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We study a general dynamic pricing game where sellers are endowed with finite
capacities and face uncertain demands toward a sales deadline. Price dynamics are
determined not only by changing own-product opportunity costs and demand, but also
by competitors’ inventories as they affect future prices. We establish sufficient con-
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in higher output but lower total welfare than under uniform pricing.

*The views expressed herein are those of the authors and do not necessarily reflect the views of the
National Bureau of Economic Research. We thank the anonymous airline for giving us access to the data
used in this study. Under the agreement with the authors, the airline had "the right to delete any trade
secret, proprietary, or Confidential Information" supplied by the airline. We agreed to take comments in
good faith regarding statements that would lead a reader to identify the airline and damage the airline’s
reputation. All authors have no material financial relationships with entities related to this research. We
thank Jose Betancourt for his excellent research assistance. We thank seminar participants at NYU and Yale
for comments.

†Emails: hortacsu@gmail.com, aniko.oery@yale.edu, kevin.williams@yale.edu

1



1 Introduction

Dynamic pricing is commonly used by firms selling fixed inventory by a set deadline. Ex-

amples range from seats on airlines, trains and for entertainment events, to reservations for

cruises, and inventory in retailing. In these markets, capacity influences prices in impor-

tant ways. First, prices adjust as the opportunity cost of selling changes with scarcity—the

value of a capacity unit depends on the ability to sell it in the future. Second, demand may

change over time which provides the incentive to potentially hold inventory for certain cus-

tomers. In competitive markets, including all of the aforementioned examples, not only are

these forces present, but the opportunity cost of selling also depends on other firms’ inven-

tories because they affect future prices. What predictions can be made when competing

firms dynamically adjust prices toward the deadline?

In this paper we study equilibria of a general dynamic pricing game and then apply our

framework to the airline industry using granular data on competing airlines. We establish

sufficient conditions for existence and uniqueness, and for convergence to a system of

differential equations for an arbitrary number of firms and products. Our results show how

little intuition from the well-studied single-firm setting carries over to competitive markets

because of sellers’ incentives to soften future price competition. For example, a firm may

fire-sale units even if it has the smallest inventory in the industry in order to increase future

prices. Or, a firm with excess capacity may charge high prices in order to get a competitor

to sell out early. We then estimate the welfare effects of dynamic pricing in the airline

industry using daily pricing and bookings data covering dozens of U.S. oligopoly markets.

We estimate a model of air travel demand and show that dynamic pricing expands output,

results in higher revenues, lowers consumer surplus, and decreases total welfare compared

to uniform pricing. We examine alternative pricing regimes and show that not internalizing

the scarcity of competitors can increase average prices in airline markets.

We begin by presenting a perfect information model for a duopoly where each firm

offers a single product. In the appendix, we show that our results generalize to an arbitrary

number of firms, each offering an arbitrary number of products. Each firm is exogenously
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endowed with limited initial capacity that must be sold by a deadline. After the deadline has

passed, unsold capacities are scrapped with zero value. Firms are not allowed to oversell.

Products are imperfect substitutes and satisfy general regularity conditions. Consumers

arrive randomly according to time-varying arrival rates. Each consumer is short-lived and

decides to purchase an available product or select an outside option, where the elasticity of

demand can vary over time. Firms simultaneously choose prices after observing remaining

capacities for all products; demand is realized, capacity constraints are updated, and the

process repeats until the perishability date or until both products are sold out.

The model produces a rich set of equilibrium strategies because competitor prices affect

both current market shares and opportunity costs of remaining capacity. We show that

whether the incentive to soften future competition puts upward or downward pressure on

a firm’s price today depends on whether a sale of the competitor increases or decreases

the firm’s expected future profits. We call the change in continuation profits when the

competitor sells, the “competitor scarcity effect.” Typically, the competitor scarcity effect

is negative, i.e., a sale of the competitor increases a firm’s continuation value. In this case,

higher demand for the competitor benefits the firm. This effect puts upward pressure on

a firm’s best-response in order to shift demand to its rival. We show that the competitor’s

price can even be a strategic substitute of the firm’s price and demonstrate this finding with

a commonly used demand function (discrete choice logit). Due to the competitor scarcity

effect, firms’ payoffs are also neither supermodular nor log-supermodular (Milgrom and

Roberts, 1990). They are also not of the form studied in either Caplin and Nalebuff (1991)

or Nocke and Schutz (2018). We show that the demand assumptions used in these papers

do not guarantee uniqueness of equilibria in our model.

We derive sufficient conditions for existence and uniqueness of equilibria of the stage

game using a theorem in Kellogg (1976). Although we show that even simple parametriza-

tions of the model may yield multiple equilibria and price jumps, we prove that close to

the deadline, our sufficient conditions for existence and uniqueness are always satisfied for

commonly used demand systems.These conditions also ensure that the unique equilibrium
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price paths in the continuous-time limit of a discrete-time game are continuous and satisfy

a system of differential equations. We demonstrate the usefulness of this characterization

in our empirical analysis.

We prove that close the deadline, a sale of the firm with fewer units remaining increases

future prices more than a sale of a firm with more units. The reason is that this sale sig-

nificantly softens future price competition. The competitor scarcity effect for the firm with

more units is large in magnitude and the own product scarcity effect is large for the firm

with fewer products. Competition is fiercest when firms have the same number of units re-

maining. Thus, the ability to soften competition by strategically reacting to the distribution

of remaining capacities raises prices in asymmetric states of the game. We use examples

to show that internalizing the remaining capacity of a competitor can result in more or less

price competition depending on consumer preferences.

Under the assumption of Independence of Irrelevant Alternatives (IIA), we can further

derive a markup formula where the opportunity cost of selling for each firm consists of

the own-product scarcity effect cost and the competitor scarcity effect, weighted by the

equilibrium market share of the competitor relative to the outside option. This relative

market share is independent of the firm’s own price. We show that the firm’s best-response

problem given a competitor price parallels single-firm dynamic pricing models (Gallego

and Van Ryzin, 1994), except that competitive forces are subsumed in the cost term. This

allows us to decompose the drivers of pricing dynamics into a demand and opportunity cost

effect.

In the second stage of our analysis, we quantify the welfare effects of dynamic price

competition in the airline industry and study how different pricing regimes affects market

outcomes. We use new data sources that contain daily pricing and booking data for compet-

ing airlines. The data are complete in that we observe all bookings (specifically, booking

counts) for all nonstop competitors regardless of booking channel—tickets purchased either

directly with the airline or via other agencies—for the routes studied.

We estimate a Poisson demand model, where aggregate demand uncertainty is captured
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through Poisson arrivals, and preferences are modeled through discrete choice nested logit

demand. We use search data for one airline to inform arrival process parameters that are

then scaled up to account for unobserved searches, e.g., via online travel agencies or other a

competitor’s website. In total, we estimate demand for 58 duopoly markets. We show there

exists significant variation in willingness to pay both across routes and across days from

departure for a given route. In general, demand becomes more inelastic as the departure

date approaches. Average own-price elasticities are -1.4.

With the demand estimates, we first simulate equilibrium market outcomes using

the differential equation characterization. This allows us to recover the own/competitor

scarcity effects and firm strategies for all potential states—some games (departure dates)

feature over 131 million potential states. Own scarcity effects are typically positive, and

competitor scarcity effects are negative, i.e., a firm’s continuation profit increases when the

competitor sells. We find a very small percentage (< 0.01%) of outcomes do not corre-

spond to a game of strategic complements. We also show that if firms ignored the competi-

tor scarcity effect throughout the game, prices and profits decrease—as predicted by the

theory—and consumer surplus increases slightly. If firms additionally do not take into ac-

count their own scarcity effect, equilibrium prices and profits decline, and consumer surplus

increases further. The net equilibrium welfare impact of ignoring scarcity effects is nega-

tive as more planes sellout in advance, before high-valuation consumers arrive. Therefore,

incorporating scarcity dynamically increases allocative efficiency but also allows firms to

extract more surplus in a competitive equilibrium.

We then simulate market outcomes when both firms use pricing heuristics that imple-

ment according to actual airline pricing practices. We consider two scenarios, one in which

firms believe their competitor will charge the price observed last period, and the second

where firms believe their competitor’s price will follow a deterministic path over time.

These pricing heuristics ignore that competitors are also responding to market outcomes

dynamically. We find that the use of heuristics can result in higher or lower firm revenues,

however, the total welfare effect is estimated to be positive compared to the benchmark
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model in both scenarios.

Finally, we simulate market outcomes if firms set a constant uniform price over time

to examine the benefits and costs of dynamic pricing. Unlike what we know from single-

firm analyses, we find that uniform pricing increases total welfare and benefits consumers

compared to dynamic pricing, despite higher average posted prices. This indicates that

dynamic pricing softens price competition despite featuring lower average prices due to

extracting surplus from late-arriving, price insensitive customers.

1.1 Literature Review

This paper extends models of dynamic pricing with scarce inventory and a deadline (rev-

enue management) to oligopoly (Gallego and Van Ryzin, 1994; Zhao and Zheng, 2000;

Talluri and Van Ryzin, 2004). Several papers study the trade-offs when a single firm faces

forward-looking buyers in a revenue management context (Board and Skrzypacz, 2016;

Gershkov et al., 2018; Dilme and Li, 2019) Although we abstract from forward-looking

buyers as previous work using airline clickstream data support short-lived buyers (Hor-

taçsu et al., 2021), we note that the intertemporal incentive to fire sale highlighted in these

works also occurs in our model of competition.

We contribute to the literature on dynamic pricing competition, including Maskin and

Tirole (1988); Dana (1999); Bergemann and Välimäki (2006); Sweeting et al. (2020). Both

Dudey (1992) and Martínez-de Albéniz and Talluri (2011) consider price competition in

the revenue management context with homogeneous consumers and symmetric firms. Our

model allows asymmetric firms, arbitrarily differentiated products, and maps well to our

empirical application of price competition in the airline industry. Dana and Williams (2022)

consider an oligopoly model in which firms have an incentive to shift capacity to their

rivals, but they abstract from demand uncertainty and differentiated products.

This paper adds a large literature on price dispersion in the airline industry by explic-

itly dynamic competition for a rich set of oligopoly markets (Borenstein and Rose, 1994;

Stavins, 2001; Gerardi and Shapiro, 2009; Berry and Jia, 2010; Puller et al., n.d.; Sen-
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gupta and Wiggins, 2014; Siegert and Ulbricht, 2020). Our work also complements recent

research on oligopoly pricing with algorithms (Calvano et al., 2020; Asker et al., 2021;

Leisten, 2021; Hansen et al., 2021) in that we quantify market outcomes using heuristics

that mimic industry practices.

2 Model of Dynamic Price Competition

We begin by detailing the demand assumptions that we use in our analysis (Section 2.1).

Our exposition of demand is for an arbitrary number of products. In Section 2.2 we intro-

duce supply-side notation by examining the single firm case. We then introduce a duopoly

pricing game with two products in Section 2.3 which we analyze in Section 3. In Ap-

pendix A, we generalize these results to a pricing game with arbitrary number of firms and

products using the notation of Sections 2.1-2.2.

2.1 Demand Model

We consider an economy with a set of products denoted by J := {1, . . . , J }. Products are

imperfect substitutes and must be scrapped with zero value at a deadline T > 0. We analyze

a discrete-time environment with periods t ∈ {0,∆, . . . , T −∆},∆> 0, and later consider the

dynamics for the continuous-time approximation as ∆→ 0. In every period, a consumer

arrives with probability ∆λt . Therefore, each consumer can be indexed by the time t of

her arrival.

If all products are available and given a vector of prices p = (pj ) j∈J , consumer t pur-

chases product j with probability s j (p;θ t ,J ), where θ t ∈ Θ ⊂ Rn is a vector of n > 1

parameters that smoothly and deterministically depends on time t . This demand system

satisfies the following regularity conditions.

