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Abstract

Real-time bidding (RTB) systems, which leverage auctions to programmatically allo-
cate user impressions to multiple competing advertisers, continue to enjoy widespread
success in digital advertising. Assessing the effectiveness of such advertising remains
a lingering challenge in research and practice. This paper presents a new experimen-
tal design to perform causal inference on advertising bought through such mecha-
nisms. Our method leverages the economic structure of first- and second-price auc-
tions, which are ubiquitous in RTB systems, embedded within a multi-armed bandit
(MAB) setup for online adaptive experimentation. We implement it via a modified
Thompson sampling (TS) algorithm that estimates causal effects of advertising while
minimizing the costs of experimentation to the advertiser by simultaneously learning
the optimal bidding policy that maximizes her expected payoffs from auction partic-
ipation. Simulations show that not only the proposed method successfully accom-
plishes the advertiser’s goals, but also does so at a much lower cost than more con-
ventional experimentation policies aimed at performing causal inference.
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1 Introduction

The dominant way of selling ad-impressions on ad-exchanges (AdXs) is now through
real-time bidding (RTB) systems. These systems leverage auctions at scale to allocate user
impressions arriving at various digital publishers to competing bidding advertisers or
intermediaries such as demand side platforms (DSPs). Most RTB auctions on AdXs are
single-unit auctions implemented typically via second-price auctions (SPAs) and, more
recently, via first-price auctions (FPAs).1 The speed, scale and complexity of RTB trans-
actions is astounding. There are billions of auctions for impressions on an AdX on any
given day, each consummated on average in less than 100 milliseconds, and each transac-
tion corresponds to different impression characteristics and possibly requires a unique bid
and clearing price. The complexity and scale of available ad-inventory, the speed of the
transaction that allows little time for deliberation and the complex nature of competition
imply that advertisers participating in RTB auctions have significant uncertainty about the
value of the impressions they are bidding for as well as the nature of competition they are
bidding against. Developing accurate and reliable ways of measuring the value of adver-
tising in this environment is therefore essential for the advertiser to profitably trade on the
exchange and to ensure that acquired ad-impressions generate sufficient value. Measure-
ment needs to deliver incremental effects of ads for different types of ad and impression
characteristics and needs to be automated. Experimentation thus becomes attractive as a
device to obtain credible estimates of such causal effects.

Motivated by this, the current paper presents an experimental design to perform
causal inference on RTB advertising in both SPA and FPA settings. Our design enables
learning heterogeneity in the inferred average causal effects across ad and impression
characteristics. The novelty of the proposed experimental design is in addressing two
principal challenges that confront developing a scalable experimental design for RTB ad-
vertising.

The first challenge is that measuring the average treatment effect (ATE) of adver-
tising requires comparing outcomes of users who are exposed to ads with outcomes of
users who are not. The complication of the RTB setting is that ad-exposure is not under
complete control of the experimenter because it is determined by an auction. This pre-
cludes simple designs in which ad-exposure is randomized directly to users. Instead, we
need a design in which the experimenter controls only an input to the auction (bids), but

1See Muthukrishnan (2009) and Choi et al. (2020) for an overview of the economics of AdXs and
Despotakis et al. (2019) for the reasons behind the recent shift to FPAs.
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wishes to perform inference on the effect of a stochastic outcome induced by this input
(ad-exposure).

The second challenge pertains to the cost of experimentation on the AdX. Obtaining
experimental impressions is costly: one has to win the auction to see the outcome with ad-
exposure, and one has to lose the auction to see the outcome without. When bidding is not
optimized, the economic costs of both can be substantial. These economic costs arise when
one bids too much to obtain an impression with ad-exposure (overbidding) or decides de-
liberately not to induce ad-exposure on what would have been a very valuable impression
for the advertiser (underbidding/opportunity cost). With millions of auctions potentially
in the experiment, suboptimal bidding can make the experiment unviable. Therefore, to
be successful an effective experimental design has to deliver inference on the causal effect
of ads while also judiciously managing the cost of experimentation by implementing a
bidding policy that is optimized to the value of the impressions encountered.

