomes are

monotone increasing with unobservables, or ii) the marginal effects of the unobservables on outcomes

are independent of the observables (e.g., Heckman, 1979; Lee, 1982) are not supported by the data.

Invoking either of these assumptions also leads to sub-optimal promotional design.

In sum, our approach consists of conducting an experiment to vary the promotional design, specifying

the design parameters that are conditionally excludable and thus can be extrapolated, applying an

MTE approach to accommodate unobserved confounding, and using the resulting causal estimates to

design optimal promotions for each target. We describe this approach and illustrate its value with an

empirical example, in which an international hotel chain seeks to optimize a compliance promotion

using data from a field experiment.

1.3 Related Literature

A growing literature in marketing pertains to the extrapolation of causal effects for targeted promotions,

whereby causal effects are estimated from field experiments and then extrapolated to customer segments

not directly represented in the original experiment (Ascarza, 2018; Hitsch and Misra, 2018; Dubé and

Misra, 2021; Simester et al., 2020b,a). Our focus is instead on extrapolating causal effects to new

promotion designs, in settings where there is unobserved customer heterogeneity, and compliance with

the promotion is not mandatory.

We apply our approach to optimizing compliance promotions in the context of loyalty promotions

(see Kumar and Reinartz, 2018 for a summary). Overall, our research differs from this stream of loyalty

promotion research on a number of dimensions. First, our emphasis is on optimizing the design and

targeting of short-term loyalty promotions within a loyalty program, rather than optimizing the terms

of long-term loyalty programs. Second, our approach relies on field experiments to estimate the effects of

different promotion features on outcomes, where, owing to the practical limitations of such experiments,

extrapolation is necessary.
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Our empirical application is most similar to that of Wang et al. (2016), who study the effects of

promotion compliance on purchase behavior after the promotion has ended. Their analysis entails

measuring how different spending hurdles affect the total length of hotel stays during and after the

promotion period. They experimentally manipulate spending hurdles, and recover causal effects on

hotel stays using: i) a regression model of promotion status as a function of customer demographics;

and ii) a Tobit model of nights stayed as a function of promotion status. Our application instead

focuses on optimizing promotions using similar experimental data, and with a more robust approach to

extrapolation (e.g., an implicit assumption in Wang et al. (2016) is that the effect of unobservables on

outcomes is independent of hurdle levels, implying that the marginal customers attracted by different

hurdle levels are identical). In addition, our empirical application emphasizes the optimization of

rewards, conditional on hurdles, and we argue that the extrapolation over hurdles in Wang et al. (2016)

is not valid in this setting.

A third stream of relevant research relates to the estimation of MTEs using instrumental variables

(Mogstad et al., 2018; Heckman and Vytlacil, 1999). We build on this research in several ways. First, we

outline conditions under which it is possible to extrapolate causal effects from field experiments involving

compliance promotions, and illustrate these using Pearl’s causal framework (Pearl, 2009). Second, we

adapt MTE estimation approaches to the context of compliance promotions, and demonstrate the

suitability of these approaches in these contexts. We find that approaches predicated on more restrictive

assumptions about the impact of unobserved factors on outcomes (analogous to the restrictions

embedded in the Heckman selection model; Heckman 1979; Lee 1982) perform poorly in our empirical

context, incorrectly doubling predicted profit lifts. Third, we couple the MTE estimation of causal

effects with optimization in the context of compliance promotions to enable their use in marketing

settings—settings where not only customer margins, but also promotion costs depend on the mix of

customers who comply with the promotion. Fourth, we prove that commonly used linear extrapolation

approaches in experimental contexts, such as linear regression assuming unconfoundedness, or linear

extrapolation of nonparametric intent-to-treat effects, are likely to be badly misspecified in all but the

most exceptional circumstances.

In summary, the marketing literature is replete with field experiments involving compliance

promotions, but bereft of a general framework to analyze them. Studies that optimize compliance

promotions by extrapolating causal effects outside the bounds of the experiment do not discuss

whether the data from the field experiment can identify the extrapolated effects. Even in cases where
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extrapolation is potentially valid, causal effects are often estimated using restrictive assumptions about

the nature of unobserved customer heterogeneity. This study advances our understanding of compliance

promotions, and provides concrete guidance for how to estimate and extrapolate causal effects in this

common, but complex setting.

2 Data and Descriptive Analysis

Throughout the paper, we use a field experiment involving a compliance promotion offered by a major

hotel brand to exemplify the extrapolation of causal effects. Our approach is intended to generalize

to most compliance promotion settings, so the context is predominantly illustrative of the approach.

This section first details the empirical setting and field experiment, and reports descriptive analyses

showing that the promotional design has a substantial effect on customers’ purchases. We then apply a

simple, non-parametric approach to optimizing promotional designs within the cells of the experiment,

showing profit gains across the experimental cells. The findings from this analysis serve to motivate

the potential to improve profits further via a valid extrapolation approach, which we describe in the

following sections of the paper.

2.1 Example Empirical Setting

We exemplify our extrapolation procedure with a reward promotion conducted by the InterContinental

Hotels Group (IHG), a prominent multinational hospitality company with $4.6B in annual revenue

during 2019.4 IHG’s 16 brands include Holiday Inn, Crowne Plaza, and Intercontinental. IHG offers a

loyalty program which customers may join for free.

Customers in this program are sorted into four categorical loyalty tiers, T , based on their past stay

and spending behaviors across all IHG brands, with higher tier customers receiving premium services.

In addition, for the experiment period, IHG uses a proprietary algorithm to predict an integer number,

B, of each customer’s expected stays at a specific IHG hotel brand (henceforth Hotel Chain A) in the

absence of the promotion, called a “baseline.” Whereas tier T categorizes overall spending at the IHG

brand, baseline B categorizes stays at Hotel Chain A. Both are used to customize promotional offers,

as we will describe shortly. Amongst the various specific promotional offers available to its loyalty

program members, we consider compliance promotions wherein customers are offered R bonus reward

points if they reach a hurdle of staying at H (or more) different hotels of Hotel Chain A, within a

defined time period. The bonus points can be redeemed for benefits such as future stays, digital goods

such as eBooks or games, and merchandise (each 1,000-points are worth about $6.80). Customers

4 https://www.ihgplc.com/en/investors/2019-annual-report, accessed on May 9, 2021.
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self-select into meeting the terms of the promotion by reaching the hurdle (D = 1) or not (D = 0).

2.2 Field Experiment

In this subsection we describe the experimental design and summarize the outcomes in terms of stays

and profits.

2.2.1 Experimental Conditions and Randomization

In 2017, IHG launched a four month field experiment by assigning 23,583 randomly selected customers

into an offer group (16,034 customers) and a control group (7,549 customers).

Offer Group. Customers in the offer group are offered a reward promotion of the form “Receive R

bonus points for staying at H different hotels of Hotel Chain A within the next 4 months.” These

customers are further randomized, within experimental blocks defined by their combined values of

baseline B and tier T , to receive different promotions. Promotions differ in their values of H and R,

and within each block of baseline and tier, up to 4 promotions are offered. For example, a customer

in tier T = 2 with predicted baseline visits of B = 3 might be offered a promotion with H = 4 and

R = 13,200, meaning they would receive 13,200 bonus points if they stay at 4 or more different hotels

of Hotel Chain A over the 4-month duration of the experiment. Customers within the higher baseline

groups are offered promotions with higher hurdles (and correspondingly more bonus points) as it would

otherwise be too easy for them to surpass the hurdle and earn the reward.

Control Group. Customers in the control group are not offered a reward promotion, so R = 0, and

H is undefined. For the purpose of comparing customers in the offer and control groups, however, it is

advantageous to define a value of H for customers in the control group. Thus, we randomly sample

values of H for customers in the control group, using the empirical distribution of hurdle levels among

customers in the offer group with the same baseline and tier. Conceptually, customers in the control

group meet the terms of the promotion if they stay at H or more hotels, but they receive R = 0 points.

Randomization. Approximately 68% of the sample is assigned to the offer group within each of the

51 experimental blocks defined by unique pairs of baseline and tier. As a randomization check, we

conduct a χ2 test of the null hypothesis that the distribution of baseline-tier blocks is the same within

the offer and control groups. The test cannot reject the null hypothesis, showing no evidence of an

imbalance in random assignment (χ2
50 = 63.8, p = 0.0902).

Table 1 presents key statistics for baseline, tier, hurdle, and reward. With coefficients of variation

around one, there appears to be sufficient variation to assess how these variables affect the outcome

variable, stays.
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Figure 1: Differences in Average Rate of Hurdle Achievement and Stays Between Offer and Control Groups,
Across Baselines, Tiers, and Hurdles. The y-axis shows the difference in proportion of customers reaching the
hurdle (left) and average stays (right) between the offer group (O) and control group (C). The x-axis groups
observations by the difference between the hurdle and the baseline (H −B).

2.2.2 Experimental Outcomes for Hurdle Achievement and Stays

Across the sample, the average number of stays is 2.02 (S.D. = 2.60, Min = 0, Max = 26), but average

stays varies with experimental assignment and baseline-tier. To illustrate this point, Figure 1 depicts

the difference in average stays and rates of hurdle achievement between offer and control groups for

each baseline-tier-hurdle combination. The preponderance of positive values in Figure 1 indicates that

the offer group is more likely to reach the hurdle than the control group (left), and accordingly the offer

group has a higher average number of stays (right). Controlling for each baseline-tier experiment block,

the average rate of hurdle achievement is 2.6 percentage points higher in the offer group (two-sided

z = 4.825, p = 1.4 · 10−6), and average stays are 0.09 higher (two-sided z = 3.341, p = 0.0008).

Mean S.D. Min Max

Baseline, B 2.67 2.04 0 17
Tier, T 2.36 0.89 1 4
Hurdle, H 3.69 2.03 2 19
Reward (1,000s points), R 6.22 5.54 0 54

Table 1: Summary Statistics of Stays, Baseline, Tier, Hurdle and Reward. Tiers 1–4 contain 14.7%, 47.9%, 24.1%,
and 13.3% of customers, respectively. The value R = 0 corresponds with the absence of an offered promotion in
the control group.
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2.2.3 Profits from Promotions

We next illustrate the extent to which the experimental outcomes can be used to improve the profitability

of loyalty promotions. We first construct a policy relevant treatment effect (PRTE). As shown in

Appendix A, this PRTE is derived from a more primitive conditional local average treatment effect

(CLATE) among customers with baseline B and tier T who comply with a promotion with hurdle H

and reward R. Focusing for now on values of R and H that were included in the experiment, this

PRTE is: i) the expected change in margin due to customers complying with a promotion with hurdle

H and reward R; minus ii) the expected cost of the reward points for the promotion. Conditional on a

target set of customers and hurdle, denoted X ≡ {B, T,H}, the PRTE for a promotion with a reward

of R = r is

PRTEX(r) = N · (E[Y |X,R = r]− E[Y |X,R = 0]) ·mgn−N · cpp · r · E[D|X,R = r], (1)

where cpp and mgn are the expected cost per reward point and expected margin per stay used by

IHG, and N is the total number of customers in the target group with baseline B and tier T .5 Due to

random assignment of H and R within blocks defined by values of B and T , nonparametric estimators

for the expectations of Y and D, conditional on X = x and R = 0 or R = r, can be obtained from

their conditional averages in the experimental data.