Assumption 1. i) Convergence for infinite prices: For any j , limpj→∞ s j (p;θ ,J ) = 0.
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For any subsetA ⊂J and j ∈A the limit1

s j (p
A ;θ ,A ) := lim

pj ′→∞
j ′ ̸∈A

s j (p;θ ,J ) ∈ [0, 1]

exists, where pj ′ = pAj ′ for all j ′ ∈A , pA ∈RA ;

ii) Products are imperfect substitutes: For allA ⊂J , s j (p;θ ,J ) is strictly decreasing

in pj and strictly increasing in pj ′ , j ′ ̸= j ;

iii) Differentiability and diagonally dominant Jacobi matrix of demand: For all θ and

A ⊂J and j ∈A , s j (pA ;θ ,A ) is smooth in pA and

�

�

�

�

∂ s j

∂ pj
(pA ;θ ,A )

�

�

�

�

>
∑

j ′∈A\{ j }
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�
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∂ pj
(pA ;θ ,A )

�

�

�

�

; (1)

Furthermore, there exists a C > 0 such that for all pA

|s j (p
A ;θ ,A )|<C ·
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�

�

�

∂ s j

∂ pj
(pA ;θ ,A )

�

�

�

�

−
∑

j ′∈A\{ j }

�

�

�

�

∂ s j ′

∂ pj
(pA ;θ ,A )

�

�

�

�

!

. (2)

Since products can sell out, we denote the set of available products in period t by

At ⊆ J and need to ensure all properties when prices become infinite. Condition (1)

ensures by the Levy-Desplanques Theorem (see e.g. Theorem 6.1.10. in Horn and Johnson

(2012)) that the Jacobi matrix Dps (p) is non-singular. The assumption also has an intuitive

interpretation. A price change of product j should impact demand of product j more than

it impacts the sum of demand of all other products. Condition (2) intuitively means that

the demand for each product is bounded away from 1, and the differential impact of price

changes is large relative to demand. It makes sure that optimal prices for a single firm and

best responses in the oligopoly game are uniformly bounded given θ andA .

We omit the conditioning arguments in demand whenever the meaning is unambiguous.

1The limit is when all prices not inA are taken to infinity where the order does not matter.
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Given Assumption 1, we can define for anyA and finite price vector p the vector of inverse

quasi own-price elasticities of demand as

ε̂(p;θ ,A ) :=
�

Dps (p;θ ,A )
�−1

s (p;θ ,A ).

Assumption 2 details the assumptions that we place on demand elasticities.

Assumption 2. The system of inverse quasi own-price elasticity satisfies for all θ and

A ⊂J : det
�

Dpε̂(p)− I
�

̸= 0 for all p, where I is the identity matrix.

Assumption 2 guarantees that the system of first-order conditions has a unique solu-

tion. Given that Assumption 1 guarantees that maxp∈RA s(p)(p−c) has an interior solution,

this replaces the assumption of log-concavity commonly made in single-product monopoly

settings.

When the time index is relevant, we write s j ,t (p) := s j (p;θ t ,At ). Further, we let the

probability of choosing the outside option be equal to s0,t (p) := 1−
∑

j∈J
s j ,t (p).

We illustrate theoretical insights with a classic logit demand specification

s j ,t (p) =
exp

¦

δ j−αt pj

ρ

©

1+
∑

j ′∈At

exp
¦

δ j ′−αt pj ′

ρ

© , (3)

where δ j/ρ is the product-specific value of product j , αt /ρ is the time-variant marginal

utility to income, andρ > 0 is a scaling factor. Note that whenρ→ 0, competition collapses

to standard Bertrand. As ρ →∞, products become perfectly differentiated. Further, the

empirical model in Section 5.1 uses a nested logit specification where the outside option of

not buying is a separate nest from all inside goods. For this specification, we define

DAt
:=

∑

j∈At

exp

�

δ j −αt pj

1−σ

�

,

so that the probability that a consumer purchases j within the set of inside goods in period
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t is equal to

s j | J ,t =
exp

¦

δt−αt pj

1−σ

©

DAt

.

It follows that the probability that a consumer purchases any inside good product is equal

to

sAt
=

D 1−σ
At

1+D 1−σ
At

.

Both classic logit and nested logit demand functions satisfy Assumptions 1 and 2 (see

Appendix C).

2.2 Single Firm Benchmark

Before turning to competition, we first discuss a single firm, multi-product revenue man-

agement model with two goals in mind. The first is to introduce supply-side notation that

we carry over to the competitive model. The second is to showcase that the single-firm

problem is well behaved and exhibits nice properties. Most of these properties fail in the

oligopoly model.

A single firm M offers J products for sale with an initial inventory K j ,0 ∈ N of each

product j . We do not model the initial capacity choice. Further, let Kt = (K j ,t ) j∈J denote

the capacity vector at time t . The firm’s continuation payoff at time t < T , given capacity

vector K ∈NJ , satisfies the dynamic programming equation

ΠM ,t (K;∆) =

max
p
∆λt

∑

j∈J

s j ,t (p)
�

pj +ΠM ,t+∆(K−e j ;∆)
�

+
�

1−∆λt

∑

j∈J

s j ,t (p)
�

ΠM ,t+∆(K;∆),

where e j ∈ RJ is a vector of zeros with a one in the j th position. The firm faces three

boundary conditions: (i) ΠM ,T+∆(·;∆) = 0, (ii) ΠM ,t (0;∆) = 0, where 0 is a vector of zeros,

and (iii) ΠM ,t (K;∆) = −∞ if K j < 0 for a j ∈ J . These boundary conditions are simply

stating that any remaining capacity is scrapped with zero value after the deadline T , and

that the firm cannot obtain additional revenues after it sells all of its inventory. Note that the
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prices in period t do not directly affect the continuation values in period t +∆. Hence, the

optimal price in each period solves a static maximization problem given the continuation

payoffs. We denote this static profit-maximizing price vector by

pM (ω) := arg max
p

∑

j∈J

s j (p)
�

pj −ω j

�

,

whereω j =ΠM ,t (K;∆)−ΠM ,t (K−e j ;∆) is commonly called the opportunity cost of selling

product j , and ω= (ω j ) j∈J .2 By Lemma 2 in Konovalov and Sándor (2010), Assumption

2-(iii) immediately implies that there is a unique optimal price vector which is continuous in

ω and θ . Then, by Lemma 11 in the Appendix, the continuous-time limit of this dynamic

program exists, is unique, and solves the differential equation specified in the following

lemma.

Lemma 1. ΠM ,t (K;∆) converges uniformly to ΠM ,t (K) as ∆→ 0, which solves the differ-

ential equation

Π̇M ,t (K) =−λt max
p

∑

j∈J

s j ,t (p)

�

pj −
�

ΠM ,t (K)−ΠM ,t (K−e j )
�

�

with boundary conditions ΠM ,T (K) = 0 for all K, ΠM ,t (0) = 0, and ΠM ,t (K) =−∞ if K j < 0

for a j for all t .

Lemma 1 formalizes that the loss in continuation profit if no sale occurs is given by the

forgone expected flow revenue λt max
p

∑

j∈J
s j ,t (p)

�

pj − (ΠM ,t (K)−ΠM ,t (K−e j ))
�

.

Given a capacity vector K and corresponding available products A = { j : K j ̸= 0}, the

first-order condition for the profit-maximizing prices pM ,t (K) ∈ (pj ) j∈A can be written in

matrix form

pM ,t (K) =ωM ,t (K)−
�

Dpst (pM ,t (K))
�−1

st (pM ,t (K)) , (4)

2Note that strictly speaking, the opportunity cost of selling product j is given by ω j −
∑

j ′ ̸= j

s ′j (p)
1−s j (p)

ω j ′ as
by selling product j , the firm forgoes the opportunity to sell any other product to the customer.
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if ωM ,t (K) are the opportunity costs of all products j ∈A given capacity vector K. Hence,

the pricing policy pM ,t (K) is continuous in time and well behaved.

The evolution of the price vector pM ,t (Kt ) is then governed by the evolution of the

random variable representing the opportunity costs and quasi-price elasticities of demand.

The following proposition summarizes well-known properties of an optimal control prob-

lem, including monotonicity and concavity of the value function in the capacity vector. We

also derive properties of the stochastic process governing the opportunity costs ω j ,t (Kt ).

Proposition 1. The solution to the continuous-time single-firm revenue maximization prob-

lem in Lemma 1 satisfies the following:

i) ΠM ,t (K) is decreasing in t for K ̸= 0 and increasing in K j for all j ∈J and t < T ;

ii) ω j ,t (K) is decreasing in t for K ̸= 0 and decreasing in K j for all j and t < T ;

iii) The stochastic process ω j ,t (Kt ) is a submartingale.

Statements i) and ii) of Proposition 1 simply say that continuation profits are increasing

and concave in K, and that continuation profits and opportunity costs are decreasing in t

if K is held fixed. Statement (iii) implies that on average prices are increasing if θ t ≡ θ

does not change over time by (4). This formal result has been shown in simulations, e.g., in

McAfee and Te Velde (2006), where close to the deadline observed prices decrease since

the infinite prices of sold out products are not taken into account.

2.3 Duopoly Model with Perfect Information

We introduce a duopoly pricing game with two firms f ∈ {1, 2}. Each firm controls exactly

one product, i.e., J = {1, 2}. Therefore, we set j = f and use the subscript f to denote

both the firm and product of interest. We generalize the results in this section to multiple

firms with multiple products in Appendix A. Our exposition here focuses on the duopoly

case with two products since this case is sufficient to highlight the key forces relevant for

our analysis. Each firm f is initially endowed with K f ,0 units of its own product. In every
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period, firms simultaneously set prices pf ,t , and then a consumer arrives with probability

∆λt . If a consumer arrives, she buys a product from firm f with probability s f ,t (p1,t , p2,t ).

Like the single firm case, the payoff-relevant state is given by the vector of inventories

K := (K1, K2) at time t . We are interested in Markov perfect equilibria in which each firm’s

strategy is measurable with respect to (K1, K2, t ). We denote a Markov strategy of firm f by

pf ,t (K). Given equilibrium price vectors p∗t (K) := (p ∗1,t (K), p ∗2,t (K)), firm f ’s value function

satisfies

Π f ,t (K;∆) =∆λt

�

s f ,t

�

p∗t (K)
�

�

p ∗f ,t (K) +Π f ,t+∆(K−e f ;∆)
�

︸ ︷︷ ︸

revenue from own sale

+

s f ′,t

�

p∗t (K)
�

Π f ,t+∆(K−e f ′ ;∆)
︸ ︷︷ ︸

continuation value if f ′ sells

�

+
�

1−∆λt

∑

h={1,2}

sh ,t

�

p∗t (K)
�

�

︸ ︷︷ ︸

probability of no purchase

·Π f ,t+∆(K;∆),
(5)

where we denote the competitor by f ′ ̸= f . The boundary conditions are analogous to the

single-firm case: (i) Π f ,t (K;∆) = 0 if K f = 0, (ii) Π f ,t (K;∆) = −∞ if K f < 0, and (iii)

Π f ,T+∆(K;∆) = 0 for all K.

Similar to the single-firm setup, the period-t price vector does not impact the continua-

tion payoffs in period t +∆. Hence, p ∗t (K) is an equilibrium of a stage game in which firm

f ’s payoff is given by Π f ,t (K;∆)−Π f ,t+∆(K;∆). In order to describe this stage game, we

denote for each firm f ∈ {1, 2} the change in continuation profit if product h ∈ {1, 2} by

ω
f
h ,t (K) :=Π f ,t+∆(K;∆)−Π f ,t+∆(K−eh ;∆),

which we call the scarcity effect of product h on firm f . If h = f , we call ω f
f ,t the own-

product scarcity effect; when h ̸= f , we call ω f
h ,t the competitor scarcity effect. We set

ω
f
f ′,t := 0 if K f ′ = 0 for f ′ ̸= f .3 Further, we denote the matrix of scarcity effects that define

3We do not call the ωs opportunity costs for the same reason as discussed in Footnote 2.
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the pricing stage game by

Ωt (K) =





ω1
1,t (K) ω

1
2,t (K)

ω2
1,t (K) ω

2
2,t (K)



 .

In particular, it follows by Equation (5) that the flow payoff of firm f is equal to

Π f ,t (K;∆)−Π f ,t+∆(K;∆) =∆λt

�

s f ,t

�

p∗t (K)
�

�

p ∗f ,t (K)−ω
f
f ,t (K)

�

− s f ′,t

�

p∗t (K)
�

ω
f
f ′,t (K)

�

,

where f ′ ̸= f .