It is not obvious how an experiment can be designed prior to actual implementation
to address both challenges simultaneously. Optimal bidding requires knowing the value
of each impression, which was the goal of experimentation in the first place. Online meth-
ods, which introduce randomization to induce exploration of the value of advertising and
combine it with concurrent exploitation of the information learned to optimize bidding,
thus become highly attractive in such a setting.

At the core of online methods is the need to balance the goal of learning the expected
effect of ad-exposure (henceforth called the advertiser’s “inference goal”) with the goal of
learning the optimal bidding policy (henceforth called the advertiser’s “economic goal”).
The tension is that finding the best bidding policy does not guarantee proper estimation of
ad-effectiveness and vice versa. At one extreme, with a bidding policy that delivers on the
economic goal, the advertiser could win most of the time, making it difficult to measure
ad-effectiveness since outcomes with no ad-exposures would be scarcely observed. At the
other extreme, with pure bid randomization the advertiser could estimate unconditional
ad-effectiveness (the ATE) or how ad-effectiveness varies with observed heterogeneity
(the CATEs) and deliver on the inference goal, but may end up incurring large economic
losses in the process.

The contribution of this paper is to present a multi-armed bandit design (MAB) and
statistical learning framework that address both these considerations. In our design, ob-
served heterogeneity is summarized by a context, x, bids form arms, and the advertiser’s
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monetary payoffs form the rewards, so that the best arm, or optimal bid, maximizes the
advertiser’s expected payoff from auction participation given x. Exploiting the economic
structure of SPAs and FPAs, we derive, under conditions we outline, the relationship be-
tween the optimal bid at a given x and the CATE of the ad at the value x, or CATE(x). For
SPAs, we show that these two objects are equal, so that, in our experimental design, the
twin tasks of learning the optimal bid and estimating ad-effectiveness not only can build
off each other, but are perfectly aligned. For FPAs, we demonstrate that the two goals are
closely related, though only imperfectly aligned. Leveraging this relationship improves
the efficiency of learning and generates an online experimental design that delivers on
both goals for the advertiser at minimal cost under both auction formats.

To implement the design, we present a Thompson Sampling (TS) algorithm cus-
tomized to our auction environment trained online via a Markov Chain Monte Carlo
(MCMC) method. The algorithm adaptively chooses bids across rounds based on current
estimates of which arm is the optimal one. These estimates are updated on each round
via MCMC through Gibbs sampling, which leverages data augmentation to impute the
missing potential outcomes and the censored or missing competing bids in each round.
Simulations show that the algorithm is able to recover treatment effect heterogeneity as
represented by the CATEs of advertising and considerably reduces the expected costs of
experimentation compared to non-adaptive “A/B/n” tests, explore-then-commit (ETC)
strategies and a canonical off-the-shelf TS algorithm.

The rest of the paper discusses the relationship between the approach presented here
with the existing literature and explains our contribution relative to existing work. The
following section defines the design problem. Sections 3 and 4 show how we leverage
auction theory to balance the experimenting advertiser’s objectives. Section 5 presents the
modified TS algorithm we use to implement the experimental design. Section 6 shows ex-
tensive simulations documenting the performance of the proposed algorithm and shows
its advantages over competing designs. The last section concludes.

Related literature

Our paper lies at the intersection of three broad fields of study: the literature on online
learning in ad-auctions, the literature on experimentation in digital advertising, and the
literature on causal inference with bandits. Given that each of these streams of literature
is mature, we discuss only the most related papers for brevity, and the reader is referred
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to some of the cited papers for further reading.

Literature on online learning in ad-auctions

While the primary focus of this paper is on causal inference and experimentation, to the
extent that we solve an online learning-to-bid problem during experimentation, this paper
is also closely related to the literature on online learning in ad-auctions, in which learn-
ing strategies are suggested for use by auction participants to make good auction-related
decisions. One feature of this literature is that the majority of studies adopt the seller’s
perspective, focusing on the problem of designing mechanisms that maximize the seller’s
expected profit (e.g., finding an optimal reserve price in SPAs when the distribution of
valuations of the bidders is unknown a priori to the auctioneer). Examples include Cesa-
Bianchi et al. (2014), Mohri and Medina (2016), Roughgarden and Wang (2019), Haoyu
and Wei (2020) and Kanoria and Nazerzadeh (2021).