The steps involved to compute this estimator are as follows:

1. Obtain expected margins per stay, mgn, and the expected cost per reward point, cpp, from IHG.

2. Estimate the total profits, Π̂x,r ≡ P̂RTEx(r), for each X = x and R = r in the experiment

(including R = 0, using observations from the control group). These estimates are based on

average stays, Y , and promotion status, D, observed in the data.

3. For each cohort of customers with the same X = x, compare the average profit across reward

levels, R, to ascertain which reward level from the experiment yields the highest expected profit

for the target, r∗x ≡ argmaxr Π̂x,r.

4. Compute the counterfactual total profits if all customers had been assigned to the most profitable

reward level for their cohort, Π̂∗
x ≡ Π̂x,r∗x .

5 Our PRTE example considers only changes in reward points, but not changes in hurdles. As we explain in Section 3.2,
extrapolations of the PRTE for changes in hurdles are not identified in our data context. More generally, identification of
extrapolated PRTEs requires that the policy relevant treatment variables are conditionally excludable from outcomes. See
Section 3.2.1.
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Baseline Tier Hurdle
Profit Gain Number of
Percentage Customers

1 1 2 2.77 2629
1 2 2 2.32 4141
1 3 2 14.30 725
1 4 2 0.00 127
2 3 2 23.45 152
2 4 2 9.80 114
2 1 3 0.00 705
2 2 3 1.84 4297
2 3 3 9.45 1255
2 4 3 18.59 285

Weighted Profit Number of
Gain Percentage Customers

Baselines 1 and 2 only 3.95 14,430
Other baselines 13.71 9,153
All customers 7.73 23,583

Table 2: Gains by Reassigning Customers to the Most Profitable Reward Levels. Detailed results are shown for
14,430 customers with the two most common values of baseline, 1 and 2, whose average profit gain is 3.95%.

5. Finally, compare the profit levels obtained from Step 4 to the profit levels if all customers were

assigned to the control group to evaluate the profit lift, Π̂∗
x − Π̂x,0.

Table 2 presents the results of this analysis in terms of profit lift. With 85 baseline-tier-hurdle

cohorts, we focus on 10 cohorts to facilitate exposition, and average the results across the remaining

baseline-tier-hurdle cohorts (weighted by the number of customers in each cohort). Overall, redesigning

the reward promotion would yield a profit gain of 7.73%, showing substantial potential for profit

optimization within the range of the experimental variation.

To further illustrate the insights from the non-parametric PRTEs, we focus on the case of B = 2,

T = 2, and H = 3 (the modal cohort in the experiment). The results from this target set of customers

are captured in Table 3. Comparing the two rows, we observe that increasing the offer from 7,200

to 10,800 points increases profits ($1.36 per person), stays (1.36), and the proportion of customers

meeting the hurdle (18.5%).6

Yet the range of reward points in the experiment is limited, and the findings raise the question of

whether profits would continue to increase if points were increased beyond 10,800. Alternatively, it may

be the case that the optimal level of rewards lies between 7,200 and 10,800 bonus points. There may be

considerable potential to further improve outcomes via extrapolation, making it necessary to determine

when and how extrapolation can be used in experimental contexts. We discuss extrapolation in the

context of general compliance promotions next.

6 Actual profit levels are scaled to preserve confidentiality.
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Points in 1,000 (r) E[Y |R = r] E[Y |R = 0] E[D|R = r] E[D|R = 0] CLATE PRTE

7.2 1.34 1.30 0.166 0.147 $1.96 $0.95
10.8 1.36 1.30 0.185 0.147 $1.54 $1.36

Table 3: Profit Lift for B = 2, T = 2, and H = 3. All expectations and causal effects are non-parametric estimates.
CLATE is the conditional local average treatment effect, in total stays, from offering R = r points versus
R = 0 points. The CLATE is defined as (E[Y |R = r]− E[Y |R = 0]) / (E[D|R = r]− E[D|R = 0]). PRTE is
expressed per customer in the segment, with mgn and cpp scaled to preserve anonymity.

3 Approach

In this section, we describe our approach to extrapolating causal effects from compliance promotions,

and illustrate its application in the context of IHG’s loyalty reward promotion experiment. We begin

with a general description of compliance promotions as viewed through the lens of marginal treatment

effects (MTEs; Section 3.1). Our purpose is twofold: i) to explain the general structure of the problem

and our approach to modeling it; and ii) to acquaint readers who are not already familiar with MTEs

to this approach. We then discuss how we apply this procedure to IHG’s experiment (Section 3.2).

IHG’s experiment provides a canonical example of how some variables are valid for extrapolating

causal effects, and others not, so we illustrate these general concepts in that empirical context. We

then further specify the empirical model, which will be used to estimate and extrapolate causal effects

outside the bounds of the original experiment, and detail how to use these extrapolations to find the

most profitable promotional design for any given target segment (Section 3.3). We conclude this section

by considering the conditions under which a linear extrapolation of intent-to-treat effects might be

valid (Section 3.4).

3.1 Marginal Treatment Effects

We model a customer’s response to an offer under a compliance promotion in terms of an outcome

of interest, Y , a promotion status indicating whether the terms of the promotion are met, D, and

a variable representing unobserved customer heterogeneity, U . In presenting this model, we adapt

and describe the MTE approach from Mogstad et al. (2018) to the context of compliance promotions

(interested readers are referred to Mogstad et al., 2018, and Mogstad and Torgovitsky, 2018, for a more

complete treatment of the MTE approach).

3.1.1 Selection into Promotion Status and Effect on Outcomes

We assume that meeting the terms of a compliance promotion is a binary state, with D = 1 when the

terms are met, and D = 0 otherwise. We also re-emphasize here that a customer who is not offered a

promotion can nevertheless have a promotion status of D = 1 if their behavior satisfies the terms of the
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promotion. We consider two, unobserved, potential outcomes of interest (Rubin, 1974): Y1, the outcome

observed if D = 1, and Y0, the outcome observed if D = 0. Every customer’s observed outcome, Y , is

then related to these potential outcomes through a switching equation:

Y = DY1 + (1−D)Y0 (2)

Only Y1 or Y0 is observed for any customer, never both. Thus, individual-level causal effects are not

observed in the data, and we focus on estimating and extrapolating average causal effects among

subsets of customers.

The selection equation for promotion status can be written compactly as a function of a customer’s

unobserved heterogeneity, and a propensity function reflecting the customer’s conditional probability of

meeting the promotion’s terms (Heckman and Vytlacil, 1999; Heckman and Vytlacil, 2007):

D = 1[U ≤ p(X,Z)] (3)

The propensity function, p(X,Z), depends on two sets of variables, X and Z. X is a set of variables

affecting both promotion status and outcomes. Z is a set of variables that can weakly increase (or

decrease) the likelihood of meeting the promotional terms, but otherwise has no direct effect on the

outcome (i.e., Z contains instruments that are conditionally excludable from Y given X). As is standard

in the literature, the variable U is normalized (for identification purposes) to be uniformly distributed,

conditional on X (see Heckman and Vytlacil, 2007, §3, for further discussion). In a field experiment, X

includes observed sources of customer heterogeneity, plus any randomized promotion features that can

have a direct effect on D and Y ; and Z includes experimentally manipulated promotion features whose

effects on Y are fully mediated through D.

Under the standard no-defiers assumption, Equation (3) implies that higher values of U correspond

with lower rates of meeting the promotion terms, which is standard in the literature on experiments

with two-sided non-compliance.7 In the context of compliance promotions, the unobserved U will

typically affect both the promotion status and the outcome, as customers who meet the terms of

a promotion are typically different from those who do not. As discussed previously, in such a case,

customers’ promotion statuses are confounded with their outcomes.8

7 In typical marketing applications, higher values of an unobservable variable ϵ correspond with a higher choice likelihood.
Thus, it might help intuition to think of ϵ = −U .
8 Depending on the empirical setting, Y and D might be observed simultaneously or sequentially, and the model
accommodates either case.
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3.1.2 Marginal Treatment Effects and Marginal Treatment Response Functions

The MTE function provides the foundation for the extrapolation approach we use. The marginal

treatment effect (Heckman and Vytlacil, 1999; Heckman and Vytlacil, 2005) is defined as

MTE(u, x) = E[Y1 − Y0|U = u,X = x] (4)

It is the expected difference in the outcome due to a change in promotion status for a customer with

observed characteristics X = x and unobserved characteristics U = u. Because U varies continuously,

Equation (4) implies that causal effects can vary on the margin for any customer represented by a

realized value of the pair {x, u}.

The MTE function can be re-written as the difference in expected potential outcomes, Y1 and Y0.

These expectations are called marginal treatment response (MTR) functions, and are defined as

m0(u, x) = E[Y0|U = u,X = x] and m1(u, x) = E[Y1|U = u,X = x], (5)

whereMTE(u, x) ≡ m1(u, x)−m0(u, x). In practice, the MTR functions can be quite general, allowing,

for example, interactions between the observed variables in X and a polynomial basis function of U .

3.1.3 Target Parameters

We next discuss how MTRs are related to the causal effects we want to estimate and the data generated

by the experiment. Specifically, MTRs can be seen as building blocks for constructing target parameters,

which include many causal effects (e.g., typical estimands such as the average treatment effect, ATE;

conditional average treatment effect, CATE; local average treatment effect, LATE; and PRTE); and

empirical moments (e.g., typical estimators such as treatment coefficients from OLS and IV regressions).

Denoting these target parameters β, and indexing them according to their respective estimators or

estimands by s, all of the causal effects and empirical moments discussed in this paper can be expressed

using the following weighted function of the MTRs:9

βs = E
[∫ 1

0
m0(u, x)ω

s
0(u, x, z)du

]
+ E

[∫ 1

0
m1(u, x)ω

s
1(u, x, z)du

]
(6)

The choice of weights, ωs
d, d ∈ {0, 1}, determines the causal effect or empirical estimand, s, that is

represented by βs.