In the stage game, firms simultaneously choose prices and receive payoffs

s f ,t (p)(pf −ω
f
f ,t (K))− s f ′,t (p)ω

f
f ′,t (K),

where f ′ ̸= f . Intuitively, the firm incurs an opportunity cost of selling its own product

ω
f
f ,t as in the single-firm setting, but future prices are also affected by the future degree of

competition. This in turn is determined by the number of competitor units remaining. We

use the following terminology in order to discuss intuition.

Definition 1. We say that a competitor’s sale intensifies competition in a state (K, t ) if

ω
f
f ′,t > 0 and that a competitor’s sale softens competition in a state (K, t ) ifω f

f ′,t < 0, where

f ̸= f ′.

Due to how competition affects the stage game, we cannot apply results from Caplin

and Nalebuff (1991) or Nocke and Schutz (2018). The payoffs are neither super-modular

nor log-supermodular, so we cannot apply results from Milgrom and Roberts (1990). The

stage game is also not a potential game. Therefore, we establish equilibrium properties of

the game from scratch in the next section.
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3 Analysis of a Duopoly Market

We derive theoretical properties of the dynamic pricing game under perfect information.

We start with an analysis of uniqueness and continuity of equilibria. These properties

are essential to be able to describe market outcomes effectively. We then discuss how

demand and capacity realizations affect price levels and pricing dynamics. We highlight

how endogenous asymmetries across firms can soften price competition.

3.1 Equilibrium Existence, Uniqueness, and Continuity

3.1.1 Sufficient Condition for Equilibrium Uniqueness in the Stage Game

We consider the stage game for an arbitrary matrix of opportunity costs Ω. We drop the

time index and capacity argument in all expressions temporarily. Our first result presents

sufficient conditions for existence and uniqueness of an equilibrium of the stage game using

Lemma 2 (Kellogg, 1976) in Konovalov and Sándor (2010). To this end, we incorporate

two additional assumptions that ensure equilibrium prices are the unique solution to the

system of firms’ first-order conditions.

We can write the first-order condition of firm f ’s profit maximization problem as

g f (p) = pf ,

where

g f (p) := ω
f
f +

∂ s f ′

∂ pf
(p)

∂ s f

∂ pf
(p)
ω

f
f ′

︸ ︷︷ ︸

net opportunity cost
of selling

− s f (p)

�

∂ s f (p)

∂ pf

�−1

︸ ︷︷ ︸

inverse quasi
own-price elasticity

. (6)

Assumption 3 then guarantees that there is a unique solution to this system of equations.

Assumption 3. i) det

�

Dpf

�

g f (p)
�

−1

�

̸= 0 for all p and f = 1, 2.
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ii) det

�

Dp

�

g(p)
�

− I

�

̸= 0 for all p, where g(p) := (g1(p), g2(p)).

To better understand Assumption 3, first note that with a single firm, the assumption

guarantees that the first-order condition of the firm is either increasing or decreasing ev-

erywhere in its price. Assumption 3-(i) is always satisfied for demand functions that are

log-concave in each dimension. Mathematically, Assumption 3 is related to Assumption 2,

but the inverse quasi-own price elasticity is replaced by the function g(p). If the competi-

tor scarcity effect is zero, Assumption 2 implies Assumption 3. If the competitor scarcity

effect is not zero, the first-order condition is more complex than in the single-firm setting

since the net opportunity cost of selling depends on the ratio of derivatives of the demand

of the two firms. In general, this ratio depends on the firm’s own price and the competitor’s

price.

Lemma 2. Given Assumption 3 the stage game admits a unique equilibrium.

Note that Lemma 2 establishes uniqueness and existence simultaneously. Under the

commonly made assumption of independence of irrelevant alternatives (IIA) that is satisfied

by a classic logit demand specification, we can independently establish existence of an

equilibrium.

3.1.2 Continuity of Equilibrium Prices in Scarcity Effect Matrix Ω

In the dynamic game, the scarcity effect parameters Ω are endogenously changing over

time. In this section, we parameterize the stage game by the scarcity effect and demand

parameters, Ω and θ , respectively. We show that if Ω and θ remain in a compact neighbor-

hood in which the stage game admits a unique solution, then equilibrium prices denoted by

p ∗(Ω,θ ) are continuous in Ω and θ . Consequently, a small change in the opportunity costs

does not change prices substantially. Hence, as long as the value functions do not jump,

prices should not jump over time.

Lemma 3. If the equilibrium of the stage game is unique for a compact set of (Ω,θ ) ∈ O ,
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then there exists an equilibrium price vector p∗(Ω,θ ) for any (Ω,θ ) such that p∗(Ω,θ ) is

continuous in (Ω,θ ) on O .

Given Assumption 2, Assumption 3-ii) is satisfied for any matrix of opportunity costs

Ω in a neighborhood O that contains the zero matrix Ω = 0 (by continuity). In the next

subsection we use this observation to show that close to the deadline in the continuous time

limit, the price path converges to the solution of a system of differential equations (Lemma

9). Hence, in this region, price jumps occur only if one of the firms sells a unit.

Note, however, that for non-zero values of the opportunity costs, we can get multiplic-

ities of equilibria that can potentially result in price jumps that are not caused by a change

in inventory in the dynamic game. The following discussion illustrates this point. If firms’

opportunity costs for the other firm are large, Assumption 3 can fail to hold. For example,

with logit demand and δ1 =δ2 = 0, Assumption 3 is equivalent to

�

s1(p) +αω
1
2s0(p)

��

s2(p) +αω
2
1s0(p)

�

̸= 1+
1− s1(p)− s2(p)

s1(p)s2(p)
.

This condition does not depend on the firms’ own-product scarcity effects ω1
1 and ω2

2 and

is violated for p= 0 and large positive competitor scarcity effects ω1
2 and ω2

1. The follow-

ing parametrization of a curve of (ω2
1,ω1

2) illustrates how multiplicities can occur and we

may observe jumps in prices even if the opportunity costs are changing continuously. Put

differently, one can see in Figure 1-(b) that we cannot choose a smooth equilibrium price

path of firm 1 as a function of x .

Consequently, close to the deadline T when Ω = 0, the stage games are well behaved.

However, further away from the deadline, when opportunity costs can potentially become

large, the stage game may be less well behaved.

3.1.3 Equilibrium Dynamics

Lemma 4 (Continuous-time limit Limit). We assume that Assumptions 1, 2, and 3 are

satisfied for Ω = 0. For every K, there exists a T0(K) > 0, non-increasing in K, so that for
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Figure 1: Multiplicities in stage-game equilibria
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, x ∈ [0, 1], where we set
(ω1

1,ω2
2) = (0, 0). Panel (a) depicts the parametrized curve and panel (b) equilibrium prices of both firms given (ω2

1,ω1
2) at varying values

of x .

any T ≤ T0(K) the value function Π f ,t (K;∆) converges to a limit Π f ,t (K) as ∆ → 0 that

solves the differential equation

Π̇ f ,t (K) =−λt

�

s f ,t (p∗(Ωt (K),θ t ))
�

p ∗f (Ωt (K),θ t )− (Π f ,t (K)−Π f ,t (K−e j ))
�

−s f ′,t (p∗(Ωt (K),θ t ))
�

Π f ,t (K)−Π f ,t (K−e f ′ )
�

�

,

where f ′ ̸= f , with boundary conditions Π f ,T (K) = 0 for all K, Π f ,t (K) = 0 if K f = 0, and

Π f ,t (K) =−∞ if K f < 0.

For the logit specification, we can additionally show that the convergence holds for any

T as long as the scaling factorσ is sufficiently large, i.e., as long as products are sufficiently

differentiated.

Lemma 5. For the classic logit demand specification (3), holding everything else fixed:

there exists a ρ̄ and a ∆̄> 0 so that for all ρ > ρ̄ and ∆< ∆̄, the cost matrix Ωt (K) satisfies

Assumption 4 for all t ∈ [0, T ] and K≤K0.

The simulations in Figures 2 and 3 illustrate that none of the properties in Proposition 1

are generally satisfied in a duopoly. We fix the capacity of firm 2 to be K2 = 3. First, Figure

2 shows that profits must not be monotonic in own capacity: close to the deadline, firm 1
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expects higher profits with K1 = 2 units than with K1 = 4 units. In the following section, we

discuss how this .

Figure 2: Simulated profits and prices for two firms (K2 = 3)
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Notes: The simulations assume δ= (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 0.05.

Figure 3 shows that all scarcity effect are non-monotonic in both time and capacities. It

also appears that the competitor scarcity effects are large closer to the deadline, but become

less important further away from the deadline.

3.2 Competition and Price Dynamics

Competition affects both price levels and pricing dynamics. In static Bertrand games, prices

are strategic complements and hence, competition unambiguously lowers prices. These

strategic forces can change in a game with positive competitor scarcity effects. This posi-

tive competitor scarcity effect can soften competition relative to a stage game with negative

or zero competitor scarcity effect. We discuss this force in Section 3.2.1 using the logit

demand specification. Then, in Section 3.2.2 we then show that these states of soft compe-

tition occur when the capacity is distributed asymmetrically, i.e., when one firm has many

more units than another firm. Competition is strongest when both firms own the same num-

ber of units—even if firms are asymmetric with different mean consumer values, δ. Finally,

we show that under the assumption of independence of irrelevant alternatives we can derive

a mark-up formula that allows us to decompose how the dynamics of equilibrium prices is
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determined by the dynamics of the overall scarcity effect, the dynamics of the competitor

scarcity effect, and the dynamics of demand elasticity. Additionally, we can show existence

Figure 3: Simulated opportunity costs for two firms (K2 = 3)
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Notes: The simulations assume δ= (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 0.05.

Figure 4: Simulated market shares for two firms (K2 = 3)

(a) Firm 1 equilibrium share
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Notes: The simulations assume δ= (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 0.05.
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of equilibria in general under independence of irrelevant alternatives.

3.2.1 Prices as Strategic Substitutes

We have shown in Section 3.1.2 that multiplicity of equilibria and complex equilibrium

dynamics are driven by the competitor scarcity effect. In this section we discuss further

how exactly the competitor scarcity effect changes the strategic incentives in the stage

game.

To this end, first consider the a stage game in which all competitor scarcity effects are

set equal to zero, i.e., payoffs are of the form s f (p)(pf −ω
f
f ).

When we analyze Bertrand games with such payoff functions, we usually assume log-

concavity of demand to guarantee that the game is log-supermodular. In particular, we

assume that the inverse quasi own price elasticity s f (p)
∂ sf
∂ pf
(p)

of each firm f given any price level

of the competitor is increasing in the own price and decreasing in the competitor’s price,

i.e. demand becomes more inelastic if the competitor raises the price.4 Such an assumption

is satisfied by a logit or nested logit specification.

The competitor scarcity effect is typically negative, i.e., if the competitor loses a unit it

benefits the firm.

To this end, consider the FOC of the game, given by g f (p) = 0 where g f is defined in 6.

Consider the classic logit specification (3) with ρ = 1. Then, the weight on the com-

petitor scarcity effect in (6) is given by

∂ s f ′

∂ pf
(p)

∂ s f

∂ pf
(p)
=−

s f ′(p)

1− s f (p)
=−

exp
�

δ f ′ −αpf ′
	

1+exp
�

δ f ′ −αpf ′
	 ,

which is increasing in pf ′ . Thus, if the competitor scarcity effectω1
2 is positive, an increase

in competitor price increases a firm’s cost of selling a product while for negative ω1
2 the

cost is decreasing in the competitor’s price. Put differently, for negative ω1
2, an increase

in the competitor price puts downward pressure on a firm’s own price. Therefore, the

4In Assumption 2, we only assume this to be true if the competitor price is infinity.
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competitor’s price can became a strategic substitute to the firm’s own price, which differs

from most pricing models where substitute products prices are strategic complements, i.e.,

the best response price increases in the competitor’s price. Specifically, the first order

condition of firm 1 can be written as

p1−ω1
1+

exp
�

δ2−αp2

	

1+exp
�

δ2−αp2

	ω1
2−

1

α(1− s1(p))
= 0

so by the implicit function theorem

∂ p ∗1
∂ p2

=
s2(p)

1+exp{δ2−αp2}
�

αω1
2+exp{δ1−αp1}

�

Consequently, firm 2’s price is a strategic substitute for firm 1’s price if and only if

ω1
2 <−

exp{δ1}
α

<−
exp{δ1−αp1}

α
.