Our study, which addresses the problem of ad-experimentation from the advertiser’s
perspective, is more closely related to a smaller subliterature within this stream at the
intersection of online learning and auction theory that has studied the problem of bidding
from the perspective of the bidder. The key issue is that RTB bidders have significant
uncertainty about the value of advertising they buy on AdXs. In turn, MAB polices are
appealing devices for AdXs to learn which advertisers to pick as suggested in McAfee
(2011), although neither a specific algorithm for advertisers to learn-to-bid nor a strategy
for them to conduct online experimentation on AdXs is outlined.

Balseiro et al. (2019) present an algorithm for contextual bandits with cross-learning
across contexts and discuss an application to advertisers learning-to-bid in FPAs. Their
insight is that if we consider the value of the ad to the advertiser, v, as the context, observ-
ing the reward from bidding at context v yields information about the reward at another
context v′ for the same bid, so there is cross-learning across contexts within each arm.
They show that leveraging this information improves the efficiency of learning-to-bid al-
gorithms.2 However, the informational assumption in Balseiro et al. (2019) − that the
bidder’s value for the item (i.e., the context) is known to her prior to bidding − implies
that there is no scope for causal inference on this value to the bidder, unlike the situation
we consider here. Han et al. (2020b) extend this analysis and present stochastic bandit

2This feature is shared by the bandit problem presented in this paper as well, with an added advan-
tage that the existence of a shared payoff structure across arms implies that the problem displays cross-arm
learning in addition to the within-arm, cross-context learning pointed out by Balseiro et al. (2019).

5



algorithms for learning-to-bid in FPAs. Han et al. (2020a) present an analogous algorithm
for the adversarial case. They discuss ways to overcome a key impediment to resolving
the uncertainty a learning advertiser has over competitors’ bids, which is that the highest
competing bid is not observed when she wins the auction, leading to censored feedback
and a form of a winner’s curse in learning. Han et al. (2020b) and Han et al. (2020a) main-
tain the same assumption as Balseiro et al. (2019): bidders have uncertainty about the
distribution of competing bids, but know their own valuation exactly prior to bidding.
Therefore, again, there is no role for causal inference on the intrinsic value of advertising
from the advertiser’s perspective.3

Weed et al. (2016) and Feng et al. (2018) relax the assumption that advertisers know
their private value and present learning-to-bid algorithms for SPAs. Like the above pa-
pers, their emphasis is on addressing the challenge associated with the censored “win-
only” or “outcome-based” feedback that arises in SPAs. While these papers relax the
assumption of exact knowledge of the ad’s value by the advertiser, the way the informa-
tional assumptions are relaxed is different from ours, and implies a much more limited
scope for causal inference on the value of the ad to the advertiser. Weed et al. (2016)’s as-
sumption is that the bidder is uncertain about her valuation prior to bidding, but the value
of the good is fully observed if the auction is won. In turn, Feng et al. (2018)’s assumption
is that the bidder is uncertain about her valuation prior to bidding, but the value of the ad
is fully observed if the auction is won and the ad is clicked on. This implies an implicit
assumption that the impression generates no value to the advertiser when the auction is
lost and no ad-exposure or ad-click occurs. In canonical auction-theoretic settings, it is
assumed that the bidder gets no utility if she loses the auction. However, in the context of
ads a user may have a non-zero propensity to buy the advertiser’s products even in the
absence of ad-exposure or ad-click, and winning the auction increments this propensity,
so this assumption may not be as well suited.

Relaxing this assumption changes the implied inference problem substantively. In
causal inference terms, if we call Y(1) and Y(0) respectively the potential outcomes to the
advertiser with and without ad-exposure to the user, the value of the ad is Y(1)− Y(0).
The assumption above implies that Y(0) ≡ 0. This assumes away a principal challenge
in causally inferring the effect of ads addressed in this paper, that Y(1) and Y(0) are not
observed together for the same impression because the auction outcome censors the po-