To provide intuition on the role of the weights in defining the target parameters, consider the

9 The expectation in (6) is taken with respect to X and Z (i.e., observational units in the experiment), but one can
construct target parameters that are conditional on X = x by modifying the expectation operator. An example of the
latter is the conditional on X = x CLATE, and an example of the former is the coefficient for D in the OLS regression
Y ∼ X +D.
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example of the average treatment effect on the treated (ATT), E [Y1 − Y0|D = 1]. The weights for the

ATT are ωATT
1 ≡ 1[u ≤ p(x, z)]/Pr [D = 1|X = x] ≡ −ωATT

0 (Heckman and Vytlacil, 2005). As u

decreases, meeting the terms of the promotion becomes more likely, and the numerator for ωATT
1 ,

1[u ≤ p(x, z)], increases. Correspondingly, as ωATT
1 increases, the weight placed on m1 increases.

Accordingly, the ATT target parameter places greater weight on the expected outcomes among those

who are more likely to self-select into treatment, as one would expect.

Most common causal effects and empirical estimands can be expressed as weighted averages of the

MTR functions, using Equation (6). This suggests a way to construct bounds or estimates for the

MTRs. By matching various estimators, such as estimated IV coefficients, with the definition of their

estimands based on Equation (6), one can bound or estimate the underlying MTRs. The recovered

MTRs can then be used to construct bounds or estimates of causal effects of interest, such as the

CLATE or PRTE.

To illustrate, consider the IV estimator for D obtained by regressing Y on D with a scalar

instrumental variable Z. Expressing the IV regression coefficient for D as a target parameter yields:

βIVD = EX,Z

[∫ 1

0
m0(u, x)ω

IV
0 du

]
+ EX,Z

[∫ 1

0
m1(u, x)ω

IV
1 du

]
ωIV
0 ≡ 1[u > p(x, z)]

z − E[Z]
Cov[D,Z]

ωIV
1 ≡ 1[u ≤ p(x, z)]

z − E[Z]
Cov[D,Z]

(7)

The expectation of Z and the covariance of D and Z can be estimated from the data, the indicators

1[u > p(x, z)] and 1[u ≤ p(x, z)] can be computed from an estimated propensity function, and the

term βIVD on the left hand side can be estimated from an IV regression. Hence, the only unknowns in

Equation (7) are the MTR functions, m0(u, x) and m1(u, x), which can, in many cases, be recovered by

matching the estimated value of βIVD with its definition in Equation (7). As we discuss next, multiple

empirical estimators can be used to construct moment equations for estimating or placing restrictions

on the MTRs.

3.1.4 Relating Target Parameters Representing Empirical Moments and Causal Effects

Given an empirically restricted subset of MTRs, m0(u, x) and m1(u, x), and an estimated propensity

function, p (x, z), it becomes possible to estimate or bound many common causal effects. For typical

compliance promotions, the causal effect of interest is the conditional on X = x local average treatment

effect (CLATE). The CLATE is especially relevant for compliance promotions because it represents the

efficacy of the promotion among customers affected by the promotion—those who are sensitive to a

change in the promotion feature Z from z0 (the value Z takes on in the absence of a promotion) to a
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different level z > z0 (under the no-defiers assumption of p(x, z) > p(x, z0)). The CLATE is equal to

E[Y1 − Y0|X = x, p(x, z0) < U ≤ p(x, z)], where p(x, z0) < U ≤ p(x, z) defines the marginal subset of

customers in a specific range of unobserved heterogeneity, U , who select into becoming compliers with

a change in Z from z0 to z. That is, this group does not meet the promotion terms when Z = z0

but does when Z = z. Importantly, this subset excludes all non-complying customers, who do not

contribute to the incremental margin from the promotion, as they either have: i) U ≤ p(x, z0), meaning

they will meet the promotion terms anyway (always-takers), or ii) U > p(x, z0), meaning they will not

meet the terms of any promotion with Z ≤ z (never-takers). The CLATE can also be expressed as a

target parameter in the form of Equation (6) (Heckman and Vytlacil, 1999):

CLATEx (z0 → z) = E
[∫ 1

0
m0(u, x)ω

CLATE
0 du|X = x

]
+ E

[∫ 1

0
m1(u, x)ω

CLATE
1 du|X = x

]
ωCLATE
1 ≡ 1[p(x, z0) < u < p(x, z)]

p(x, z)− p(x, z0)
≡ −ωCLATE

0 .

(8)

Recall, in Equation (7), the target parameter (the IV coefficient for D) was known, but the MTRs

were not known. In Equation (8), the target parameter (CLATE) is not known, but the MTRs are

known (in the sense that the MTRs have been restricted using, e.g., Equation (7)). In sum, the MTE

approach first uses various estimators to recover or restrict the MTR functions, and then uses the

recovered MTRs to estimate or bound causal effects. And perhaps most importantly, when estimating

local average treatment effects, the values of z0 and z, which define the subset of complying customers

for the promotion with Z = z, do not need to have been included in the original experiment. Rather,

these values can represent interpolations or extrapolations of Z.

3.1.5 Estimation or Bounding of Causal Effects

Causal effects can be estimated by applying the approach described in Mogstad et al. (2018). This

procedure uses a numerical optimization routine to recover point estimates, or upper and lower bounds,

of causal effects such as the CLATE. These bounds (or estimates) must respect: i) the restrictions that

are placed on the MTRs by matching them to empirical moments, such as the coefficients from IV and

OLS regressions; and ii) the definition of the propensity function.

Given an assumed functional form for the MTRs (which depends on the unknown parameter vector

θ), md (u, x; θ), bounding or estimating a causal effect requires us to choose a set of empirical moments

(i.e., regression coefficients), S, which the MTRs must be able to generate through Equation (6). As

discussed previously, this moment matching step restricts the MTRs to a subset of parameterizations,

Θ. Just as with any method of moments procedure, by using multiple regression coefficients, one can
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make more information available to restrict the MTRs and the causal effect of interest.

After restricting the MTRs to a subset whose parameters lie in Θ, the upper bound for the

(conditional on X) target parameter, β
TP

(i.e., a causal effect of interest, such as the CLATE), can be

estimated as

β̂
TP

= sup
θ∈Θ

1∑
d=0

ÊZ

[∫ 1

0
md(u, x; θ)ω

TP
d du

∣∣X]
, (9)

subject to the constraint

∑
s∈S

∣∣ε̂s (θ)∣∣ ≤ κ, ε̂s (θ) ≡ β̂s −
1∑

d=0

ÊX,Z

[∫ 1

0
md(u, x; θ)ω

s
ddu

]
, (10)

where κ is the maximum allowed discrepancy between the values of empirical moments that are

obtained from standard estimators, β̂s, and their (nearly) equivalent values derived from the MTRs;

and ωTP
d are the weights for the target parameter of interest. An analogous definition determines the

estimated lower bound of the target parameter, β̂
TP

. The estimated upper and lower bounds for the

causal effect are thus the greatest and least values of the target parameter that can be generated from

the subset of MTR functions that is consistent with the data—where “consistent with the data” means

that the set of MTR functions must also be capable of producing the empirical moments s ∈ S, either

exactly or with minimal error.10

3.2 Application and Model Specification

In this section we apply the MTE approach to our hotel loyalty example to illustrate its utility in the

context of compliance promotions. We first discuss issues related to identification of causal effects in

the context of compliance promotion experiments, using IHG’s experiment as a canonical example. We

then specify the functional form and variables used in the MTRs and the propensity function. We

conclude by detailing the specification of and rationale behind the empirical moments used to restrict

the MTRs.

3.2.1 Identification

Overview. To optimize the compliance promotion through extrapolation, we must map the variables

X and Z introduced in Section 3.1.1 to IHG’s field experiment. Recall that X contains variables

describing customers and promotion features that directly affect the promotion status D and the

outcome Y , and that Z contains any experimentally manipulated promotion features that are valid

10 The value of κ is bounded below by the set of MTRs that minimize the left-hand side of Equation (10), κ ≥
infθ∈Θ

∑
s∈S ε̂s (θ) (for the upper bound of the target parameter). Allowing κ to be greater than this infimum expands

the set of MTRs that are deemed to be “consistent with the data,” in turn allowing the upper and lower bounds for the
target parameter to be wider (i.e., more conservative).
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Figure 2: Directed Acyclic Graph. All causal effects are conditional on baseline B and tier T ; these dependencies
are not depicted. The variable U represents unobserved confounding that affects both promotion status D and
the outcome Y . The effect of the reward R on Y is fully mediated through D, and thus indirect. R is therefore a
valid instrument for D, and extrapolation is possible to new values of R. The total effect of the hurdle H on Y
includes an effect mediated through D, as well as a direct effect. H is therefore not a valid instrument for D so
cannot be extrapolated.

instruments for D (directly affecting promotion status but not the outcome). As stated above, the

CLATE in Equation (8) is defined over a change in Z given a value of X, meaning it is not possible to

extrapolate causal effects over variables contained in X.

Figure 2 depicts a directed acyclic graph (DAG; Pearl, 2009) for the data in our application, with

arrows indicating the possibility of a direct causal effect, and the lack of an arrow between nodes

encoding an assumed absence of a direct effect. All variables shown in the DAG are affected by: i)

customers’ predicted baseline stays in the absence of a promotion, B, and ii) customers’ loyalty tiers, T .

To simplify Figure 2, these implicit dependencies on B and T are not depicted. All variables in Figure

2 are observed, except for U , which is depicted with an open circle. The unobserved confounding due

to U is represented by the dashed arrows from U to D and Y . The number of bonus reward points R

and the spending hurdle H can both have direct effects on promotion status D. Moreover, because

the spending hurdle H establishes upper and lower bounds on the number of hotel stays for each

promotion status, there is an arrow from H to Y , as Y is directly affected by H.

Reward bonus points are assumed to be excludable. There is no arrow pointing from R to Y ,

because in this empirical setting, bonus reward points, R, are plausibly excludable from customers’

potential outcomes, Y1 and Y0, conditional on the spending hurdle. Consider the potential outcome

for hotel stays when a customer meets or exceeds the terms of the promotion, Y1. Regardless of

whether the customer visits exactly Y1 = H hotels or exceeds the hurdle by visiting Y1 > H hurdles,

they still receive the same reward of R bonus points. Therefore, conditional on visiting at least H

hotels, increasing or decreasing the reward has no economic effect on how many hotels customers

visit. Similarly, the potential outcome for hotel stays when a customer does not meet the terms of the

promotion, Y0, should also be unaffected by the points offered, as a customer who does not reach the
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hurdle does not receive the reward. Conditional on not receiving the reward, increasing or decreasing the

reward should have no impact on hotel stays. Rewards are therefore assumed to be a valid instrument

for promotion status. Appendix B addresses several potential threats to the excludability assumption.

Spending hurdles are not excludable. As mentioned above, the potential outcomes Y1 and Y0

are directly affected by the spending hurdle, with Y1 ≥ H and 0 ≤ Y0 < H. Thus, H cannot serve

as an instrument for promotion status, and we cannot estimate or extrapolate CLATEs comparing

promotions with different spending hurdles. Rather, we can only estimate CLATEs for changes in bonus

points, conditional on a particular spending hurdle. Even though one can ascertain intent-to-treat

effects of hurdles on stays over the observed experimental cells, it is not possible to extrapolate these

effects to spending hurdles that did not appear in the original experiment, even though spending hurdles

were manipulated experimentally. Randomizing a promotion feature does not guarantee that it will be

independent of potential outcomes.