Hence, if the price of firm f ′ ̸= f is a strategic substitute for firm f ’s price, then a sale of

firm f ′ must soften competition. As can be seen in Figure 3, and as we show in the next

subsection, this usually implies that a sale of firm f does not soften competition. In fact,

we show next that close to the deadline competition is softens whenever the firm with the

minimum capacity sells.

Finally note that this intuition of strategic substitutes and complements cannot be easily

generalized to multi-product multi-firm competition. However, the insight in Proposition 2

is generally valid.

3.2.2 Capacity Distribution and Prices

In this section we investigate in which states the sale of a firm’s own product or of the

competitor’s product can soften competition. To establish a formal result, we assume that

λt and s f ,t are independent of time, i.e., λt = λ, θ t = θ . We do, however, allow for

asymmetric, firm-specific demand s f . We then show that close to the deadline prices can
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jump only after the sale of the firm with the lower capacity but not after a sale of the firm

with more capacity.

Proposition 2. Let λt ≡λ, αt ≡α. Then, for K with K :=min
f

K f , the following holds:

pf ,t (K) = pf ,T (K) +O (|T − t |K ), t → T for f = 1, 2,

i.e., price changes close to the deadline are at most of order K .

If lim
t→0

∂ K Πh ,t

(∂ t )K (K−eh ) ̸= 0 for all f with Kh = K , then5

pf ,t (K) = pf ,T (K) +Θ(|T − t |K ), t → T for f = 1, 2,

i.e., price changes are exactly of order K .

Formally these statements say that the order of change of the price over time is deter-

mined by the minimum capacity of products in the market. The order of the slope of prices

as they converge to the static competitive price only changes if the minimum capacity in the

market changes. The simulation in Figure 5 of price policy changes illustrates the impact

of a sale of the product with minimum inventory versus the sale of a product which has

not minimal inventory. We use similar parameters as before, δ1 = δ2 = 1 and sales starting

with K = (3, 5). Panel (a) shows that if firm 1 with less capacity sells, all prices jump up.

However, in panel (b) one can see that a sale of firm 2 does not change prices much.

The prospect of significant price changes goes hand-in-hand with the desire to have the

firm with minimum capacity sell. Put differently, only a sale of the firm with less capacity

softens price competition significantly. In the extreme case, if firms have the same capacity,

then any sale leads to a price jump regardless of who sells. Then, both firms would like to

leave this state of fierce competition as soon as possible by offering low prices — possibly

even prices smaller than the competitive price.

Empirically, this means that we expect that firms benefit whenever remaining capacities

5Recall that f (t ) = O (g (t )) as t → T if ∃δ, C1 > 0 so that for all t with 0 < |T − t | < δ, | f (t )| ≤ C1g (t ).
f (t ) =Θ(g (t )) if additionally ∃C2 > 0 so that C2g (t )≤ | f (t )|.

23



Figure 5: Price paths before and after a sale

(a) Sale of a product with minimum inventory
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(b) Sale of a product without minimum inventory
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Notes: These simulations correspond to the parameter values δ j = 1, α= 1, σ= 0.05 and λ= 10.

are distributed unequally across firms. This is because the state of the market inventory can

serve as a coordination device for firms to decide who should sell their inventory first.

3.2.3 Independence of Irrelevant Alternatives and Markup formula

For demand specifications that satisfy the commonly used assumption of “Independence

of Irrelevant Alternatives (IIA),” we can establish existence more generally and derive an

economically meaningful markup formula where the net opportunity cost of selling is in-

dependent of a firm’s own price.

Assumption 4 (Independence of Irrelevant Alternatives (IIA)).

∂

∂ p1

s2(p)
s0(p)

=
∂

∂ p2

s1(p)
s0(p)

= 0.

Given Assumptions 1, 2 and 4, we establish the following proposition: 6

Proposition 3 (Mark-up formula under IIA). Under Assumptions 1,2, and 5, there exist

functions d1(p2;ω,α), d2(p1;ω,α) so that the equilibrium prices of the stage game coincide

6The general result in Appendix A additionally shows that with multiple products for each firm, the game
can be transformed to a game in which each product is managed by its own firm given transformed payoff
functions.
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with the equilibrium prices of a game where firms simultaneously choose their prices pf

maximizing






s1(p)(p1− c1(p2;ω,α))+d1(p2;ω,α)

s2(p)(p2− c2(p1;ω,α))+d2(p1;ω,α)

where f ̸=− f and

c1(p2;ω,α) :=ω1
1+ s̃2(p2)ω

1
2, c2(p1;ω,α) :=ω2

2+ s̃1(p1)ω
2
1. (7)

where s̃2(p2) := s2(p)
s0(p)

and s̃1(p1) := s1(p)
s0(p)

is the demand of firms 2 and 1, respectively, condi-

tional on the other firm not selling.

A consequence of Proposition 3 is that the first-order conditions (FOCs) that implicitly

define the best-response functions of the firms can be written in a markup formulation as

pf − c f (p− f ;ω,α)

pf
=−

1

ε f (p)
, (8)

where ε f (p) =
∂ s f (p)
∂ pf

pf

s f (p)
is the elasticity of demand. Equation (8) shows that the price

dynamics is governed by the dynamic evolution of the net opportunity cost c f and the

change in demand elasticity, and the evolution of the net opportunity cost depends on both

the own-product scarcity effect and the competitor scarcity effect—weighted by the relative

market share of the competitor relative to the outside option. Thus, if many consumers pick

the outside option, or if the competitor is small, a firm’s decision is not much affected by

the competitor. In turn, if the competitor is large, the competitor scarcity effect has a larger

weight.

Finally, IIA also automatically guarantees existence of equilibria.

Lemma 6 (Existence). Assume that Assumptions 1, 2, ??, and 4 are satisfied. Then, there

exists an equilibrium to the above stage game for any cost matrix Ω.
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3.2.4 Pricing with Heuristics

We compare the benchmark model to two pricing heuristics where firms do not internalize

the scarcity of their competitor. Moreover, firms do not explicitly account for the fact that

their competitor is a strategic agent solving a dynamic pricing problem. In both heuristics,

we consider discrete prices as they are used in actual airline pricing practices. Applied

theory work, including Asker et al. (2021), also consider discrete prices. The pricing menu

(set of discrete prices for all time periods) is taken as given.

We label the heuristics “Lagged Model” and “Deterministic Model,” respectively. In the

lagged model, each firm, having observed its competitor’s last period price, assumes this

price will also be charged in the current and all future periods. Each firm then calculates

its residual demand curves in all remaining periods and solves a single-firm dynamic pro-

gramming problem. In the deterministic model, each firm simply assumes its competitor

will price at the lowest possible price in all remaining periods.

We present price path simulations of the heuristics in Appendix Figure 15.

4 Data and Descriptive Evidence

4.1 Data Description

Our empirical insights are derived from data provided to us through a research partnership

with a large U.S. airline.7 The core data set contains booking and pricing information on

competing airlines and was assembled by third parties that collect and combine contributed

data. The data have strong parallels with other contributed data sets, such as the the Nielsen

scanner data used to study retailing, in that we observe prices and quantities for competing

firms.

The bookings data track flight-level sales counts over time. We use the tuple j , t , d

to denote an airline-flight number, day before departure, departure date combination. The

7The airline has elected to remain anonymous.
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frequency of the data is daily. We observe separate booking counts for passengers flying

between an origin-destination pair (OD) and consumers making connections. We call these

consumers local and flow passengers, respectively. Our structural analysis focuses on lo-

cal, nonstop traffic. We do not model the potential for consumers to connect while flying

between an origin-destination pair.

We observe bookings for consumers who purchased directly with the airline and on

other booking channels, e.g., online travel agencies. We label these bookings direct and

indirect, respectively. Because we observe all booking counts, we can construct the load

factor for each flight over time. We do not know the exact itinerary involved for each

booking, e.g., a round-trip versus a one-way booking. Therefore, we assume that the price

paid for each nonstop booking corresponds to the lowest available nonstop, one-way fare

for that flight.

Our pricing data come from a separate third-party data provider that gathers and dis-

seminates fare information for the airline industry. The data frequency matches the book-

ing information, i.e., we observe daily prices at the flight level. We observe fares even

when there are no bookings. Several prices are tracked, including tickets of different qual-

ities (cabins, fully refundable, etc.). We concentrate our analysis on the lowest available

economy class ticket because travelers overwhelmingly purchase the lowest fare offered

(Hortaçsu et al., 2021). We do not model consumers choosing between cabins (economy

vs. first class) nor the pricing decision for different versions of tickets.

In order to gauge market sizes, we use clickstream search data provided to us by the

air carrier. See Hortaçsu et al. (2021) for more details. Observed searches understate true

arrivals because some consumers may search and purchase through online travel agencies

or directly with competitors. We extrapolate total arrivals by scaling up observed searches

using hyperparameters that we describe below.
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4.2 Route Selection

Our analysis concentrates on nonstop flight competition. We limit ourselves to routes where

nonstop service is provided by exactly two airlines—by our data provider and one competi-

tor. Our data contain more than one competitor airline, however, we will always refer to

the competing airline as “the competitor.” We eliminate routes where the third-party data is

incomplete, e.g., where a carrier provides direct bookings to the data provider but indirect

bookings are missing. In addition to these criteria, we select routes in which most OD traf-

fic is traveling nonstop. This selection criteria allows us to avoid the additional complexity

of modeling connecting traffic.

Figure 6: Summary Analysis from the DB1B Data

(a) Local versus Flow Traffic
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Note: Panel (a) records the percentage of flow (connecting) vs local traffic and the percentage of non-stop traffic in the DB1B data. Panel
(b) plots the cdf of prices for selected routes and all dual-carrier markets. Panel (c) reports total passenger counts for both competitors.
Panel (d) reports the number of aggregate monthly departures for the routes in our sample.
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In Figure 6 we provide summary analysis of the 58 routes in our data using the publicly

available DB1B data. These data contain 10% of bookings in the U.S. but lack information

on the booking and departure date. In panel (a), we show the percentage of total traffic

that is local versus the percentage of local traffic flying nonstop for our data compared to

all dual-carrier nonstop markets in the U.S. The selected markets primarily contain local

traffic that are traveling nonstop. In panel (b) we show that the distribution of fares in our

markets is similar to the universe of dual-carrier markets.

In panels (c) we use the DB1B data to compute the quarterly passenger counts of the

competing airlines in our data set. The panel shows the total passenger count for “Com-

petitor A” and “Competitor B,” which we use to denote our air carrier and the nonstop

competitor, respectively. Each dot represents an OD-quarter. The panel shows the diversity

of routes in our sample. There is considerable variation in the total size of the market (dis-

tance from the origin) as well as the relative size of the airlines for each OD. There is also

variation in the passenger count of nonstop traffic within an OD across carriers.

Finally, in panel (d) we use the publicly available T100 segment data to plot the to-

tal number of monthly departures for the routes in our sample. Over half of our sample

contains routes in which there are less than five daily frequencies between the origin and

destination. Several routes feature twice daily service (one flight per airline). At the other

extreme, one route in our data contains nearly 10 daily frequencies.

4.3 Descriptive Evidence

We provide a summary of the main data in Table 1. Average fares across airlines in our

sample are $233. On average, each flight experiences about six price adjustments within

90 days. In terms of bookings, the average daily booking rate is less than one. Roughly

40% of observed bookings are for local traffic, the remaining are flow bookings. At the

departure time, average load factors are 72%, which is lower than the industry average of

about 80% for this time period. We do observe sellouts for all competitors in the data.