3Han et al. (2020b)’s informational assumptions regarding competing bids are also different from ours:
we assume the advertiser does not observe the highest competing bid in an FPA when winning or losing
(full censoring); they assume the advertiser does not observe the highest competing bid if she wins, but
observes it if she loses (partial censoring).
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tential outcomes (this is Holland (1986)’s “fundamental problem” of causal inference).
Performing inference on the effect of ads while addressing this censoring problem is a
major focus of the experimental design in this paper. Another difference is that when
winning helps learn the valuation fully, the bandit’s exploration motive prioritizes higher
bids, because that increases the chance of winning. In our setting, learning the value of
advertising necessarily requires losing the auction sometimes, because that allows observ-
ing Y(0). Hence, this force for higher bidding in exploration is less pronounced, which in
turns affects the nature of bidding and the induced cost of experimentation.

This paper is related to a series of recent studies that analyze market equilibrium
when learning bidders interact in repeated RTB auctions. Dikkala and Tardos (2013) char-
acterize an equilibrium credit provision strategy for an ad-publisher who faces bidders
that are uncertain about their values from participating in SPAs for ads. The credit pro-
vided by the publisher to bidders incentivizes them to experiment with their bidding to
resolve their uncertainty, and, when set optimally, improves the publisher’s revenue. Iyer
et al. (2014) adopt a mean-field approximation for large markets, in which bidders track
only an aggregate and stationary representation of the competitors’ bids to study repeated
SPAs where bidders learn about their own private values over time. They apply it to the
problem of selecting optimal reserve prices for the publisher. Balseiro et al. (2015) charac-
terize equilibrium strategic interactions between budget-constrained advertisers who face
no uncertainty about their private valuations, but have uncertainty about the number, bids
and budgets of their competitors. They also develop a fluid mean-field approximate equi-
librium, and use their characterization to recommend optimal budget pacing strategies for
advertisers and optimal reserve prices for the publisher. Finally, Balseiro and Gur (2019)
and Tunuguntla and Hoban (2021) provide pacing algorithms and characterize equilib-
ria in bidding when budget-constrained advertisers who observe their current private
values before bidding (but are uncertain about their and competitors’ future values and
budgets) interact over time in repeated SPAs. Tunuguntla and Hoban (2021) also discuss
augmenting their algorithm with bandit exploration when the advertiser’s valuation has
to be learned. Overall, the goals of these papers− to characterize equilibria and to suggest
equilibrium budget pacing strategies, credits or reserve prices − are different from ours,
which is to develop an experimental design from the advertiser’s perspective for causal
inference on ads bought via SPAs and FPAs. We note the methods in these studies could
form the basis for extending the analysis in this paper to develop experimental designs
for simultaneous experimentation by multiple advertisers on an AdX.

There is a smaller subliterature that uses more general reinforcement learning (RL)
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approaches beyond bandits to optimize RTB advertising policies (Cai et al., 2017; Wu et al.,
2018; Jin et al., 2018). These papers are not concerned with estimating ad-effects, and we
depart from these approaches in that our goal is to perform causal inference. Further, we
achieve this goal by leveraging key properties of the auction format, thus contributing to
a nascent literature, to our knowledge, on direct applications of auction theory to enable
causal inference. While several studies combined experimental designs with auction the-
ory, their goals were to identify optimal policies such as bids as in the aforementioned
studies, reserve prices (Austin et al., 2016; Ostrovsky and Schwarz, 2016; Pouget-Abadie
et al., 2018; Rhuggenaath et al., 2019) or auction formats (Chawla et al., 2016), not to esti-
mate the causal effect of an action such as advertising determined by the outcome of an
auction.

Literature on experimentation in digital advertising

This paper is related to the literature on pure experimental approaches to measure the
effect of digital advertising.4 One feature that distinguishes this paper from several stud-
ies in this stream is its focus on developing an experimental design from the advertiser’s
perspective; in contrast, many of the proposed experimental designs, such as “ghost-ads”
for display advertising (Johnson et al., 2017) or search ads (e.g., Simonov et al., 2018),
are designed from the publisher’s perspective and require observation of the ad-auction
logs or cooperation with the publisher for implementation. In RTB settings, the adver-
tiser bidding on AdXs does not control the auction and does not have access to these logs,
precluding such designs (the next section provides a more detailed discussion).