Only instruments are valid for extrapolation. Appendix C provides an example to outline the

intuition behind the role of excludability in extrapolation, and helps to illustrate a general principle

for field experiments involving compliance promotions. If there is a manipulated variable that is not

conditionally excludable from customers’ potential outcomes (i.e., it is not fully mediated by promotion

status, D), then one cannot extrapolate causal effects related to that variable because the experiment

does not generate any information relevant to the extrapolation. Stated differently, unless the analyst

is willing to assume a promotion feature has a zero (or negligible) direct effect on the outcome, or

they are willing to impose a model of behavior that does not depend at all on the outcome of the

experiment, then extrapolation of causal effects is not possible for that feature of the promotion. When

designing experiments around compliance promotions, researchers must account for this restriction.

In the example of IHG’s compliance promotion, this might mean: i) fully saturating experiments to

include all spending hurdles under consideration, while ii) possibly omitting levels of bonus point

rewards, because these can be extrapolated.

3.2.2 Marginal Treatment Response (MTR) Functions

As discussed above, the hurdle H places a natural restriction on the upper and lower values of the

potential outcomes for hotel visits: Y1 ≥ H and 0 < Y0 ≤ H − 1 (recall Y is integer valued). In

order to incorporate this information during estimation, we model a transformed outcome variable,

Y ∗ ≡ Y −H , leading to the restrictions Y ∗
1 ≥ 0 and Y ∗

0 ≤ −1, which we impose during estimation as

restrictions on the domains of the MTR functions: m1 ≥ 0 and m0 ≤ −1.
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To facilitate presentation of the model, and without loss of generality, we decompose the MTR

functions, md for d ∈ {0, 1}, into two, additively separable functions,

md(u, x) = µd(b, t, h) + νd(u, b, t, h), (11)

where: i) x ≡ {b, t, h} is a particular realization of baseline, tier, and hurdle; ii) µd is a function of only

the observed variables, x; and iii) νd is a function of both x and a realization of the unobserved variable

u. Importantly, the function νd can include interactions between the observed x and the unobserved u.

In our full specification (described below), νd includes interactions between polynomial powers of u and

the observed variables in x.

Here we mention two nested models (discussed in detail in Section 4) that we use to compare our

approach to simpler, but more restrictive alternatives. The first nested model ignores unobserved

heterogeneity by assuming unconfoundedness. This nested model can be represented by defining

νd (u, b, t, h) ≡ 0, in which case md (u, x) = µd (b, t, h). The second nested model accounts for

unobserved heterogeneity, but restricts its effects to be additively separable from effects due to the

observed variables. This nested model can be represented by defining νd (u, b, t, h) ≡ νd (u), in which

case md (u, x) = µd (b, t, h) + νd (u).
11

We specify the first component of the MTR functions, µd, as

µd(b, t, h) = ϕ0d + ϕB0
0 1 (b = 0 ∧ d = 0) + ϕBd b+ ϕHd h+ ϕTdt (12)

This specification is linear in baseline stays b and hurdle h, and includes fixed effects for each loyalty

tier (with tier 1 normalized at ϕTd1 = 0). The MTR for d = 0 also includes a fixed effect for the special

case when b = 0, ϕB0
0 , to account for a feature of the data: hotel stays Y and baseline predictions

B are both bounded below at 0. Hence, for the subset of customers with 0 predicted baseline stays,

their realized average hotel stays will be (weakly) greater than their baseline prediction. Without this

dummy variable for the case when b = 0, regression coefficients for B, which are used to restrict the set

of feasible values of ϕBd in the MTR, will underestimate the (positive) relationship between B and Y .

We include this dummy in m0, as well as in the regression equations (which we specify in Section

3.2.5), but not in m1, as Y1 ≥ H and the minimum value of H in the experiment is 2.

Turning to the second component of the MTRs, νd, we specify a polynomial basis function of order

11 Heckman correction and switching models (Heckman, 1979; Lee, 1982) are nested within the more general MTE
framework (Heckman et al., 2003). The more general MTE approach does not require additive separability in outcomes
(that is, the marginal effect of the unobservables on outcomes can depend on the observables), and does not limit the
effect of unobserved factors on outcomes to be monotonically increasing or decreasing.
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3 for u (French and Song, 2014), with all powers of u interacted with baseline, hurdle, and tier,

νd(u, b, t, h) =
3∑

q=1

(
ψ0
dq + ψB

dqb+ ψH
dqh+ ψT

dtq

)
uq. (13)

The structure of this function is motivated by two considerations. First, Mogstad et al. 2018’s numerical

optimization procedure and the accompanying ivmte R package rely on the polynomial structure of the

MTRs to efficiently calculate the integral in Equation (10) (Mogstad et al., 2018; Shea and Torgovitsky,

2020; Torgovitsky and Shea, 2020). Second, a third-degree polynomial of u is highly flexible. It allows

for non-monotonic marginal effects in the unobservable u, and is capable of approximating a normally

distributed unobservable, a common assumption in Heckman selection and switching regressions (French

and Song, 2014; Brinch et al., 2017).

3.2.3 Propensity Function

The propensity function isolates the effect of Z ≡ {R} on meeting the terms of the promotion, D = 1,

conditional on X ≡ {B, T,H}. We specify the following logit propensity function:

p (x, z) ≡Pr [D = 1|B = b, T = t,H = h,R = r] = exp(v)/(1 + exp(v)), (14)

v ≡δBT
bt + δHh+ δH

−1
h−1 + δBHb · h+ δBH−1

b · h−1 + δRT
t f(r),

where: i) δBT
bt represents fixed effects for each unique combination of baseline and tier, and thus an

intercept for each experimental cell; ii) δH , δH
−1

, δBH , and δBH−1
are coefficients for hurdle, its inverse,

and interactions between these and baseline (the absence of a coefficient for baseline alone is due

to the inclusion of the baseline-tier fixed effects); and iii) the δRT
t s are tier-specific coefficients for a

transformation of reward points, f(r) = sinh−1 (r/12000). This transformation allows f(0) = 0, and

an approximately logarithmic relationship for r > 0.12 The coefficients δRT
t are different for each tier,

as we believe sensitivity to reward points may vary across the four tiers. The inclusion of the inverse of

the hurdle (specifically, the term δBH−1
b · h−1) is motivated by compliance being less likely when there

is a large discrepancy between the baseline prediction for a customer’s hotel visits and their hurdle, as

this is more of a stretch goal for a consumer.

3.2.4 Summary of the MTE Model Specification

The full model can be succinctly summarized as follows:

12 This transformation encodes our assumption: i) that there is a non-linear response to more reward points on promotion
status—if the reward is too small, it is not motivating; and there are diminishing marginal returns to larger rewards—and
ii) that IHG designed the experiment with an understanding (perhaps implicit) of this response function. Accordingly, we
chose the scaling factor of α = 12000 to rationalize the observed reward levels used in the experiment.
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1. There is an unobserved variable, U , that affects: i) how many hotels would be visited if the

hurdle were to be met, Y1; ii) how many hotels would be visited if the hurdle were not to be met,

Y0; and iii) whether the hurdle is in fact reached, D (Equations (2) and (3)).

2. The expected change in hotel stays due to a customer with X = x and U = u complying with the

promotion, the marginal treatment effect, is the difference in their marginal treatment responses

when meeting versus not meeting the promotions terms,MTE = m1(u, x)−m0(u, x) (Equations

(4), (5), (11), (12), and (13)).

3. Whether the hurdle is reached further depends the propensity function, p (X,Z), where X =

{B, T,H} contains the baseline and tier customer variables, and the spending hurdle; and

Z = {R} contains the reward level (Equations (3).and (14)).

We make two remarks about the model. First, another way to characterize the first point above is that

each customer’s observed outcome depends on: i) a realization of the random triple {Y1, Y0, U}, whose

distribution depends on X; and ii) a realization of the promotion feature Z which is randomly assigned.

Second, whether U reflects static customer traits or transient purchase propensities is irrelevant to the

econometric specification; U simply represents an indexable agglomeration of unobserved factors that

arise simultaneously with potential outcomes.

3.2.5 Specification of Empirical Moments

The model we just described encodes our assumptions about customers’ behaviors during the field

experiment, and thus the empirical data that the experiment produced. Next, we specify which features

of the data (i.e., regression coefficients) should be used to restrict the MTRs, and thus place bounds on

the causal effects we seek to recover.

We consider empirical moments produced by three regression equations. The moments that are

used to restrict the MTRs are a subset of coefficients from these regressions (some coefficients are

nearly collinear across regressions; in such cases we include only one). The first two regression equations

are closely related—one is an IV regression, and the other is its OLS counterpart; both are estimated

using the entirety of the experimental data. The third regression seeks to characterize the behavior of

customers in the absence of a promotion, and is estimated via OLS, using only data from customers in

the control condition.

The IV and OLS regressions share the following (second-stage) structure

y∗ = βIV0 + βIV1 1(b = 0) + βIV2 b+ βIV3 h+ βIV4 d+ βIV5 d · b+ βIV6 d · h+ βIV7,t + eIV (15)
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This regression formula includes a main effect for baseline (as well as the dummy for b = 0), but it

does not include main effects for customers’ loyalty tiers, as any effects of loyalty tier on hotel visits

when not meeting the spending hurdle are already accounted for by the baseline prediction. This

regression equation also includes a main effect for hurdle, in order to account for the transformation

Y ∗ = Y −H . All other variables in Equation (15) are interacted with promotion status, d, and thus

reflect heterogeneous effects (based on observed covariates) varying by hurdle, baseline, and tier (with

tier 1 normalized at βIV7,1 = 0).

In the IV regression, the endogenous variable d is instrumented using the variables defined on the

right-hand side of the propensity function in Equation (14). The OLS version of the IV regression

estimates the coefficients in Equation (15) without instrumenting for promotion status. Although the

coefficients from an OLS regression are typically biased as causal estimates, they are nevertheless

functions of the MTRs that can be observed in data, and thus provide information about the MTR

functions. Indeed, any discrepancy between an OLS and IV coefficient for the same treatment variable

can potentially constrain the MTR functions at different levels of the unobserved variable, u.

The third regression, also estimated with OLS, seeks to capture the relationship between baseline

predictions and hotel visits in the absence of a promotion (i.e., among customers in the control group).