In Figure 7 we plot average fares and booking rates by day before departure. The left
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Table 1: Summary statistics

Data Series Variable Mean Std. Dev. Median 5th pctile 95th pctile

Fares
One-Way Fare ($) 233.7 111.4 218.6 92.1 390.7
Num. Fare Changes 6.4 2.4 6.0 3.0 11.0

Bookings
Booking Rate-local 0.2 0.6 0.0 0.0 1.0
Booking Rate-all 0.5 1.2 0.0 0.0 3.0
Ending LF (%) 72.1 19.8 76.0 32.9 98.0

Note: One-Way fare is for the lowest economy class ticket available for purchase. Number of fare changes records the number of price
adjustments observed for each flight. Booking rate-local excludes flow traffic. Booking rate-all includes both local and flow traffic.
Ending load factor (LF) reports the percentage of seats occupied at departure time.

panel (prices) shows that average fares are fairly flat between 90 and 21 days before depar-

ture. The top end of the distribution is decreasing in this time window. There are noticeable

“steps” in the last 21 days before departure which highlights the use of advance purchase

(AP) discounts in the industry. In the routes examined, we observe AP requirements at 21,

14, 7, and 3 days before departure. In the right panel (bookings) we highlight that book-

ings increase as the departure date approaches. This coincides with increasing prices and

suggests that demand becomes more inelastic over time. The booking rate is greater than

one per flight over the last month before departure.

In Figure 8 we focus on outcomes across competitors. The left panel provides a scatter

plot of ending load factor at the route-departure date level for the entire data sample. The

orange squares present route-level load factors. Note there exists a large mass of points

both above and below the 45-degree line—one competitor does not consistently sell a larger

fraction of capacity than the other carrier in all markets. We do observe some flights with

substantial overselling. In our analysis, we restrict firms to selling at most their capacity.

In the right panel we plot the average fare difference across competitors over time when

exactly two flights are offered. Note that fares tend to be similar across competitors—

the average difference is less than $10. However, the gradient of the prices differs. One

competitor has relatively higher prices well in advance of departure and relatively lower
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Figure 7: Prices and Bookings by Day Before Departure

(a) Prices over Time
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(b) Bookings per Route-Departure Date over Time
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Note: Panel (a) shows the average and interquartile range of flight prices over time. Panel (b) shows the average and interquartile range
of flight booking rates over time. Greater than 30 days before departure, the 25th and 75th percentiles coincide.

prices close to departure. Note that for over 50% of the data, prices across firms are equal,

that is, there is substantial price matching.

Figure 8: Load Factor and Price Differences across Carriers

(a) Load Factors
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(b) Mean Price Difference
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Note: Panel (a) shows the average load factor (across all flights) at the route-departure date level for both competitors in blue. The
orange squares report average route-level load factors. The diagonal line is the 45-degree line. Panel (b) shows the average and the 25th
and 75 percentiles of the difference in prices for markets in which exactly two flights across firms are offered (one flight per airline).
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5 Demand Model and Estimates

5.1 Empirical Specification

We model nonstop air travel demand using a nested logit demand model. Our model differs

from recent empirical work on airlines that use a mixed-logit model to model “business”

and “leisure” travelers (Lazarev, 2013; Williams, 2022; Aryal et al., 2021; Hortaçsu et al.,

2021). We use a flexible nested-logit model with time-varying as it better maps to our

theoretical model and results in unique equilibrium price paths.8

Define a market as an origin-destination (r ), departure date (d ), and day before depar-

ture (t ) combination. Each flight j , leaving on date d , is modeled across t ∈ {0, ..., T }. The

first period of sale is t = 0, and the flight departs at T . We use a 90-day time horizon. With

daily data, we model demand at the daily level. Arriving consumers choose flights from the

choice set Jt ,d ,r that maximize their individual utilities, or select the outside option, j = 0.

There are two nests. The outside good belongs to its own nest, and all inside goods belong

to the second nest.

We specify consumer arrivals to be

λt ,d ,r = exp
�

τOD
r +τ

DD
d +τ

SD
t ,d + f (DFD)t

�

,

where τ denote fixed effects for the route, departure date, and search date; f (·) is a polyno-

mial series of degree three. We scale up these estimated arrival rates using hyperparameters

to account for unobserved searches.

Conditional on arrival, we specify consumer utilities as

ui , j ,t ,d ,r = x j ,t ,d ,rβ −αt pj ,t ,d ,r +ζi ,J + (1−σ)ϵi , j ,t ,d ,r ,

where ζi ,J + (1−σ)ϵi , j ,t ,d ,r follows a type-1 extreme value distribution, and ζi ,J is an id-

iosyncratic preference for the inside goods. The parameter σ ∈ [0, 1] denotes correlation

8The mass-point random coefficients models yields multiple equilibria in our setting.
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in preferences within the nests. We allow the price sensitivity parameter to vary over time

(αt ) using three-day intervals of time; hence, we estimate 30 price sensitivity parameters.

We include a number of covariates in x where preferences are assumed to not vary across

t : departure week of the year, departure day of the week, route, carrier, and departure time

fixed effects.

Each arriving consumer solves their utility maximization problem such that consumer

i chooses flight j if, and only if,

ui , j ,t ,d ,r ≥ ui , j ′,d ,t ,r , ∀ j ′ ∈Jt ,d ,r ∪{0}.

Temporarily dropping the t , d , r subscripts, we define

DJ :=
∑

j∈J

exp

�

x jβ −αt pj

1−σ

�

,

so that the probability that a consumer purchases j within the set of inside goods is equal

to

s j | J =
exp

�

x jβ t−αt pj

1−σ

�

DJ
.

It follows that the probability that a consumer purchases any inside good product is equal

to

sJ =
D 1−σ

J

1+D 1−σ
J

.

We define overall product shares to be equal to s j = s j | J · sJ , which are implicitly at the

market level (t , d , r ).

Our assumptions imply that demand is distributed Poisson with a product purchase rate

equal to min
�

λt ,d ,r · s j ,t ,d ,r , C j ,t ,d ,r

	

. Note as the length of a period decreases, at most one

seat will be sold in any period.
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5.2 Demand Estimates

We estimate the model in two steps. In the first step, we estimate the arrival process pa-

rameters using Poisson regressions. We then estimate preferences of the Poisson demand

model using maximum likelihood. We estimate standard errors using bootstrap.

We follow Hortaçsu et al. (2021) in constructing arrivals using clickstream data for one

airline. These data track all “clicks” or interactions on the firm’s websites. We first sum

the number of searches corresponding to each market (r, d , t ) and then we scale up esti-

mated arrival rates to account for unobserved searches. This follows from a property of

the Poisson distribution and the assumption that consumers who search/purchase through

alternative platforms (travel agents, other carriers’ websites) have the same underlying pref-

erences. We first calculate the fraction of direct bookings by day before departure and then

scale up the estimated arrival rates using these these fractions. This adjusts arrivals for a

single carrier. In our preferred specification, we then double these arrival rates to account

for competitor indirect and direct searches, both of which are unobserved to us. We conduct

robustness to this hyperparameter in Appendix D.

We summarize the demand estimates in Table 2. We estimate the nesting parameter to

be 0.5 so that there is substantial substitution within inside goods. The price sensitivity

parameters vary by nearly a factor of ten over time. We present a time series plot of αt in

Figure 9. Almost all of our controls are significant, with day of the week and week of the

year having the most influence on market shares. The competitor FE is significantly less

important in driving variation in shares. We estimate the average own-price elasticity to be

-1.4.

In Figure 9-(a), we plot average adjusted arrival rates as well as parts of the distribution

(5%, 25%, 75%, 95%) across markets. We estimate just a few arrivals per market 90

days before departure that then increases to over 10 passengers per day close to departure.

Recall that the average booking rate across flights is less than 2.0 (see Figure 7) so that

market shares are low. An increase in interest in travel is a general findings across all of

the routes in our sample. Note that while the 75th percentile closely followed the mean, the
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Table 2: Demand Estimates Summary Table

Variable Symbol Estimate Std. Error. Range % Sig.

Nesting Parameter σ 0.498 0.010 − −

Price Sens. α − − [-0.511 ,-0.074 ] 100.0

Competitor FE − 0.071 0.003 − −

Day of Week FE − − − [-1.637 ,-0.961 ] 100.0

Departure Time FE − − − [-0.462 ,-0.050 ] 100.0

Route FE − − − [-0.177 ,0.226 ] 94.4

Week FE − − − [-0.953 ,0.699 ] 86.0

Sample Size N 2,814,686

Avg Elasticity e D -1.438

Note: Demand estimates for the 58 routes in our sample.

top part of the distribution is substantially higher, which corresponds to the routes in the

upper-right of Figure 6-(d).

Figure 9: Arrival Rates and the Price Sensitivity Parameters

(a) Arrival Rates
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(b) Price Sensitivity Parameters
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Note: Panel (a) shows fixed values, adjusted for unobserved searches, of arrival rates over time. The mean is the average arrival rate
across all markets. The percentiles are also over markets. Panel (b) shows our estimates of the price sensitivity parameters in 3-day
groupings.
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6 Counterfactual Analysis

With our demand estimates, we quantify the welfare effects of dynamic price competi-

tion using three sets of counterfactuals—the benchmark, lagged, and deterministic models

presented in our theoretical analysis.

Although the benchmark model holds for an arbitrary number of firms and products,

computing equilibria of the game is difficult. We adjust our empirical estimates in a number

of ways for computational reasons:

i) We consider only two products. Instead of investigating pricing in routes where we

observe a single flight operating by each firm, we adjust the choice set, utilities, and

capacities for all routes.

ii) We take the mean utilities across observed flights for each departure date and an

input.

iii) We take the maximum observed capacity for each route-carrier-departure date. Al-

though it may be natural to sum the capacities when restricting the choice set, we

have found that large capacities presents a significant computational burden.

iv) We use the observed arrival process for each route-departure date. We do not adjust

the estimated arrival processes as the inside good shares tend to be small. That is,

because most consumers choose the outside good, we do not scale down arrival rates

to account for smaller choice sets.

v) Finally, we handle flow (connecting traffic) bookings two ways. In our reported coun-

terfactuals here, we model these bookings via Poisson processes that the firm does

not internalize when pricing local demand. In the appendix we report counterfactuals

where we subtract off all connecting bookings at the start of the game. This affects

market outcomes because it reduces uncertainty for firms.
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Benchmark Model

We approximate the continuous time model to solve for equilibrium prices for every de-

parture date. We consider hourly decisions over 90 days. Both firms start with initial

capacities C f and C f ′ . We solve via backward induction, which we outline here. In the

last pricing period, t = T , both ΠT (K) = 0 and ΩT (K) = 0. Therefore, both firms solve

static revenue maximize problems. We set the best response functions equal to zero and

solve for the fixed point. Label this pT = E QT (ΩT = 0). Using the differential equa-

tion Π̇T (K) = −λTπT (pT (K),ΩT = 0), where πT (pT (K),ΩT = 0) are the stage-game pay-

offs, we can calculate ΠT−∆(K) =−∆ · Π̇T (K) and Ω f
f ′,T−∆(K) =Π f ,T−∆(K)−Π f ,T−∆(K−e f ′).

Given the updated own and scarcity effect parameters we again solve for equilibrium prices,

pT−∆ = E QT−∆(ΩT−∆).9 We continue backwards in time to t = 0.

Due to the large number of state variables present in many of our routes, we store Ωt

and pt every 24 hours (at the start of a day) to use in counterfactual simulations. We will

then appeal to modeling demand via multinomial distributions after drawing arrivals via

Poisson distributions in lieu of studying each consumer’s individual choice after drawing

arrivals via Bernoulli distributions.

Lagged-Price and Deterministic Models

Recall that both the lagged-price and deterministic models use discrete fares. All airlines

use discrete fares, and our data allow us to create fare menus for all carrier, route combi-

nations.10 More specifically, airlines file fares for “buckets.” Typically, each carrier fills

between seven and fifteen buckets per route. Buckets can change by day before departure,

i.e., the fare for a given bucket increases. However, the data suggests that a more conse-

quential change in buckets over time is their availability. Oftentimes, a fare is restricted

for a certain time period before departure—an advance purchase discount. For example,

Figure 10-(a) shows an example fare menu for a given carrier-route in the data. Prices vary

9We use a modified Powell method from MINPACK’s hybrid routine to solve the best=response functions
equal to each other.

10See Hortaçsu et al. (2021) for more details.
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from less than $200 to over $3,000. In Figure 10-(b) and Figure 10-(c), we provide example

price paths for the lagged and deterministic models using our empirical estimates.

Figure 10: Heuristic Models Pricing Example

(a) Lagged-Price Model
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Implementation

We conduct 10,000 Monte Carlo experiments for every route, departure date combina-

tion. We simulate all counterfactuals twice, one where flow traffic is subtracted from initial

observed capacity is advance, and one where flow traffic is modeled through Poisson pro-

cesses, not internalized when pricing local demand. We store prices, arrivals, quantities

sold, and calculate consumer surplus and revenues for every market.