Existing experimental designs that have been proposed from the advertiser’s per-
spective include geo-level randomization (e.g., Blake et al., 2015) or inducing randomiza-
tion of ad-intensities by manipulating ad campaign frequency caps on DSPs (e.g., Sahni
et al., 2019). Unlike these papers, our design leverages bid randomization, is tailored to
the RTB setting, is an online, rather than offline, inferential procedure, and leverages auc-
tion theory for inference.

Lewis and Wong (2018) suggest using bid randomization as a device to infer the
causal effects of RTB ads. Their method uses bids as an instrumental variable for ad-
exposure and delivers estimates of the local average treatment effect of ads, unlike the

4For a more detailed review we refer the reader to Gordon et al. (2021), who provide in their Section 1 a
recent overview and critical discussion.

8



experimental design proposed here, which leverages the link to auction theory to de-
liver ATEs for SPAs and FPAs. Also, unlike the experimental design outlined here, their
method is not adaptive and involves only pure exploration. Therefore, it does not have
the feature that the bid randomization policy also minimizes the costs from experimen-
tation by concurrently exploiting the information learned during the test to optimize ad-
vertiser payoffs. Finally, adaptive experimental designs for picking the best creative for
ad-campaigns are presented in Scott (2015), Schwartz et al. (2017), Ju et al. (2019) and
Geng et al. (2020). While related, the problem addressed in these papers of selecting a
best performing variant from a set of candidates is conceptually distinct from the problem
addressed in this paper of measuring the causal effect of an RTB ad-campaign.

Finally, while there are differences in implementation, our philosophy towards ex-
perimental design − which aligns the goal of the design with the payoff-maximization
objective of the advertiser − is aligned with that of Feit and Berman (2019), who advocate
ad-experimental designs that are profit maximizing. The advantage of the bandit-based
allocation here is that traffic is adaptively assigned to bid-arms in a way that respects
the advertiser’s profits, analogous to Feit and Berman (2019)’s setup. Some salient dif-
ferences in implementation are that we adopt a many-period bandit-allocation, while Feit
and Berman (2019) use a two-period setup, and that our design shows how to implement
profit maximizing tests for outcomes over which the advertiser only has imperfect control.

Literature on causal inference with bandits

There is an emerging literature that discusses online causal inference with bandits in var-
ious general settings.5 Performing causal inference with bandits is complicated by the
adaptive nature of data collection, wherein future data collection depends on the data al-
ready collected. Although bandits possess attractive properties in finding the best arm,
estimates of arm-specific expected rewards typically exhibit a bias often referred to as
“adaptive bias” (Xu et al., 2013; Villar et al., 2015). In particular, Nie et al. (2018) show that
archetypal bandit algorithms such as Upper Confidence Bound (UCB) and TS compute

5Note that existing approaches to inference with bandits differ based on whether they pertain to the
offline setting, where pre-collected data is available to the analyst, or the online setting, where data arrive
sequentially, with the online literature being relatively more recent. Unlike online methods, offline methods
are meant to be implemented ex-post, which implies that the data collection, though done sequentially, is
typically not made explicitly to facilitate inference upon its completion. Also, the methods are meant for
retrospective application on logged data, which means that data collection does not explicitly reflect in real-
time the progress made towards the inferential goal. This paper relates more closely to the online stream, so
we discuss only papers related to online inference.
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estimates of arm-specific expected rewards that are biased downwards. Due to this prob-
lem, leveraging bandits for causal inference for RTB ads is complicated even in a simple
case where assignment of users to ads is fully under the control of the advertiser. If we
set up ad-exposure and no-ad-exposure as bandit arms, so that the difference in rewards
between the two arms represents the causal effect of the ad, adaptive bias in estimating
the respective arm-rewards contaminates this difference.

Online methods to find the best arm while correcting for such adaptive bias include
Goldenshluger and Zeevi (2013), Nie et al. (2018), and Bastani and Bayati (2020), who
suggest data-splitting by forced-sampling of arms at prescribed times, and Dimakopoulou
et al. (2018) and Hadad et al. (2021), who correct for the bias via balancing and inverse
probability weighting. Online methods to perform frequentist statistical inference that is
valid for bandits, but which avoid issues of explicitly bias-correcting estimates of arm-
specific expected rewards, are presented in Yang et al. (2017), Jamieson and Jain (2018)
and Ju et al. (2019).