This regression is specified as

y∗ = βC0 + βC1 1 (b = 0) + βC2 b+ βC3 h+ eC (16)

As in Equation (15), we include a dummy for B = 0 and hurdle due to Y ∗ = Y −H . This regression is

estimated using the subset of observations from the control group. We include this regression because

the control group in the experiment is small relative to the offer group. Estimates from the other

two regressions use the entire sample and need to account for differences among individuals in the

offer group with different promotion statuses. These estimates by themselves might not adequately

rationalize outcomes in the control group.

3.3 Optimization of Reward Points

Given estimates of the CLATEs, we seek to use them to optimize reward points. Recall from Equation

(1) that the non-parametric estimate of profit from a promotion, as a function of reward bonus points,

and conditional on X, can be written as

PRTEX(r) = N · (E[Y |X,R = r]− E[Y |X,R = 0]) ·mgn−N · cpp · r · E[D|X,R = r],
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where cpp is the cost per point of reward, mgn is the margin per visit, and N is the number of

customers in the segment with characteristics X. As noted previously, this expression is derived

from a more primitive CLATE. We can rewrite the PRTE in terms of this CLATE, by noting two

things (see Appendix D for the derivation). First, the expression E[Y |X,R = r]− E[Y |X,R = 0] is

equal to the conditional on X intent-to-treat effect of offering R = r points (versus no promotion),

which we write as ITTX(0 → r). Second, this conditional ITT is related to the CLATE through the

identity ITTX (0 → r) = LATEX (0 → r) · πCX (0 → r), where πCX (0 → r) represents the proportion

of customers with observed variables X who comply with a promotion offering R = r bonus points

(versus R = 0). Hence, the more primitive PRTE underlying Equation (1) is:

PRTEX(r) = N · πCX(0 → r)︸ ︷︷ ︸
Number complying

·CLATEX(0 → r) ·mgn︸ ︷︷ ︸
Lift per complying customer

−N · cpp · r · E[D|X,R = r]︸ ︷︷ ︸
Total promotion cost

(17)

This expression highlights a number of ideas. One is that the policy relevant treatment effect can

be decomposed into three parts: i) the number of compliers affected by the promotion, ii) the average

increase in margin due to these compliers meeting the terms of the promotion; and iii) the total cost of

the promotion (which depends on the total number of customers reaching the hurdle when offered

R = r points, regardless of whether they are compliers or always-takers.

Equation (17) also emphasizes that the primitive causal effect relevant to the promotion is the

CLATE. Extrapolation of the PRTE depends on an appropriate extrapolation of the CLATE that

is consistent with changes in the proportion of compliers at new values of R, as well as the cost of

the promotion. Both of these depend on the same propensity function (per Equations (8) and (14)).

Expressing the PRTE as a function of the ITT, as in Equation (1), obscures the need for internal

consistency between: i) the extrapolated margin lift from complying customers, and ii) the extrapolated

cost of the promotion.

For values of R that were used in the experiment, one can calculate the PRTE non-parametrically

using Equation (1) (as described in Section 2.2.3). To extrapolate the PRTE to values of R = r outside

the experiment, we use: i) the MTE approach to estimate CLATEX(0 → r), and ii) logistic regression

of the propensity function to estimate πCX (0 → r) and E[D|X,R = r]. We perform this estimation for

many values of reward points in a set of candidate values, r ∈ R. Conditional on X = x, the level of

rewards that leads to the highest profits is the one generating the greatest value of the PRTE.

π∗r (r, x) = max
r∈R

PRTEx(r). (18)
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If all the PRTEs are negative, then not offering a promotion is optimal.

We note several implicit assumptions and approximations underpinning the PRTE in Equation (17).

First, consistent with IHG’s practice, we assume that the cost per reward point, cpp, is independent of

promotion status, potential outcomes, and background variables (baseline and loyalty tier). Points

can be redeemed for merchandise and future stays, and IHG assigns the same cost for reward points

regardless of how they are redeemed. Of course, a generalization of Equation (17) could, for example,

replace the terms r · cpp with a conditional on X expected cost function. Second, and again consistent

with IHG’s practice, we assume a similar set of independences for the margin per customer stay, mgn;

and in particular, we assume that the margin per hotel visit is not endogenous with promotion status.

This rules out situations whereby customers stay in cheaper hotels than they otherwise would during

the promotion in order to meet its terms. Again, IHG uses a constant expected margin per stay

for its internal calculations, but it is possible to generalize this approach by changing the outcome

variable from hotel stays to total margin per customer. The degree of bias in our estimates due to

these assumptions depends on the extent of heterogeneity in these margin and cost terms. If customers

choose to stay in cheaper hotels, for example, we will over-estimate the profit effects of compliance.

3.4 When Linear Interpolation is Valid

A common practice in industry, as noted in the motivating example, is to perform a linear interpolation

(LI) of intent-to-treat effects in order to optimize promotion features. As we show below, linear

interpolation is not generally a valid substitute for the use of MTEs and should be used with caution

when designing compliance reward promotions.

Linear interpolation is most easily accomplished by using OLS to regress total stays Y on reward

points R (conditional on X). Suppressing the dependence on X in the discussion that follows, such

a regression might take the form y = η0 + η1r + eLI . This approximation implies that under linear

interpolation, the intent-to-treat effect of reward points on stays is ITT (0 → r) = η1r. In Appendix D,

we show that in the case of: i) a logit propensity function of the form p(r) = logit−1(α+ βr), and ii)

an arbitrary set of MTRs, we can also express ITT (0 → r) as

ITT (0 → r) =

∫ r

0

(m1(p(ϱ))−m0(p(ϱ)))β

2 + 2 cosh(α+ βϱ)
dϱ. (19)

Comparing the two expressions for ITT suggests that they are equal to each other when: i) there is no

effect of reward points on total stays, β = η = 0; or ii) the integrand, (m1(p(ϱ))−m0(p(ϱ)))β
2+2 cosh(α+β ϱ) = η, is a

constant for any reward level ϱ. The latter of these two conditions might occur when changes in ϱ
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are so small that the cosh(α+ β ϱ) and md(p(ϱ)) functions are locally linear in ϱ—i.e., their ratio is

constant in ϱ. In other words, linear interpolation approximates the ITT only for very small differences

in reward. Since one of the end points in ITT (0 → r) is at R = 0, it is unlikely that local linearity

would hold for any values of R = r that are managerially meaningful.

Another way of considering when a linear interpolation might be valid is to specify: i) flexible MTR

functions, while ii) allowing for an arbitrary propensity function (as opposed to the above paragraph,

with a logit propensity function and arbitrary MTR functions). In Appendix D we show that when

md(u, x; θ) =
∑K

k=0 θdkxu
k is specified as a linear polynomial function of u given x, then we obtain

ITT (0 → r) = θ̄0x [p(x, r)− p(x, 0)] +

K∑
k=1

θ̄kx
[
pk+1(x, r)− pk+1(x, 0)

]
k + 1

, θ̄k ≡ (θ1k − θ0k) (20)

Again contrasting this expression with η1r from an OLS regression, we see that ITT (0 → r) is

potentially linear in r when: i) compliance p(x, r) is linear in r; and ii) there is no unobserved

heterogeneity in the causal effect of promotion status on hotel stays, K = 0. Linearity in p is plausible

for small changes in r, but if propensities are estimated using a linear regression, there is a risk of

violating the overlap condition (propensities cannot be exactly 0 or 1). Note however that if K = 0

(i.e, there is unconfoundedness, as U does not enter the MTR functions), then the expression for the

CLATE becomes θ0x [p(x, r)− p(x, 0)]
/
[p(x, r)− p(x, 0)] = θ0x—a constant—implying that causal

effects are identical among customers who might be very different—for example, among those who

require very few and those who require very many points to comply with the promotion.

4 Results

In this section we begin by discussing estimates from the propensity model and reporting the findings

of our MTE model of stays. Within our discussion of stays, we outline a null model of conditional

average treatment effects (CATE) under an assumption of unconfoundedness, and compare it to the

CLATEs estimated via the MTE approach. We conclude this section with a discussion of how optimal

promotional designs vary across target segments, and the profit implications of optimizing compliance

promotions using more restrictive models.

4.1 Estimated Propensity Function

Table 4 reports the main coefficients of interest for the propensity function recovered from a logistic

regression with promotion status as the dependent variable, and Figure 3 shows estimated propensities

from the regression model and compares these with non-parametric estimates. Overall, the propensity

model appears to fit the data well. We compare differences in absolute error between: i) values of
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Term Estimate

Baseline-Tier fixed effects, δBT Yes
Hurdle, δH −0.194

(0.441)
Baseline×Hurdle, δBH 0.012

(0.026)

1/Hurdle, δH
−1

−1.868
(3.757)

Baseline/Hurdle, δBH−1

3.390
(2.763)

f(r), Tier 1, δRT
1 0.016

(0.217)
f(r), Tier 2, δRT

2 0.342
(0.082)

f(r), Tier 3, δRT
3 0.286

(0.084)
f(r), Tier 4, δRT

4 0.179
(0.093)

Table 4: Propensity Model Estimated with Logistic Regression. Standard errors are shown in parentheses.

E[D|B, T,H,R] estimated non-parametrically from the data, and ii) fitted values of p(X,Z) obtained

from the logistic regression. The mean difference is 0.11 (median = .05). Coefficients for reward points

are positive and estimated with precision, suggesting a small lift in compliance from reward points. For

tiers 1 through 4, the expected increase in compliance from 0 to 10,000 points is .12%, 3.4%, 4.1%, and

2.8% respectively; an additional 10,000 points is expected to raise compliance further by .08%, 2.7%,

3.0%, and 2.0% respectively.

Figure 4 depicts the contour of the estimated propensity model. Each line represents a unique

combination of baseline, tier, and hurdle, and includes extrapolated reward levels between R = 0

and 20% above the maximum value of R from the experiment (i.e., the maximum observed reward

for each value of X). Some of these lines are approximately linear, whereas others are more convex.

For the latter, linear interpolation based on intent-to-treat effects, as described in Section 3.4, would

problematic.

4.2 Model Results and Comparisons

In this subsection we consider a number of alternative models to assess which features of the proposed

model are most helpful for explaining the data, and to help refine the model specification to be used in

optimizing promotional design. We begin by comparing nested models based on restricted versions of

the MTR functions, and then define and contrast our model against an inverse propensity weighting

approach that makes the common unconfoundedness assumption.
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Figure 3: Comparison of Estimated Propensities to Average Values Reaching Hurdle from the Experiment.
Includes customers in the control group, whose stays are compared against the hypothetical hurdles they would
have been assigned if offered a promotion.
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Figure 4: Estimated Propensities. Each panel shows estimated propensities to reach the spending hurdle in a
different loyalty tier.
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4.2.1 MTR Comparisons

A common approach to estimating treatment effects for compliance promotions is to use Heckman’s

correction model if D = 0 leads to censoring (Heckman, 1979), or a switching model, if D = 0

and D = 1 produce different distributions of outcomes (Lee, 1982) (see also Footnote 11). These

standard approaches, however, embed a number of strong assumptions that may be difficult to justify

in the context of compliance promotions. One is the assumption that the effect on Y due to the

unobserved variable, U , is additively separable from the effects due to other observed factors, X.