6.1 Welfare Effects of Dynamic Price Competition
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Figure 11: Benchmark Model Opportunity Costs

(a) Own Omega
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(b) Competitor Omega
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Note: Panel (a) reports the own-firm opportunity cost over time for both firms. Panel (b) reports the cross-firm competitor opportunity
cost over time for both firms.

Table 3: Counterfactual Results

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Benchmark 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

− own ω only 99.4 99.5 99.6 100.5 100.1 100.4 100.1 101.1

− no ω 96.5 96.2 95.9 101.3 99.2 101.1 100.1 102.6

Deterministic 98.3 96.8 97.6 108.4 103.9 103.2 101.2 109.9

Lagged 105.2 101.7 102.7 103.9 103.2 99.6 99.9 98.8

Uniform 118.2 85.7 87.4 112.9 102.2 93.6 97.5 72.6

Note:

Table 4: Firm Profits Across Counterfactuals

Firm 1 Preference Firm 2 Preference Fraction of Markets (r, d )

Benchmark Benchmark 57.0%
Deterministic Deterministic 23.1%
Deterministic Benchmark 6.2%
Benchmark Deterministic 13.8%

Note:
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Figure 12: Counterfactual Summary Plots

(a) Prices over Time
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(d) Cumulative Welfare Comparison
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Figure 13: Cumulative Surplus Differences Across Counterfatuals

(a) Cumulative CS Difference
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Note: Panel (a) reports the own-firm scarcity effect over time for both firms. Panel (b) reports the cross-firm competitor scarcity effect
over time for both firms.
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Figure 14: Heuristic Counterfactuals Summary Plots

(a) Prices over Time
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A General Model with Perfect Information

[Appendix A is work in progress]

A.1 Model Setup

We consider a market with F ≥ 1 firms and J ≥ F products. Denote the set of firms by

F := {1, . . . , F } and the set of products by J := {1, . . . , J }. Each firm f ∈F sells products

in the set J f , where (J f ) f ∈F is a partition of J ; that is, J =
⋃

f ∈F
J f and J f ∩J f ′ = ; for

f ̸= f ′. Thus, no product is sold by more than one firm. Each firm f is equipped with an

initial inventory of their products j ∈ J f , denoted by K j
0 ∈N. We abstract from the initial

capacity choice and do not model capacity costs. The costs modeled are the costs due to

scarcity — the opportunity costs of each seat.

Products are imperfect substitutes and must be scrapped with zero value at a deadline

T ∈R. We analyze a discrete-time game with periods t ∈ {0,∆, . . . , T −∆}, ∆> 0, and then

consider the dynamics for the continuous time approximation as ∆→ 0.

In every period t , each firm f simultaneously chooses prices pj ,t for its products j ∈J f

for the time interval [t , t +∆). Firms and consumers observe the entire history of prices

and capacities. If a product j is sold, the firm f with j ∈J f receives a payoff of pj . Each

firm’s total profit is simply the sum of payoffs in all periods.

In this game, the payoff-relevant state is given by the vector of inventories at time t

Kt = (K j ,t ) j∈J and the time t . We are interested in Markov perfect equilibria in which each

firm’s strategy is measurable with respect to (K, t ). We denote a Markov pricing strategy of

firm f by p f
t (K) = (pj ,t (K)) j∈J f

.

For any generic vector x = (x j ) j∈J , we denote by x− j the vector (x j ′) j ′ ̸= j that excludes

dimension j . We let e j = (0, ..., 1, ...0) denote the unit vector with a 1 in dimension j and

zeros in all other entries, and 1= (1, . . . , 1) the vector of ones.
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Discrete choice and logit demand. A commonly used demand specification is a discrete

choice logit model where consumers are assumed to be short-lived. In the classic logit

model, a consumer t who purchases a product j and pays price pj ,t experiences a utility of

u j ,t =δ j −αt pj ,t + ϵ j ,t

where ϵ j ,t ∈ R are independently distributed, e.g., according to a type 1 extreme value

(T1EV) distribution with mean zero in the commonly used logit environment. The param-

eters δ j ∈R are the average mean utility for each product j , and αt is the marginal utility

to income. We assume that αt is continuous in t , so the demand parameters are given by

θ t = ((δ j ) j∈J ,αt ). Finally, we assume that the utility from the outside option is given by

u0,t = ε0,t , where ε0,t are independent of the other idiosyncratic terms and also distributed

according to T1EV. Then, the utility maximization problem of the short-lived consumer is

simply to choose a j ∈J0 :=J ∪{0} that maximizes her individual utility and we can write

s j (p; (δ j ) j∈J ,αt ) =
e δ j−αt pj

1+
∑

j∈J
e δ j−αt pj

.

We offer a detailed analysis of this specification in Appendix C. In particular, we show that

it satisfies Assumption 1-5 below.
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A.2 The Oligopoly Case

Given a vector of inventory K, we denote the value function of firm f at time t in an

equilibrium (if one exists) by Π f
t (K;∆) and the equilibrium price vector by p∗t (K;∆). Then:

Π
f
t (K;∆) = ∆λt

�

∑

j∈J f

s j ,t (p
∗
t (K;∆)) (p ∗j ,t (K;∆) +Π f

t+∆(K−e j ;∆))

︸ ︷︷ ︸

revenue of own sale

+

∑

j ′ ̸=J \J f

s j ′,t (p
∗
t (K;∆))Π f

t+∆(K−e j ′ ;∆)

︸ ︷︷ ︸

continuation value if j ′ is sold

�

+
�

1−∆λt

∑

j ′∈J

s j ′(p
∗
t (K;∆))

�

︸ ︷︷ ︸

probability of no purchase

Π
f
t+∆(K;∆),

with boundary conditions Π f
t (K;∆)≡ 0 with K j = 0 for all j ∈J f and Π f

T (K)≡ 0 for all K.

Then, we denote the scarcity effect of firm f for product j in state (K, t ) by

ω
f
j ,t (K;∆) :=Π f

t+∆(K;∆)−Π f
t+∆(K−e j ;∆)

where we setω f
j ,t (K;∆) :=∞ if K j = 0 for j ∈J f , andω f

j ,t (K;∆) := 0 if K j = 0 for j ̸∈ J f .

We denote the matrix of opportunity costs by

Ωt (K;∆) = (ω f
j ,t (K;∆)) f , j ∈RF ×RJ

0
,

where J 0 =J ∪{0} and ω f
0,t (K;∆) = 0.

In any Markov equilibrium, the equilibrium prices p ∗j ,t (K) must be a Nash equilibrium

of a stage game in which each firm f simultaneously chooses prices p f = (pj ) j∈J f
and

where given a price vector p each firm f receives a payoff of

∑

j∈J f

s j ,t (p)(pj −ω
f
j ,t (K;∆))−

∑

j ′ ̸∈J f

s j ′,t (p)ω
f
j ′,t (K;∆).

Note that the payoffs of firm f depend on the demand for prodcts of all other firms, so

that we cannot apply results from Caplin and Nalebuff (1991) and the payoffs are also
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neither super-modular nor log-supermodular, so we cannot apply results from Milgrom

and Roberts (1990). The game is also not a potential game. The best response functions of

each firm are closest to the ones discussed in Nocke and Schutz (2018).

A.2.1 The stage game

Consider a stage game in which for a given cost matrix Ω ∈RF×RJ 0 , firms simultaneously

set prices where their payoffs are given by

∑

j∈J f

s j (p)(pj −ω
f
j )−

∑

j ′ ̸∈J f

s j ′(p)ω
f
j ′ .

Then, in order to guarantee that the best responses of firms are bounded, we assume:

General Assumption 3 (Boundedness of cross derivatives). For any j , j ′ ∈ J , j ̸= j ′,
1

J−1

�

�

∂ s j

∂ pj
(p)
�

�>
�

�

∂ s j ′

∂ pj
(p)
�

� for all price vectors p.

We show in the proof of Lemma 2 that this assumption, together with Assumption ??,

guarantees that a firm f ’s best-response prices p f must satisfy

p f =
�

Dp f s f (p)
�−1

Dp f

�

s(p)⊺ω f
�

−
�

Dp f s f (p)
�−1

s f (p) =: g f (p). (9)

Then, by Lemma 2 (Kellogg (1976)) in Konovalov and Sándor (2010), g (p) := (g f (p)) f has

a unique fixed point if and only if the following assumption is satisfied.

General Assumption 4. det

�

Dp

�

g (p)
�

− I

�

̸= 0 for all p.

General Lemma 2. Let Assumptions 1,2, 3, and 4 be satisfied. Then, the stage game

admits a unique equilibrium.

Given Assumptions ??, 4 is satisfied for any matrix of opportunity costs Ω in a neigh-

borhood O that contains the zero matrix Ω = 0 (by continuity). Consequently, close to the

deadline T when Ω= 0, the stage games are well behaved. However, further away from the
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deadline, when opportunity costs can potentially become large, the stage game may be less

well-behaved as we show in the main text.

For the demand specification that satisfy the commonly used assumption of “Indepen-

dence of Irrelevant Alternatives (IIA)” we can, however, establish existence more generally

and also derive an economically meaningful markup formula. First, note that the IIA as-

sumption states the following:

General Assumption 5 (Independence of Irrelevant Alternatives (IIA)). ∂
∂ pj

s j1 (p)
s j2 (p)

= 0 for

j ̸= j1, j2.

Given Assumptions 1-3, we can show that the game with multi-product firms can be

transformed into a game of single-product firms.

General Proposition 2 (Mark-up formula under IIA). Under Assumptions 1-??, and 5,

there exist functions d j (p− f ;ω,θ ) so that the equilibrium prices of the stage game coincide

with the equilibrium prices of a game with a set J of players who each simultaneously

choose a price pj maximizing

s j (p)(pj − c j (p− j ;ω,θ ))+d j (p− j ;ω,θ )

with a cost function

c j (p− j ;ω,θ ) :=ω f
j −

∑

j ′∈J f \{ j }

s̃ j , j ′(p− j )(pj ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s̃ j , j ′(p− j )ω
f
j ′ (10)

and s̃ j , j ′(p− j ) :=
∂ s j ′
∂ pj
(p)

∑

j ′′∈J 0\{ j }

∂ s j ′′
∂ pj
(p)

.

A consequence of Proposition 3 is that the first-order conditions (FOCs) that implicitly

define the best response functions of the firms, can be written in a markup formulation as

pj − c j (p− j ;ω,θ )

pj
=−

1

ε j (p)
(11)
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where ε j (p) =
∂ s j (p)
∂ pj

pj

s j (p)
is the elasticity of demand. The formulation (11) emphasizes the

impact of the competitive forces in the presence of opportunity costs: Other firm’s prices

do not only impact own demand, but also the effective cost of selling the product.

Lemma 7 (Existence). Assume that Assumptions 1-??, and 5 are satisfied. Then, there

exists an equilibrium to the above stage game for any cost matrix Ω.

Lemma 8. If the equilibrium of the stage game is unique for a compact set O of costs Ω,

then there exists an equilibrium price vector p∗(Ω,θ ) that is continuous in Ω on O and θ

on Θ.

A.2.2 The continuous-time limit

Lemma 9 (Continuous-time limit Limit). Let us assume that Assumptions ??-4 are satisfied

for all stage games. Then, there exists a unique subgame-perfect equilibrium. The value

function Π f
t (K;∆) converges to a limit Π f

t (K) that solves the differential equation

Π̇
f
t (K) =−λt

�

∑

j∈J f

s j (p∗(Ωt (K);θ t ))
�

p ∗j (Ωt (K);θ t )− (Π
f
t (K)−Π

f
t (K−e j ))

︸ ︷︷ ︸

=ω f
j ,t (K)

�

−
∑

j ′ ̸=J f

s j ′ (p∗(Ωt (K);θ ))
�

Π
f
t (K)−Π

f
t (K−e j ′ )

︸ ︷︷ ︸

=ω f
j ′ ,t (K)

�

�

with boundary conditions Π f
t (K) = 0 if K j = 0 for all j ∈J f and Π f

T (K) = 0.