This paper has a different focus on inference compared to the above studies. Broadly
speaking, the above methods aim to either find the best arm or learn without bias the ex-
pected reward associated with the best arm. In contrast, our goal is to obtain an unbiased
estimate of the effect of an action (ad-exposure) that is imperfectly obtained by pulling arms
(placing bids). Therefore, in our setup the target treatment whose effect is to be learned is
not an arm, but a shared stochastic outcome that arises from pulling arms. Hence, arms are
more appropriately thought of as encouragements for treatments, which makes our setup
the online analogue of an offline encouragement design from the program evaluation lit-
erature (e.g., Imbens and Rubin, 1997). In addition to this difference, our bandit design,
which treats bids and their associated payoffs as arms/rewards (rather than ad-exposure
and the payoff of ad-exposure as arms/rewards), presents a different approach to avoid-
ing the aforementioned adaptive bias. In our approach, we obtain the object we would
like to estimate and perform inference on via the identity of the best arm and the theo-
retical relationship between the two rather than the expected value of its reward. Since
typical MAB algorithms recover the identity of the best arm without bias, we are able to
leverage them for inference on ad-effects without bias in an online environment. Again,
this is achieved by maintaining a close link to auction theory, which makes our approach
different in spirit from the above, more theory-agnostic approaches.

Our setup also shares similarities with the instrument-armed bandit setup of Kallus
(2018), in which there is a difference between the treatment-arm pulled and the treatment-
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arm applied due to the possibility of user non-compliance. However, the difference be-
tween the pulled and applied treatments, which is important to the design here, is not a
feature of the design considered by Kallus (2018), because the pulled and applied treat-
ments belong to the same set in his design. Also, unlike the setup in Kallus (2018), where
exposure to a treatment is the outcome of a choice by the user to comply with the pulled
arm, exposure here is obtained via a multi-agent game that is not directly affected by the
user, thus characterizing a different exposure mechanism.

Bandits have been explicitly embedded within the structural causal framework of Pearl
(2009) in a series of papers by Bareinboim et al. (2015), Lattimore et al. (2016) and Forney
et al. (2017). Our paper is related to this stream as our application is a specific instance
of a structural causal model tailored to the auction setting: we assume the existence of a
probabilistic, microfounded generative process that is the common shared causal structure
behind the distributions of the rewards for each arm. As this stream has emphasized,
the link to the model in our application is helpful to making progress on the inference
problem. This approach has also been followed by other papers in economics (see, for
example, the references in Bergemann and Välimäki, 2008) and marketing (Misra et al.,
2019) that study pricing problems where firms aim to learn the optimal price from a grid
of prices, corresponding to arms, which share the same underlying demand function.

2 Problem formulation

Our goal is to develop an experimental design to measure the causal effect of the ads an
advertiser buys programmatically on AdXs. To buy the ad, the advertiser (she) needs to
participate in an auction ran by the AdX for each impression opportunity. Winning the
auction allows the advertiser to display her ad to the user. The AdX’s auction format can
either be a SPA or a FPA.

Recall that we define the advertiser’ goal of estimating the expected effect of dis-
playing the ad to a user (he) as her inference goal. To state this goal more precisely, let
Y(1) denote the revenue the advertiser receives when her ad is shown to the user and
let Y(0) denote the revenue she receives when her ad is not shown. Y(1) and Y(0) are
potential outcomes to the advertiser expressed in monetary units and the causal effect
of the ad is Y(1) − Y(0). All the information the advertiser has about the user and im-
pression opportunity is captured by a variable x that can take P different values, so that
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x ∈ X ≡ {x1, ..., xP}.6

The advertiser’s inference goal specifically is to estimate a set of conditional average
treatment effects (CATEs) in which exposure to the ad is the treatment, where CATE(x) =
E1,0 [Y(1)−Y(0)|x]. The CATEs represent heterogeneity in the average treatment effect
of the ad across subsets of users spanned by x. The subscripts “1, 0” on the expectation
operator in the CATE explicitly indicate that the expectation is taken with respect to the
conditional distribution of Y(1) and Y(0) on x, about which the advertiser has uncertainty.
The advertiser needs to estimate this object because she does not have complete knowl-
edge of the distribution of potential outcomes Y(1) and Y(0) conditional on x. Therefore,
achieving the inference goal requires the collection of data informative of this distribution.