Another assumption is that the effect of U on Y is (weakly) monotonically increasing or decreasing in

U . Section 4.4 discusses the assumption of a monotone effect in U , while this section suggests the

separability assumption is not tenable in our context.

Separability refers to the assumption that MTE can be expressed in the general form f1(x) + f2(u).

This allows for the unobservable variable u to influence both promotion status, D, as well as hotel

stays Y . But separability also requires that the same unobserved variable that makes it more or less

likely to meet the spending hurdle, H, also has an effect on hotel stays that does not vary with the

level of the hurdle (or any other variables in X). Rather, separability implies that the marginal effect of

U = u on hotel stays is the same for all customers, regardless of their predicted baseline stays, loyalty

tier, or spending hurdle. Separability would be violated in our context if leisure travelers, for example,

are both: i) more likely to comply with the hurdle (perhaps rewards are worth more to the more price

sensitive leisure segment), and ii) more sensitive to hurdles in their stays, conditional on reaching the

hurdle (perhaps due to the more limited nature of leisure travel).

Separability is nested within our MTRs, but not required. To explore the impact of requiring

separability on the estimated treatment effects, as well as the impact of assuming selection on the

observables only (unconfoundedness), we consider the two alternative specifications for the MTR

function introduced in Section 3.2.2. Recall that the first of these assumes that there is no effect of

the unobserved variable U on stays (νd (u, b, t, h) ≡ 0 in Equation (11), hence md (u, x) = µd (b, t, h)).

This selection on observables model is roughly comparable to an inverse propensity weighted (IPW)

regression, with regression weights derived from the propensity regression. Causal estimates from

this model are constants for all values of reward points, thus the estimates are conditional on X

average treatment effects (CATE), and not CLATEs as in the MTE approach. The second nested

model assumes additive separability, meaning there are no interactions between observables and

unobservables in the MTRs (i.e., the ψB
dqs, ψ

H
dqs, and ψ

T
dtqs in Equation (13) are all equal to zero, hence
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Moments Full Model No Interactions No Unobservables

Regression Coefficient, s Estimate13 ε̂s ε̂s ε̂s ε̂s ε̂s ε̂s

IV Intercept*, βIV
0 −0.16

IV Baseline 0 Dummy*, βIV
1 0.36

IV Baseline*, βIV
2 0.61

IV Hurdle, βIV
3 −1.02 0. 0. −0.17 −0.15 0. 0.

IV Promotion Status, βIV
4 −1.03 0. 0. 0. 0.12 0.90 0.90

IV Promotion Status×Baseline, βIV
5 −0.69 0. 0. 0.07 0.06 0.46 0.46

IV Promotion Status×Hurdle, βIV
6 1.35 0. 0. 0. 0. −0.48 −0.48

IV Promotion Status×Tier 2, βIV
7,2 0.70 0. 0. 0. 0. 0. 0.

IV Promotion Status×Tier 3, βIV
7,3 0.92 0. 0. 0. 0. 0. 0.

IV Promotion Status×Tier 4, βIV
7,4 1.25 0. 0. 0. 0. 0. 0.

OLS Intercept, βOLS
0 −0.43 0. 0. −0.02 −0.02 0.01 0.01

OLS Baseline 0 Dummy, βOLS
1 0.33 0. 0. 0. 0. 0.001 0.

OLS Baseline, βOLS
2 0.47 −0.03 −0.03 −0.05 −0.05 −0.02 −0.02

OLS Hurdle*, βOLS
3 −0.88

OLS Promotion Status, βOLS
4 0.72 0. 0. 0. 0. 0. 0.

OLS Promotion Status×Baseline, βOLS
5 −0.19 0. 0. −0.28 −0.28 −0.05 −0.05

OLS Promotion Status×Hurdle, βOLS
6 0.83 0. 0. 0.34 0.33 0.05 0.05

OLS Promotion Status×Tier 2, βOLS
7,2 0.17 0. 0. 0. 0. 0. 0.

OLS Promotion Status×Tier 3, βOLS
7,3 0.16 0. 0. −0.07 0. 0. 0.

OLS Promotion Status×Tier 4, βOLS
7,4 0.13 0. 0. 0. 0. 0. 0.

OLS (control) Intercept, βC
0 −0.03 0. 0. 0. 0. 0. −0.002

OLS (control) Baseline 0 Dummy, βC
1 0.68 0. 0. 0. 0. 0. 0.

OLS (control) Baseline, βC
2 1.04 0. 0. 0. 0. 0. 0.

OLS (control) Hurdle*, βC
3 −1.20

Maximum Sum of Absolute Errors (κ) 0.03 1.00 1.98

Table 5: Moment Error Bounds for the Full and Nested MTE Models. Coefficients from the three regressions
used in the MTE estimation are specified in Section 3.2.5, and their coefficient estimates (moments) are given
above. Per Equation (10), ε̂s and ε̂s are differences between moments obtained from OLS or IV regressions and
their MTR counterparts, at the lower and upper bounds of the treatment estimated effect, respectively; and κ is
the maximum sum of absolute error allowed while determining the upper and lower bounds of CLATEs. Due to
collinearity, moments in italics and marked with an asterisk are not used in the MTE procedure; when MTRs
fully reproduce the data moments, the error is zero.

md (u, x) = µd (b, t, h) + νd (u)).

Table 5 reports, for each matched moment s ∈ S, the coefficient estimates from the IV and

OLS regressions, and the differences between these moments and their MTE counterparts (at the

upper and lower treatment effect bounds—ε̂s and ε̂s from Equation (10)), for each of the three MTE

specifications: i) the full model, ii) the model with separability (“no interactions”), and iii) the model

with unconfoundedness (“no unobservables”). Figure 5 depicts the coefficient estimates and their

standard errors from the three regression models, which allows a more direct comparison of the

coefficient estimates.

Several insights emerge from Table 5 and Figure 5. First, Table 5 shows that neither the no-

13 Standard errors are shown in Figure 5. Although moments are estimated with statistical error, Mogstad et al. (2018)
show that the MTR estimator is consistent.
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Figure 5: Regression Coefficients. Estimates from different regression models are grouped along the x-axis by
their covariates. Along the x-axis, b0 indicates the dummy for B = 0, and t2, t3, and t4 indicate coefficients for
Tiers 2–4.

interaction model, nor the no-unobservable model can recover most of the moments without considerable

error. This implies that the full model, which accounts for unobservables and their dependence on the

observed data, reproduces the moments of the observed data substantially better than the restricted

models. The improvement in fit is also indicated by the sum of absolute errors across moment conditions,

κ, which is lowest in the full model, in spite of there being more parameters and thus more absolute errors

to sum. Second, some of the discrepancies between regression estimates and their MTE counterparts in

the restricted models are quite large. For example, the discrepancy in the no unobservables model for

the IV promotion status moment (corresponding with tier T = 1), βIV4 = 1.03, is 0.90 or 87% of the

parameter value. Third, the discrepancies are particularly large for the IV moments under the no

unobservables model, because the assumption that unobservables do not affect potential outcomes

makes it difficult to reconcile the MTRs with an IV regression that does not make this assumption.

The unconfoundedness assumption of the no-unobservables model is clearly problematic, because

the IV estimate for promotion status (−1.03) has the reverse sign of the OLS estimate (0.72) (see

Figure 5). This suggests that promotion status is endogenous with stays. Because the no-unobservables

model assumes this endogeneity away, it cannot reproduce both the IV and OLS parameter estimates,

and thus produces estimates that fare well for neither. In sum, the full model improves fit with the

moments of the data substantially, compared to the nested models that ignore or incompletely account

for endogeneity and (lack of) separability.
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Figure 6: Comparison of Causal Effects Across Models for H = 2, 3, 4, 5 Among Customers Offered Promotions
with B = H − 1. Causal effects are in units of stays, and consider a change from D = 0 to D = 1, with R equal
to the smallest reward used in each baseline-hurdle-tier experimental cell. Vertical bars shows upper and lower
bounds estimates. In cases where the bounds are very narrow or point estimates, crosses are plotted at the
midpoint of the bounds/point estimate.

Next, Figure 6 compares estimated causal effects for the full, no interaction, and no unobservables

MTR specifications. Additional insights emerge. First, the estimated causal effects are quite different

across the models. We interpret this discrepancy as evidence that the nested models, which fail to

fit the empirical moments, also produce biased estimates of the CLATEs. For example the CLATE

estimates for T = 2, B = 2, and H = 3 vary widely across models, differing by nearly 1.5 stays. Second,

the simplest model (no unobservables) has the narrowest estimated bounds on the CLATEs. With

fewer terms in the MTR functions, the parameter space that comes closest to satisfying the moment

constraint shrinks (see Equation (10)). This suggests a trade-off. On the one hand, a more complex

MTR can more easily meet the moment constraints, but on the other hand a poorly specified MTR or

too many parameters can lead to large bounds, making the MTE model less useful for policy analysis.

Specifically, as the bounds grow, so too does the range of potential optimal promotions, making it less

clear which, amongst the set of optimal policies, to choose.

4.2.2 Doubly Robust Inverse Propensity Weighting (DR IPW) Comparison

To afford another comparison of the MTE approach to more restricted models, we next describe a

null model of CATEs that assumes unconfoundedness (as is common in the experimental literature

in marketing). This means that the unobserved heterogeneity affecting compliance does not have

an impact on stays. We use a doubly-robust regression estimator (Bang and Robins, 2005). First,
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observations are weighted by the inverse of their propensities (IPW), thus w ≡ d
p(x,r) +

1−d
1−p(x,r) . Second,

covariates that appear in the propensity function, but not in the MTRs, are also included in the

regression equation to further adjust outcomes for these determinants of compliance (we do not include

reward points in the regression). The regression equation is thus

y∗ = βW0 + βW1 1(b = 0) + βW2 b+ βW3 h+ βW4 d+ βW5 d · b+ βW6 d · h+ βW7,td

+ βW8,bt + βW9 h−1 + βW10 b · h+ β11b · h−1 + eW (21)

where βW0 through βW7 correspond with covariates from the MTRs and IV moments, and βW8 through

βW11 correspond with additional covariates from the propensity regression.

Figure 6 reports the estimated CATEs, labeled “DR IPW” (doubly robust, inverse propensity

weighted). The CATEs estimated with this approach are nearly identical to the no-unobservables MTR

model, which also assumes unconfoundedness. The slight differences between the two estimators are due

to the use of IV moments and domain restrictions for inference on m1 and m0 in the MTE approach,

and the inclusion of additional adjustment covariates in the DR IPW approach. A key conclusion is

that the simple DR IPW approach suffers the same limitations as the no unobservables MTR model.