In order to see that Assumptions 1-4 can be satisfied for all stage games, consider a

logit demand specification

s j (p;θ t ) =
e
δ j −αt pj

σ

1+
∑

j ′
e
δ j −αpj
σ

(12)

where σ> 0 is the scaling factor. Then, for σ→ 0, we are in the Bertrand competition case

and as σ→∞, we have perfectly differentiated products.

Lemma 10. For a logit demand specification (12), holding everything else fixed:
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• there exists a σ̄ and a ∆̄ > 0 so that for all σ > σ̄ and ∆ < ∆̄, the cost matrix Ωt (K)

satisfies Assumption 4 for all t ∈ [0, T ] and K≤K0.

• there exists a t̄ < T and ∆̄ > 0 so that the opportunity cost matrix Ωt (K) satisfies

Assumption 4 for all ∆< ∆̄ and t > t̄ ,

A.2.3 Price Dynamics

Assume that λt and s f ,t is independent of time, i.e., λt =λ, θ t = θ .

Proposition 4. For K with K :=min
j

K j , the following holds:

pj ,t (K) =O (|T − t |K ), t → T .

If (Π f
t )(K )(K−e j ′) ̸= 0 for all f and j ′ with K j ′ = K , then

pj ,t (K) =Θ(|T − t |K ), t → T .

The proposition shows that prices are more different from 0 close to the deadline the

smaller the minimum inventory of products K j = K is. If firms have the same capacity,

then any sale leads to price jump. This leads to strong incentives to get out of this state by

offering low prices — possibly even prices smaller than the competitive price.

B Proofs

[Appendix B is work in progress]

B.1 Technical results

B.1.1 Continuous time limit

We show convergence of various games in this paper using the following Lemma.
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Lemma 11. Consider a discrete time game where the payoffs of the players f ∈ F is

described by difference equations of the form

�

Π
f
t+∆(K;∆)−Π f

t (K;∆)
∆

�

f

=−λt A

�

�

p ∗f
�

(ω f
j ,t (K;∆)) j ,αt

�

�

f
,
�

ω
f
j ,t (K;∆)

�

f , j

�

where ω f
j ,t (K;∆) := Π f

t+∆(K;∆)−Π f
t+∆(K− e j ;∆), p ∗f is continuous in both variables, and

A is bounded and continuous in both variables. Then, (Π f
t (K;∆)) f converges to a limit

(Π f
t (K)) f that satisfies

�

Π̇ f
t (K)

�

f
=−λt A

�

�

p ∗f
�

(ω f
j ,t (K)) j

�

,αt

�

f
,
�

ω
f
j ,t (K)

�

f , j

�

.

Proof. Since A is bounded, the difference equations show that Π(∆) := (Π f (K;∆)) j∈J ,K≤K0

is equicontinuous and equibounded in t as ∆→ 0. Hence, by the Arzela-Ascoli Theorem,

there exist limit points Π. We claim that

�

Π f
t (K)

�

f
=

T
∫

t

λu A

�

�

p ∗f
�

(ω f
j ,u (K)) j ,αu

�

�

f
,
�

ω
f
j ,u (K)

�

f , j

�

d u . (13)

To this end, we note that

�

Π f
t (K;∆)

�

f
=

T
∫

t

λ⌈u ⌉∆A

�

�

p ∗f
�

(ω f
j ,⌈u ⌉∆(K;∆)) j ,α⌈u ⌉∆

�

�

f
,
�

ω
f
j ,⌈u ⌉∆(K;∆)

�

f , j

�

d u . (14)

We take the limit∆→ 0 on both sides. The left-hand side of (14) converges to the left-hand

side of (13). On the right-hand side,
�

ω
f
j ,⌈u ⌉∆(K;∆)

�

f , j
converges to

�

ω
f
j ,u (K)

�

f , j
. This,

and the continuity of p∗ := (p ∗f ) f and A show that the integrand in (14) converges to the

integrand in (13). The dominated convergence theorem finishes the proof. ■
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B.1.2 Continuity of stage game prices

Lemma 12. Let g : (q;θ ) 7→ p be defined as a function RJ ×RI ⊃ P ×Θ→P , where g

is continuously differentiable in q and continuous in θ , P is compact and convex and Θ

is path-connected. If det(Dqg (q;θ )− I ) ̸= 0 for all (q;θ ) ∈ P ×Θ, then there is a unique

p∗(θ ) satisfying g (p∗(θ );θ ) = p∗(θ ) and it depends continuously on θ .

Proof. The existence and uniqueness of p∗(θ ) follows directly from Lemma 2 (Kel-

logg (1976)) in Konovalov and Sándor (2010). To show continuity, we consider a se-

quence (θ n )n≥1 converging to some θ∞. Thanks to path-connectedness of Θ there ex-

ists a continuous path r : [0, 1] → Θ and a sequence an ↑ 1 such that r(an ) = θ n and

r(1) = θ∞. By Browder’s Theorem (Theorem 1.1 in Solan and Solan (2021)), the set

{(p∗(r(a )); a ) : a ∈ [0, 1]} ⊂P × [0, 1] is connected. By the main theorem of connectedness,

each set {(p ∗j (r(a )); a ) : a ∈ [0, 1]} ⊂ R× [0, 1] is connected, for all j . By Burgess (1990),

the function a 7→ p ∗j (r(a )) is continuous, so p ∗j (θ n ) = p ∗j (r(an ))→ p ∗j (r(1)) = p ∗j (θ∞). ■

B.2 Proofs of the single-firm problem

B.3 Proof of Lemma 1

Note that the profit-maximizing prices of the stage game pM (ω;θ ) are implicitly given by

(4) and

g (q;θ ) :=ω− (Dpst (q))
−1st (q)

︸ ︷︷ ︸

≤0

is continuously differentiable in q and θ by Assumption 1, and any fixed point must satisfy

q ≥ ω and q ≤ ω+ 1ε̄ by Assumption ?? iii). Hence, the convergence to 4 follows by

Lemma 11.
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B.4 Proof of Proposition 1

Proof. i) To see that ΠM
t is decreasing in t , note that in (4), pj can always be chosen so

that objective function in the maximum is positive. Hence, Π̇M
t (K)< 0.

Next, we show that ΠM
t (K )>Π

M
t (K − e j ) for all j by induction in

∑

j
K j .

Induction start: It is immediate that ΠM
t (e j )≥ΠM

t (0) = 0 for all j and t ≤ T .

Induction hypothesis: Assume that ΠM
t (K )>Π

M
t (K −e j ) for all K such that

∑

j
K j = K̄ .

Induction step: Now, consider a capacity vector K with
∑

j
K j = K̄ +1. By sub-optimality

of the prices pM (ωM
t (K−e j̃ )) given capacity vector K, we have

ΠM
t

�

K
�

≥

T
∫

t

λz

�

∑

j

s j ,z

�

pM (ωM
z (K−e j̃ ))

��

p M
j ,z (ω

M
z (K−e j̃ ))+Π

M
z (K−e j )

�

· e
−

z
∫

t
λu

∑

j ′′
s j ′′ ,u (pM

u (ω
M
t (K)))d u

d z >ΠM
t

�

K−e j̃

�

where the last inequality follows form ΠM
z (K − e j ) > ΠM

z (K − e j − e j̃ ) by the induction

hypothesis.

ii) Next, we show that ΠM
t (K)−Π

M
t (K−e j )≤ΠM

t (K−e j )−ΠM
t (K−2e j ) for all j . To this

end, let

H (x;θ ) =−max
p

∑

j

s j (p;θ )(pj − x j ).

Note that H is concave as a minimum of affine functions, strictly increasing in x, and

H (0;θ ) = 0 by Assumption ?? iii). Since H is concave, it admits the representation

H (x;θ ) = inf
s
(s ·x−H ∗(s;θ ))

where the concave H ∗(s;θ ) = inf
x
(x · s −H (x;θ )) is the concave conjugate of H , with
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H ∗(0;θ ) = 0. Moreover,

Π̇M
t (K) =λt H (∇Πt (K);θ t )

where∇ΠM
t (K) =

�

ΠM
t (K)−Π

M
t (K−e j )

�

j
. Thus, ΠM

t (K) is the value function for the optimal

control problem

ΠM
t (K) = sup

s∈A
E
�

T
∫

t

λu H ∗(su ;θ u )d u

�

�

�

�

Xs
t =K

�

=: sup
s

Jt (K, s)

where Xa
t is the process which jumps by −e j at rate λt s j ,t and s ∈A are processes adapted

with respect to Xs, with the property s j ,t = 0 if X s
j ,t = 0 (Theorem 8.1 in Fleming and

Soner (2006)). Let s∗K be the optimal control in the previous equation and s∗K −2 be the

optimal control when K is replaced by K − 2e j . Then, note that since s∗K, s∗K−2e j
∈ A ,

s∗K+s∗K−2e j

2 ∈ A because the process
�

X
s∗K+s∗K−2e f

2
s

�

s
can be chosen as

�

X
s∗K
s +X

s∗K−2e f
s

2

�

s
(“coupling

argument”). Hence,

ΠM
t (K) +Π

M
t (K−2e j )−2ΠM

t

�

K−e j

�

≤

Jt (K, s ∗K) + Jt (K−2e j , s ∗K−2e j
)−2 Jt

�

K−e j ,
s∗K+ s∗K−2e j

2

�

≤

E
�

T
∫

t

λu

�

H ∗(s∗K,u ) +H ∗(s∗K−2e j ,u )−2H ∗
�s∗K,u + s∗K−2e f ,u

2

�

�

d u

�

�

�

�

X
s∗K
t =K, X

s∗K−2e j

t =K−2e j ,

�

≤0.

iii) To show that ωM
j ,t (Kt ) is a submartingale, we show that for any capacity vector K,

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )
�

�Kt = K̄
�

∆
≥ 0.

To this end, first, note that Kt is right-continuous in t . Further, for K with K j = 0, we

set ωM
j ,t (K) =∞ for all t . Thus, we are setting the opportunity cost of selling a unit if no
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capacity is left to infinity, which is equivalent to the constraint of not being able to sell units

that are not available.

Then, we have for K̄ with K̄ j = 1 that

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|Kt = K̄]

∆
> 0.

Next consider K̄ with K̄ j ≥ 0. Then, we have that

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|Kt = K̄]

∆
=

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt+∆)|Kt = K̄]

∆
+ lim
∆→0

E0

�

ωM
j ,t (Kt+∆)−ωM

j ,t (Kt )|Kt = K̄]

∆
=

ω̇M
j ,t (K̄) +λt

∑

j ′

s j ′,t (p
M
t (K̄))

�

ωM
j ,t (K̄−e j ′)−ωM

j ,t (K̄)
�

by right-continuity of the process Kt . By (4), we can write

ω̇M
j ,t (K̄) = −λt

�

∑

j ′

s j ′,t (p
M
t (K̄))

�

p M
j ′,t (K̄)−ω

M
j ′,t (K̄)

�

− s j ′,t (p
M
t (K̄−e j ))

�

p M
j ′,t (K̄−e j )−ωM

j ′,t (K̄−e j )
�

�

.

and we know that

−ωM
j ′,t (K̄) +ω

M
j ,t (K̄)−ω

M
j ,t (K̄−e j ′) = ΠM (K̄−e j ′)−ΠM (K̄−e j )−ΠM (K̄−e j ′) +Π

M (K̄−e j ′ −e j )

= ωM
j ′,t (K̄−e j )

Hence, lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|t=K̄]

∆ is equal to

−λt

�

∑

j ′

s j ′,t

�

pM
t (K̄)

��

p M
j ′,t (K̄)−ω

M
j ′,t (K̄−e j )

�

− s j ′,t

�

pM
t (K̄−e j )

��

p M
j ′,t (K̄−e j )−ωM

j ′,t (K̄−e j )
��

Then, note that by definition of pM
t (K̄−e j ),

∑

j ′

s j ′,t

�

pM
t (K̄)

��

p M
j ′,t (K̄)−ω

M
j ′,t (K̄−e j )

�

≤
∑

j ′

s j ′,t

�

pM
t (K̄−e j )

��

p M
j ′,t (K̄−e j ))−ωM

j ′,t (K̄−e j ′)
�

.
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Hence, lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|t=K̄]

∆ ≥ 0. ■

B.5 Proof of Lemma 2

First, we show that there exists a p̄ <∞ so that for any any vector of prices q, the best

response price pj for any product j is bounded by p̄ . We proceed with a proof by contra-

diction.