An experimental design that delivers on the advertiser’s inference goal needs to ad-
dress four issues, which we discuss in sequence below. All four are generated by the
distinguishing feature of the AdX environment that the treatment − ad-exposure − can
only be obtained by winning an RTB auction.

Issue 1: The advertiser cannot randomize treatment directly

The first issue is that the existence of the mediating auction precludes typical experimental
approaches to measuring treatment effects that involve collecting data while randomizing
treatment and then using these data to estimate CATEs. The outcome of the RTB auction
is not under the advertiser’s complete control because she does not determine the high-
est competing bid on the AdX. This lack of control disallows her from randomizing the
treatment, ad-exposure.

Although ad-exposure cannot be perfectly controlled, participation in auctions is
fully under the advertiser’s control. Therefore, a viable alternative design involves ran-
domizing her participation across auctions. Without loss of generality, we can think of
auction participation randomization as analogous to bid randomization, with “no partici-
pation” corresponding to a bid of 0, and “participation” corresponding to a positive bid.
Consequently, we could consider bid randomization as an alternative identification strat-
egy to recover CATEs in this environment.

6In our MAB setup, x is the context of the auction. It can be obtained from a vector Z of observable
display opportunity variables that can include, for example, user and publisher characteristics, with P being
the total number of different combinations of values across all elements of Z. Consumer segmentation of
user characteristics in this manner is common in the literature; see, for instance, Misra et al. (2019).
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Issue 2: Bid randomization alone is insufficient for identification

This leads to the second issue: the auction environment constrains what can be learned
from participation/bid randomization experimental designs. In particular, bid random-
ization is generally not sufficient to yield identification of CATEs if the relationship be-
tween Y(1), Y(0) and competing bids remains completely unrestricted.

To see this, let the highest bid against which the experimenting advertiser competes
in the auction be denoted by BCP. For simplicity, assume that P = 1 so that x can only take
one value and hence can be ignored. Let D ≡ 1 {BCP ≤ b} denote winning the auction
(i.e., ad-exposure), where b is the experimenting advertiser’s bid. Let Y ≡ D × Y(1) +
(1− D)× Y(0), Y(1) = λ1 + η1 and Y(0) = λ0 + η0, where λ1 and λ0 are constants and
E[η1] = E[η0] = 0, so that ATE = λ1 − λ0.

Consider measuring the ATE via a regression. A regression of Y on D using data
collected with bid randomization corresponds to:

Yi = λ0 + ATE× Di + Diη1i + (1− Di)η0i, (1)

where i indexes an observation. For the OLS estimator of ATE to be consistent the in-
dicator Di has to be uncorrelated with the errors η1i and η0i, and there are two potential
sources of such correlation, bi and BCP,i. Thus, even if bi is picked at random, a correlation
can still exist through BCP,i.

This consideration motivates Assumption 1 below, which we maintain for the rest of
the paper.

Assumption 1. “Private values” / Conditional independence
{Y(1), Y(0)} ⊥⊥ BCP|x.

One way to interpret Assumption 1 is from the perspective of auction theory. Noting
that the value of the ad-exposure to the advertiser depends on Y(1) and Y(0), Assump-
tion 1 implies that, conditional on x, knowledge of BCP has no effect on the experimenting
bidder’s assessment of Y(1) and Y(0), and, consequently, on her assessment of her own
willingness-to-pay, or valuation. Therefore, we can think of Assumption 1 as analogous
to a typical private values condition.7 This does not mean that there are no correlations

7We say that it is “analogous to” but not exactly a private values condition because the specific model of
ad-auctions that we will present below is slightly different from the canonical model for auctions presented
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between the values that competing advertisers assign to an auctioned impression. The
maintained assumption is that these common components of bidder valuations are accom-
modated in the observed vector x. Part of the motivation arises from the programmatic
bidding environment. When advertisers bid in AdXs, they match the id (cookie/mobile-
identifier) of the impression with their own private data. If x is large and encompasses
what can be commonly known about the impression, each advertiser’s private value after
conditioning on x would only be weakly correlated.