4.3 Validation Against Non-Parametric Estimates

Figure 7 compares the MTE estimates of CLATEs from the full model to non-parametric estimates

based on the Wald estimator, CLATEX (0 → r) = ITTX(0 → r)
/
πCX(0 → r). As the non-parametric

estimates can be computed only for the observed cells, we plot treatment effects for each baseline-

hurdle-reward combination in the experiment with hurdles less than or equal to 5 (corresponding with

84.8% of observations). Ten of the non-parametric estimates are not shown because, perhaps due to a

limited range of integer outcomes, individual cells exhibit a high degree of finite sample bias, and thus

produce Wald estimates that are negative or undefined. The MTE estimator does not suffer from this

limitation. Overall, the figure suggests that the chosen moments and functional forms for the MTRs

generate estimated CLATEs that are consistent with the bulk of their non-parametric counterparts.

4.4 The Optimal Design and Targeting of Promotional Reward Structures

Next, we consider a key goal of this research; extrapolating PRTEs outside the range of the original

field experiment to infer the optimal promotion design. Figure 8 depicts the estimated effect of rewards

on incremental stays, promotion costs, and net profit; for the baseline-tier-hurdle combinations with

the greatest number of observations in each of the four loyalty tiers; and for the full and nested MTE

models described in Section 4.2. In each plot, we depict the optimal reward level for each model as a
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Figure 7: Comparison of MTE and Non-parametric (Wald) Estimates of Experimental Assignments on Stays.
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bounds. Wald estimates are not shown if they are negative or violate the no-defiers assumption.

vertical line. Because we estimate the profit function using bounds estimators, we select the optimal

reward level using a minimax criterion (Handel et al., 2013).

We first consider the upper left panel in Figure 8, where T = 1, B = 1, and H = 2. As the

baseline and tier are low, these customers are infrequent visitors, and one might expect them to be

relatively insensitive to rewards. Consistent with this, our results suggest that rewards have little effect

on compliance or stays. As the incremental margin due to the promotion depends on the share of

compliers—customers whose promotion status is changed by the offered reward—these promotions

generate almost no incremental revenue. Reward points, however, must be awarded to any customers

who meet or exceed the hurdle, regardless of whether they were motivated by the promised reward. As

rewards are costly and have little effect on stays, their marginal value is negative, and the optimal

reward level is R = 0—meaning it is optimal not to offer this group any promotion at all.

Turning next to the upper right panel, where T = 2, B = 2, and H = 3, we find that higher rewards

drive greater compliance. The effect of rewards on stays differs across the nested models. Recall that

rewards are excludable from potential outcomes, so the only effect rewards have on stays is indirect, by

inducing customers with different values of U to select into compliance with the promotion. When we

assume unconfoundedness—that there are no unobservables in the MTR functions—the estimated

value of the CLATE does not depend on the number of bonus points offered. This can be seen in

the flat line for the CLATE with no unobservables. The profits under no unobservables, therefore,

are driven only by changes in compliance, with an optimal level of 40,000 points. Comparing the full
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model to the two restricted models, we observe that the expected profits in the restricted models are

off by nearly 100%, and they are far too optimistic (because their estimated CLATEs are much too

large). The model with no interactions predicts (scaled) profits of $8.53–$8.99 per customer in this

segment, while the full model predicts $3.84–$4.20 per customer, an error of roughly 100%. Differences

in the cost of the promotion can also be substantial, as the optimal reward points for this segment is

40,000 points according to the model with no unobservables, but only 27,500 points in the full model,

an error of roughly 50%. In other words, the flexible MTR specifications in the full model have a

material difference on promotion design and profit, which cannot be captured by models that assume

separability (e.g., the classic Heckman correction model) or unconfoundedness (e.g., IPW regression).

Next, we consider T = 3, B = 2, and H = 3 in the lower left panel. Again we note that rewards

affect compliance, but their effect on outcomes only matters when accounting for unobservables. Unlike

the case of T = 2, B = 2, and H = 3, differences in the profit functions are small, because estimates

for the CLATEs are similar across specifications (and all three models share the same propensity

regression model). Nevertheless, the optimal number of bonus points varies across models owing to: i)

the large estimation bounds and the use of the minimax criterion, ii) the high margin per visit, which

amplifies small differences in the CLATE for visits into large differences in profit, and iii) the relative

flatness of the profit curve over a potentially wide range of bonus points. As a result, even though the

optimal design differs across models, the predicted profits at the different optima are roughly the same.

Even if the wrong model were to be used in this instance, profits would not be substantially affected

(ranging between $5.10 and $5.74 per customer over the range of 17,500 points to 30,000 points).

The last case is presented in the lower right panel, with T = 4, B = 3, and H = 4, and represents

results for members of the highest loyalty tier—those who stay at the hotel chain most often. As in

the case of the upper right panel, where T = 2, B = 2, and H = 3, the choice of model again has a

substantial effect on estimates. However, in this case the effect is reversed; the full model in the lower

right panel predicts higher rather than lower profits, whereas the full model in the upper right panel

(for tier T = 2) predicts lower, rather than higher profits. This result is suggestive that a model where

unobservables can interact with observables is able to capture many patterns of behavior (that is, the

model is not restricted to assume that the marginal consumer at higher rewards is always the same).

The scaled profit in the model without unobservables, when T = 4, B = 3, and H = 4, is about $3.11

per customer, compared to the full model’s prediction of $4.46–$4.56, an error of about 30%. The

optimal reward levels are similar, however, because marginal revenues are roughly proportional across
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models.

Finally, as section 4.2 notes, the Heckman correction model assumes separability and a monotone

effect of unobservables on outcomes, and the previous discussion offers evidence that the separability

assumption is not supported by the data. Here we reference the monotone treatment effect assumption.

This assumption is also violated, because in the full model, the CLATE for T = 2, B = 2, and H = 3 is

increasing, the CLATE for T = 3, B = 2, and H = 3 is flat, and the CLATE for T = 4, B = 2, and

H = 4 is decreasing. By contrast, the no-interactions model generates a monotonic effect, which can be

seen in the decreasing CLATEs for this model in Figure 8.

In conclusion, we make two points. First, the assumptions of separability and selection are materially

important when setting rewards and forecasting returns, but are often ignored in the literature on

compliance promotions. Second, the hotel rewards example used to illustrate our framework suggests its

potential utility for extrapolation in the context of compliance promotion design in other experimental

settings.

5 Conclusion

In this paper, we outline an approach for promotional design and targeting of compliance promotions,

and apply it to the context of a hotel’s loyalty rewards promotion. Given the rapid growth of field

experiments and methods for policy evaluation in marketing, the utility of extrapolating beyond

those experimental cells to improve promotional outcomes (for example deciding who to target with a

promotion and what the optimal design parameters of that promotion should be) is growing rapidly.

Often these optimal designs do not align exactly with the values used in the randomized field experiment.

Yet there is little to date in the marketing literature that can guide these targeting and design decisions,

particularly in experimental contexts where compliance is not guaranteed.

The approach we outline offers several advantages over past approaches used in marketing. First, it

does not assume away unobservable factors that can affect compliance and outcomes (that is, it does not

assume compliance is unconfounded). Accounting for these unobservable factors complicates the task of

extrapolation, yet assuming their effect away during extrapolation biases causal estimates and leads

to sub-optimal promotions or other policy outcomes. Second, when unobservables are acknowledged

to be an important factor for a compliance promotion, we argue that causal extrapolation is only

valid for promotion features that can function as valid instruments for promotion status—in other

words, promotion features whose impact on the outcome is fully mediated by whether customers

meet the terms of the promotion. Moreover, this requirement is true even if the design parameters
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are manipulated experimentally. This observation is relevant in marketing, as prior research has

extrapolated non-fully-mediated manipulations, perhaps assuming randomization alone is sufficient.

Third, for features whose effects on the outcome are assumed to be fully mediated through promotion

status, we show how the MTE approach can be used to extrapolate causal effects in the context of

compliance promotions. This approach is easy to use (as it is implemented in a few lines of R code) and

does not require strong assumptions on the error structure or functional form of the outcome equation

as with some prior approaches. In our context, the separability and monotone effect assumptions are

not supported by the data. Rather, flexibility in the MTR functions is apparently necessary to fully

rationalize observed patterns in the data. Fourth, we show that simple linear interpolation methods,

where levels of outcomes are interpolated between observed experimental manipulations, and which are

commonly used in practice, are only locally valid for very small changes in design parameters away

from the values used in the experiment.

We apply this approach to a loyalty reward promotion experiment implemented by IHG, and find

that extrapolation is valid for rewards, but not hurdle levels, and traditional approaches to extrapolation

can over- or underestimate the profit of compliance promotions. Further we demonstrate how to use

this approach to optimize promotions for specific customer target segments. Findings suggest that

more standard and restricted approaches can lead to large prediction errors in profits (on the order of

100%) and reward points that are nearly 50% too large.

Given the growth in machine learning approaches used to estimate heterogeneous treatment effects

for purposes of targeting in the face of a large number of observable covariates, an obvious next

step is to integrate MTE approaches with machine learning, in order to enable promotional design

and targeting in the face of unobservable customer heterogeneity. We hope this research will be an

initial step to enable marketers and researchers to extrapolate for policy evaluation and develop new

approaches for the targeting and design of compliance promotions.
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Appendix A Policy-Relevant Treatment Effect

The PRTE for a promotion offering R bonus points is derived from the more primitive CLATE

of meeting the terms of the promotion by visiting H or more hotels (D = 1) on the outcome Y ,

among customers with baseline B and tier T who are compliers when offered R = r points. For these

compliers, D = 1 when R = r, and D = 0 when R = 0 (conditional on X)—we denote this definition

as (D(r) = 1, D(0) = 0|X). Using the potential outcomes notation introduced in Section 3.1, we can

write this causal effect as:

CLATEX(0 → r) ≡ E [Y1|D(r) = 1, D(0) = 0, X]− E [Y0|D(r) = 1, D(0) = 0, X] (22)

Let πCX(0 → r) denote the proportion of customers who are compliers when offered R = r points,

and π1X denote the proportion of customers who are always-takers (those who would have D = 1

even without a promotion). Further, let N , mgn, and cpp be the number of targeted customers, the

expected margin per stay, and expected cost per point as defined in the main text. We can use these

terms to define the expected, incremental profit from this promotion:

PRTEX(r) = N · πCX(0 → r)︸ ︷︷ ︸
Number of compliers

· CLATEX(0 → r) ·mgn︸ ︷︷ ︸
Incremental margin from compliers

− N ·
[
π1X + πCX(0 → r)

]︸ ︷︷ ︸
Number of customers receiving reward

· cpp · r︸ ︷︷ ︸
Per-customer cost of reward

(23)

Next, we note two identities. First, CLATEX(0 → r) is equal to the ratio of the (conditional on X)

intent-to-treat effect on Y from offering a reward of R = r points to the proportion of compliers when

R = r: CLATEX(0 → r) = (E[Y |R = r,X]− E[Y |R = 0, X]) /πCX(0 → r). Second, π1X + πCX(0 → r)

is equal to the expected proportion of customers in the offer group who meet the terms of the promotion
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(D = 1) when offered R = r points. Thus, we can rewrite the PRTE as

PRTEX(r) = N · (E [Y |R = r,X]− E [Y |R = 0, X])︸ ︷︷ ︸
ITT effect of R = r points on Y

·mgn−N · cpp · r · E [D|R = r,X]︸ ︷︷ ︸
Proportion receiving reward

(24)

Given random assignment of R (conditional on X), a non-parametric estimator of this PRTE is

available at values of R observed in the experiment.