Assume that there is an increasing sequence of b̄ n →n→∞ such that there is a vector of

prices qn such that there is a best response price p n
j > b̄ n .

0≤
∂ s j

∂ pj
︸︷︷︸

<0

(pj −ω
f
j ) +

∑

k∈J f \{ j }

∂ sk

∂ pj
︸︷︷︸

>0

(pk −ω
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∂ sk

∂ pj
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2(pj −ω
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(q− f , p f )
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≥−ε̄ by Assumption ??-??
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+
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k ̸∈J f

|ω f
k |

J −1

!

�

.

This is equivalent to

∀ j ∈J f : 2(pj −ω
f
j ) +

s j (q− f , p f )
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∂ pj
(q− f , p f )

≤
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∑
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(pk −ω
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f
j )− ε̄≤
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∑

k∈J f \{ j }
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f
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|ω f
k |
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.
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0≤
∂ s j

∂ pj
(q− f , p f ,∗
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<0
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∂ sk
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!

�

.

This is equivalent to

∀ j ∈J f : 2(pj −ω
f
j ) +

s j (q− f , p f )
∂ s j

∂ pj
(q− f , p f )

≤
1

J −1

∑
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(pk −ω
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k )++
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|ω f
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1
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(pk −ω
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k )++
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Using this for j = l maximizing the left-hand side we obtain a contradiction once we

choose p̄ sufficiently large. Thus, the best response of each firm for each product is strictly

smaller than a constant p̄ .

Hence, by Assumption ??, there is a unique fixed point of g (p) by Lemma 2 (Kellogg

(1976)) in Konovalov and Sándor (2010).

B.6 Proof of Lemma 3

Note that the profit-maximizing prices of the stage game pM (ω;θ ) are implicitly given by

(4) and

g (q;θ ) :=ω− (Dpst (q))
−1st (q)

︸ ︷︷ ︸

≤0
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is continuously differentiable in q and θ by Assumption 1 i), and any fixed point must

satisfy q ≥ω and q ≤ω+1ε̄ by Assumption ?? iii). Hence, the convergence to 4 follows

by Lemma 11.

Recall that the first-order conditions of firm f ’s payoff with respect to product j ∈ J f

are given by

pj −
�

ω
f
j −

∑

j ′∈J f \{ j }

∂ s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

(pj ′ −ω
f
j ) +
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j ′ ̸∈J f

s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

ω
f
j ′

�

=−
s j (p)
∂ s j (p)
∂ pj

.

Further, the observation that ∂ s j (p)
∂ pj
=−

∑

j ′′∈J 0\{ j }

∂ s j ′′ (p)
∂ pj

, and by Assumption ?? (Independence

of Irrelevant alternatives) it follows that

c (p− j ;ω) :=ω f
j −

∑

j ′∈J f \{ j }

∂ s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

(pj ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

ω
f
j ′

=ω f
j −

∑

j ′∈J f \{ j }

∂ s j ′ (p)
∂ pj

∑

j ′∈J 0\{ j }

∂ s j ′ (p)
∂ pj

(pj ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s j ′ (p)
∂ pj

∑

j ′′∈J 0\{ j }

∂ s j ′′ (p)
∂ pj

ω
f
j ′

=ω f
j −

∑

j ′∈J f \{ j }

s̃ j , j ′(p− j )(pj ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s̃ j , j ′(p− j )ω
f
j ′ .

Thus, the first-order conditions of the stage game are equivalent to the first order conditions

of a game with J players where each player j ’s payoff is given by

s j (p)(pj − c (p− j ;ω))+d (p− j ;ω).

B.7 Proof of Lemma 7

Assume s j (p;θ ) > 0 satisfies Assumptions ?? and ??. Then, we define the best-response

function of “player” j in the game defined in Lemma 3 by

R : q 7→
�

arg max
pj

s j (q)(pj − c j (q− j ;ω,θ ))+d j (q− j ;ω,θ )
�

j∈J
.
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where for s̃ j , j ′(q− j ) :=
∂ s j ′
∂ pj
(q)

∑

j ′′∈J 0\{ j }

∂ s j ′′
∂ pj
(q)

and j ∈J f

c j (q− j ;ω,θ ) :=ω f
j −

∑

j ′∈J f \{ j }

s̃ j , j ′(q− j )(q j ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s̃ j , j ′(q− j )ω
f
j ′ . (15)

First, we show thatR is well-defined as a function RJ 7→ [−∞,∞]J (rather than a corre-

spondence). To this end, note that player j ’s profit is increasing in pj if and only if

pj − c j (q− j ;ω,θ ) +
s j (q− j , pj )
∂ s j (q− j ,pj )
∂ pj

︸ ︷︷ ︸

<0 by Assumption ??

≤ 0 (16)

and the left-hand side is increasing in pj by Assumption ??.

Then, note that the best-response functionR takes values in [p , p ]J , with p >−∞ and

p <∞, for all q by the same argument as in the proof of Lemma 2.

Now, considerR : [p , p ]J → [p , p ]J . In order to show continuitiy ofR , we use the im-

plicit function theorem in the form of Theorem 1.A.4 in Dontchev and Rockafellar (2009).

To this end, for ε> 0, consider the mapping

Φ : (p, q) 7→
�

pj −ε
�

pj − c j (q− j ;Ω,θ ) +
s j (q− j , pj )
∂ s j (q− j ,pj )
∂ pj

�

�

j∈J

Then DpΦ is a diagonal matrix with diagonal entries

φ j := 1−ε
�

1+
∂

∂ pj

s j (q− j , pj )
∂ s j (q− j ,pj )
∂ pj

︸ ︷︷ ︸

≥0 by Assumption ??

�

Let ε > 0 be so that φ j > 0 for all j . Then all diagonal entries are in (0, 1− ε) and Φ is

Lipschitz continuous with Lipschitz constant max
j
φ j . Further DqΦ is bounded because it

is continuous and the function is defined on a compact set [p , p ]J . Thus,R is continuous.

Hence, by Brouwer’s fixed-point theoremR : [p , p ]J → [p , p ]J has a fixed point.
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B.8 Dynamics

xxx to be completed xxx

Assume that λt and s f ,t is independent of time, i.e., λt = λ, αt = α. For t close to

T , we know from Lemma 2 that the equilibirum of the stage game is unique and the price

vectors p ∗t (K) are implicitly defined by a system of equations given by

Dp f s f (p∗t (K))p
f ,∗
t (K)− s(p∗t (K))ω

f
t (K) = 0

for all f . The only time-dependent variables are then Ωt (K) = (ω
f
t ) f ∈F . The n-th time

derivative (p ∗t )
(n )(K) depends on the time derivatives Ωt (K), . . . ,Ω(n )t (K).

We are interested in the limit as t → T . First, lim
t→T
Ωt = 0. Furthermore, we can write

ω̇
f
j ,t (K) =Π̇

f
t (K)− Π̇

f
t (K−e j )

=−λ
�

s f (p∗t (K))p
f ,∗
t (K)− s(p∗t (K))ω

f
t (K)− (s

f (p∗t (K−e j ))p
f ,∗
t (K−e j )− s(p∗t (K−e j ))ω

f
t (K−e j ))

�

Thus, as t → T , ω̇ f
j ,t (K) = 0 if K j > 1. If j ∈ J f and K j = 1, then ω̇ f

j ,t (K) < 0. If j ̸∈ J f

and K j = 1, then by the competition effect ω̇ f
j ,t (K)> 0.

This implies that ṗ ∗j ,T (K)< 0 if K j = 1 and ṗ ∗j ,T (K) = 0 otherwise.

Induction assumption: If K j > n − 1 for all j , then as t → T , (ω f
j ,t )
(n−1)(K) = 0 for all

f , j .

We can also calculate all other time derivatives recursively

(ω f
j ,t )
(n )(K) =−λ

�

G n ((Ω(m )t (K))
n−1
m=0)−G n (Ω(m )t (K−e j ))

n−1
m=0))

�

.

Then, note if min
i

Ki > n , then (ω f
j ,t )
(n )(K) = 0. If min

i
Ki = n , then

(ω f
j ,t )
(n )(K) =−λ

�

−G (n )(Ω(m )t (K−e j ))
n−1
m=0))

�

=−(Π f
t )
(n )(K−e j ).
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C Classic logit and nested logit calculations

C.1 Classic logit demand

In this section, we consider a logit demand model parametrized by θ = ((δ j ) j∈J ,α), given

by

s j (p;θ ) =
e
δ j −αpj
σ

1+
∑

j∈J
e
δ j −αpj
σ

.

All simulations in this paper and the empirical specification assumes this demand structure.

Then,

∂ s j

∂ pj
=−
α

σ
s j (1− s j )

∂ s j

∂ pj ′
=
α

σ
s j s j ′ .

Then, we have that ε̂ = 1
αs0(p;θ )1 and therefore, det

�
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(−1)J det
�

1
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First, we show that Assumption ?? is satisfied. To this end, note that
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and since ∂
∂ pj

1
s0
=− ασ

s j

s0
,

det
�

Dpε̂− I
�
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Next, note that for a for a any f ∈F , if we define s f
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Further, since

(Dp f s f (p;θ ))−1s f (p;θ ) = =
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For large σ the term in front of ω f
j vanishes relative to the probability.

C.2 Nested logit demand

In this section, we consider a nested logit demand model given by

s j (p) =
e
δ j −αpj

1−σ

∑

j∈J
e
δ j −αpj

1−σ

︸ ︷︷ ︸

=:s j |J (p)
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�1−σ
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To simplify notation, let DJ :=
∑

i∈J
e
δi −αpi

1−σ . Then,
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Next, note that for a for a any f ∈F , if we define s f
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and
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For large σ the term in front of ω f
j vanishes relative to the probability.
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D Additional Empirical Results

Figure 15: Price Path Realizations comparing Benchmark model to Heuristics

(a) Price paths for the benchmark model
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(b) Price paths for the lagged algorithm
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(c) Price paths for the deterministic algorithm
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Notes: We assume demand follows a logit specification with an initial capacity vector of K0 = (2, 2). Time is continuous for t ∈ [0, 1].
There are three panels: panel (a) depicts the equilibrium price path for the benchmark model, panel (b) considers prices if firms use the
lagged model, and panel (c) considers prices if firms use the deterministic model. The vertical lines mark realized sales times; the color
denotes the firm that received the sale. These simulations correspond to the parameter values δ j = 1, α= 1, ρ = 1, λ= 10 and K0 = [2, 2].
In the heuristic model, firms assume that the competitor prices at the level given by the grey line.
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Figure 16: Recreation of Fig. 11 with restricted initial capacity
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(b) Competitor Omega
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Note: Panel (a) reports the own-firm opportunity cost over time for both firms. Panel (b) reports the cross-firm competitor opportunity
cost over time for both firms.

Table 5: Recreation of Table 3 with restricted initial capacity

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Benchmark 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

− own ω only 97.4 99.1 99.0 101.2 100.3 101.7 100.6 107.7

− no ω 86.5 91.1 86.2 98.7 94.4 103.4 101.3 259.5

Deterministic 94.1 95.5 95.9 108.4 103.0 105.1 102.0 178.3

Lagged 102.0 100.3 101.2 104.4 102.9 100.6 100.2 104.0

Uniform 97.5 78.1 77.3 113.7 98.5 101.1 99.9 242.0

Note:

Table 6: Firm Profits Across Counterfactuals

Firm 1 Preference Firm 2 Preference Fraction of Markets (r, d )

Benchmark Benchmark 57.0%
Deterministic Deterministic 23.1%
Deterministic Benchmark 6.2%
Benchmark Deterministic 13.8%

Note:
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Figure 17: Recreation of Fig. 12 with restricted initial capacity

(a) Prices over Time
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(b) Load Factors over Time
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(c) Sellouts over Time
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(d) Cumulative Welfare Comparison
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Figure 18: Recreation of Fig. 13 with restricted initial capacity

(a) Cumulative CS Difference
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(b) Cumulative Revenue Difference
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Note: Panel (a) reports the own-firm scarcity effect over time for both firms. Panel (b) reports the cross-firm competitor scarcity effect
over time for both firms.
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Figure 19: Recreation of Fig. 14 with restricted initial capacity

(a) Prices over Time
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