Appendix B Threats To The Excludability of Reward Points

We mention three potential concerns about the assumed excludability of bonus points in the empirical

setting of IHG’s compliance promotion. One concern is purchase acceleration: If consumers delay travel

during the promotion so they can use bonus points on those postponed visits after the promotion,

then the number of reward points would have a direct effect on stays, in violation of the exclusion

restriction. We assume that if purchase acceleration occurs, its effects are negligible, and we rationalize

this assumption in three ways. First, research suggests consumers’ weekly discount rates are quite

low, around .9 per week (Yao et al., 2012). With a four month window for the promotion, the present

value of the postponed visits would be discounted over 80%. Second, purchase delays would only occur

among a subset of customers who would otherwise exceed the hurdle by enough to support a purchase

delay (otherwise purchase delays would cause them not to achieve the hurdle), and so may not be that

common. Third, IHG management believes such behavior to be rare.

A second concern is that the offer may present a mere advertising effect where it makes the firm

more salient for those who receive the offer than those in the control group. The saliency may then

affect the behavior of the offer group, independent of the actual levels of H and R. We acknowledge

this possibility, but argue that the firm communicates with customers on a frequent basis, making the

saliency level difference ignorable between the offer and control groups. Furthermore, recent studies

have shown that marginal ad effects tend to be small (Shapiro et al., 2021).

A third concern is there may be customers who try to comply with the promotion, but fail. If

so, then higher rewards might lead to higher stays among customers who do not reach the hurdle,

thus shifting potential outcomes Y0 to be closer to H and violating the exclusion restriction. Such an

outcome, however, would imply a pattern of “bunching” of stays just below the hurdle in the offer

group, but not in the control group. We test for this pattern and fail to observe it. Specifically, we
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compare the average stays among the subset of customers who do not reach their hurdles between the

offer and control groups. We conduct two tests:

• First, bunching would imply that a higher fraction of customers would be closer to their hurdle

in the offer group than the control group. To explore this possibility, we conduct a Chi-squared

test whose null hypothesis is that the fraction of customers having stays Y = H − 1 is identical

between offer and control groups. Were the offer to induce customers to attempt to attain the

hurdle, but fail, more of those in the offer group should have stays just below the hurdle. The test

fails to reject the null hypothesis, suggesting no evidence of bunching (χ2
1 = 0.002, p = 0.964).

We also repeat the test for Y = H − 1∨ Y = H − 2, which also suggests no evidence of bunching

(χ2
1 = 0.053, p = 0.819).

• Second, we explore whether offers with higher rewards, R, are associated with higher proportions

of customers with stays just below the hurdle (among all customers who share the same baseline,

tier, hurdle, and reward). Specifically, we regress the fraction of customers with Y = H − 1 on R,

controlling for baseline-tier-hurdle fixed effects. The resulting coefficient for the reward level R

is not significant (coef. = 0.0008, s.e. = 0.0009, p = 0.35), failing to provide evidence that the

fraction of customers with Y = H − 1 increases with R.14

Note that bunching above the cutoff is not a concern, and is consistent with R being conditionally

excludable. In fact, patterns such as bunching above the threshold highlight a distinct advantage of the

MTE approach. Flexibility in specifying the MTRs as functions of both observed and unobserved

heterogeneity enables the MTE approach to estimate causal effects that arise from more complex

patterns of customer behavior, which is something more restrictive models such as Heckman’s correction

model cannot easily accommodate.

Appendix C Extrapolation Validity Example

To understand why extrapolation of causal effects over the spending hurdle is not valid, consider that

as the value of the hurdle changes, two things happen: i) the mix of customers who comply with the

promotion changes, and ii) the average number of hotel visits among complying and non-complying

customers also changes. We can illustrate the problems this generates for extrapolation by considering

a hypothetical experiment where customers in the offer condition are randomized into one of two

14 Furthermore, we cannot reject the hypothesis that the coefficient of R is negative (one-sided test p = 0.18).
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Hurdle Proportion with D = 1
Average stays if D = 1

Data Group D Group B Group D ∪ B

4 .10 4.5 4.5 – –
2 .20 3.0 4− j 2 + j 3.0

Table A1: Illustration of Why Extrapolation Over Non-Excludable Variables is Invalid. j ∈ [0, 2]. Bonus points
are set at R = 10, 000, and do not vary over promotions.

promotions—one with a hurdle of H = 4, and one with H = 2—and where both promotions offer

R = 10,000 bonus points as a reward. Table A1 summarizes what we might observe from this experiment.

In the cell with H = 4, 10% of customers reach the hurdle, and they visit 4.5 hotels on average. In the

cell with H = 2, 20% of customers reach the hurdle, and they visit an average of 3 hotels. We would

like to extrapolate the results of the experiment to predict average stays among those reaching a hurdle

of H = 3, which was not part of the original experiment.

From Table A1, we can infer a few things about this hypothetical population of customers. First, if

we were to offer all customers the same promotion with a spending hurdle of H = 4, we would expect

10% of them to reach the hurdle. We can call this subset of customers reaching the hurdle D, and

infer from the experiment that their average hotel stays would be 4.5. Second, if we were to offer all

customers a promotion with a hurdle of H = 2, we would expect all of the customers in the subset D to

reach this lower hurdle, as the reward is unchanged. Moreover, based on the results of the experiment,

we would also expect an additional 10% of customers to reach this lower hurdle. We can call this new

subset of customers, B. Third, we know from the experiment that when we offer a promotion with a

hurdle H = 2, average stays in groups D and B, combined, should be 3. And fourth, we know that

average stays for customers in group D should be lower when they are offered the H = 2 hurdle versus

the H = 4 hurdle, since: i) groups D and B are the same size, thus their combined average of 3 stays is

the simple average of their respective group averages; and ii) group B’s average stays cannot be less

than the minimum spending hurdle of H = 2—hence, group D’s average cannot be greater than 4.

What if one seeks to infer the average stays among those reaching a hurdle of H = 3? For one,

we need to predict the proportion of customers in B who will not reach the H = 3 hurdle. One can

generate such a prediction from the estimated propensity function, p(x, z), but unfortunately one can

do no more. Specifically, one cannot infer: i) how average stays in group D change when offered a

hurdle lower than 4, nor ii) how average stays in group B change when offered a hurdle greater than 2.

We can conceive of such a model to predict these missing values, but the experiment does not generate
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Reward Proportion with D = 1
Average stays if D = 1

Data Group D Group C Group D ∪ C

10,000 .10 4.5 4.5 – –
15,000 .15 4.4 4.5 4.2 4.4

Table A2: Illustration of Why Extrapolation Over Excludable Variables is Valid. Hurdles are set at H = 4, and
do not vary over promotions.

any information that can be used to estimate that model. One would need to impose the extrapolation

model by fiat.

By contrast, extrapolation on R is valid as long as we are willing to assume that changes in R

affect the mix of customers who comply with the promotion, but otherwise have no effect on stays. For

example, imagine we included a third promotion in the experiment from the previous example, and this

new cell had a promotion with H = 4 and R = 15,000 (see Table A2). As in the previous example, when

we offer a reward of 15,000 bonus points, we expect all of the customers in group D to reach the hurdle,

and to be joined by a new subset of customers, which we call group C. In total, 15% of customers in

this cell reach the hurdle, visiting an average of 4.4 hotels. In the previous example, we could not infer

average stays for group D when offered a lower hurdle. Here we need to infer group D’s average stays

when offered 15,000 bonus points, and thankfully, we can infer this—it is 4.5, the same as when they

are offered 10,000 bonus points. Furthermore, because we know the sizes of groups D and C, we can do

the same for group C; they visit 4.2 hotels on average (4.4 =
[
.1 (4.5) + .05ȲC

]
/.15 ⇐⇒ ȲC = 4.2). As

before, we can conceive of a model for how average stays are related to propensities to comply with the

promotion. In this case, however, the experiment does contain enough information to identify the

parameters of that model.

Appendix D Extrapolation

D.1 Logit Propensity and General MTR Function

Conditional on X (and suppressing X in the notation), the intent-to-treat effect (ITT) of a promotion

with R = r points (versus R = 0 points—i.e., no promotion) is given by

ITT (0 → r) =

∫ p(r)

p(0)
[m1(u)−m0(u)]du (25)
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Change the variable of integration from u to ϱ, where u = p(ϱ) ⇐⇒ ϱ = p−1(u) and dϱ/du =

1/p′(ϱ) ⇐⇒ p′(ϱ)dϱ = du:

ITT (0 → r) =

∫ r

0
[m1(p(ϱ))−m0(p(ϱ))]p

′(ϱ)dϱ (26)

Specify the propensity function as p(ϱ) = logit−1(α+ βϱ). The derivative of the propensity function

with respect to ϱ is

p′(ϱ) = β
[
1− logit−1 (α+ βϱ)

] [
logit−1 (α+ βϱ)

]
= β [2 + 2 cosh(α+ βϱ)]−1 (27)

thus the expression above becomes

ITT (0 → r) =

∫ r

0

[m1(p(ϱ))−m0(p(ϱ))]β

2 + 2 cosh(α+ βϱ)
dϱ. (28)

D.2 General Propensity and Polynomial MTR Function

Let the MTRs be given by the polynomial functionmd(u, x; θ) =
∑K

k=0 θdkxu
k. Then (again, suppressing

X in the notation), the ITT can be expressed as

ITT (0 → r) =

∫ p(x,r)

p(x,0)
[m1(u)−m0(u)]du

=

∫ p(r)

p(0)

[
K∑
k=0

θ1kxu
k −

K∑
k=0

θ0kxu
k

]
du

=

K∑
k=0

θ̄kx
[
pk+1(x, r)− pk+1(x, 0)

]
k + 1

, θ̄k ≡ (θ1k − θ0k)

= θ̄0x [p(x, r)− p(x, 0)] +
K∑
k=1

θ̄kx
[
pk+1(x, r)− pk+1(x, 0)

]
k + 1

(29)

where θ̄q = θq1 − θq1.
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