Another way to think of Assumption 1 is in causal inference terms as an uncon-
foundedness assumption. Statistically, it simply is a conditional independence assump-
tion, which is more likely to hold when x is large and spans the common information set
that auction participants have about the user impression. This is most likely to happen
when the experimenter is a large advertiser or an intermediary such as a large DSP, which
has access to large amounts of user data that can be matched to auctioned user impres-
sions in real-time.

Along with bid randomization, Assumption 1 yields identification of CATE(x). For
instance, from equation (1) we see that OLS identifies ATE consistently under this condi-
tion, because both b and BCP,i are independent of η1i, η0i.8

Issue 3: High costs of experimentation

While bid randomization combined with Assumption 1 is sufficient for identification, a
third issue to consider is the cost of experimentation. As mentioned in the introduction,
inducing ad-exposure involves paying the winning price in the auction, and inducing no-

in the theory literature (e.g., Milgrom and Weber, 1982). In the canonical model, a bidder obtains a signal
about the item she is bidding on prior to the auction, and uses that to form her expectation of its value.
Under a private values condition, it is then without loss of generality to normalize the bidder’s valuation
to be the signal itself (e.g., Athey and Haile, 2002, pp. 2110–2112). If we apply that formulation here, this
would imply that the signal would correspond to the treatment effect Y(1)− Y(0) itself. This formulation
simply does not fit our empirical setting in which the treatment effect is not known to the advertiser prior
to bidding (this is the motivation for running the experiment in the first place). Reflecting this, the model
we present does not have signals. As a consequence, it does not map exactly to the canonical dichotomy
between private and interdependent values, which is framed in terms of bidders’ signals.

8Another advantage is that, under this assumption, the target estimand, CATE(x), becomes a common
component of the expected reward associated with all the bid-arms for a given x, thereby facilitating cross-
arm learning of both this estimand and optimal bids. If potential outcomes were instead correlated with
others’ bids given x, the resulting expected reward associated with each bid-arm would be not be a function
of the CATE(x), but rather of a more complex expectation of the potential outcomes that varies across
arms, precluding such cross-arm learning efficiencies. See also Balseiro et al. (2019) who make a similar
independence assumption and point out its usefulness for cross-context learning.
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exposure involves foregoing the value generated from ad-display. Therefore, collecting
experimental units on the AdX involves costs.

These costs can be high under suboptimal bidding. Bidding higher than what is
required to win the auction involves wastage of resources from overbidding, and bidding
0 involves possible opportunity costs from underbidding, especially on users to whom
ad-exposure would have been beneficial. In a high frequency RTB environment, a typical
experiment can involve millions of auctions, so that if bidding is not properly managed,
the resulting economic losses can be substantial.9 These costs can form an impediment to
implementation of the experiment in practice, precluding its use.

The key to controlling costs is to optimize the bidding, specifically by finding the
optimal bid, b∗, to submit to the auction for each value of x. Henceforth, we refer to the
advertiser’s goal of obtaining the optimal bidding policy in the experiment, b∗(x), as her
economic goal. As we discuss in more detail below, the advertiser’s inference and economic
goals are directly related, though not necessarily perfectly aligned.

To characterize the optimal bid more formally and relate it to the advertiser’s infer-
ence goal, we first turn to the advertiser’s optimization problem from auction participa-
tion. The advertiser’s payoff as a function of her bid, b, is denoted π(b, Y(1), Y(0), BCP).

In an SPA, π(·) is

π(b, Y(1), Y(0), BCP) = 1 {BCP ≤ b} × [Y(1)− BCP] + 1 {BCP > b} ×Y(0)

= 1 {BCP ≤ b} × {[Y(1)−Y(0)]− BCP}+ Y(0), (2)

while in an FPA, π(·) is

π(b, Y(1), Y(0), BCP) = 1 {BCP ≤ b} × [Y(1)− b] + 1 {BCP > b} ×Y(0)

= 1 {BCP ≤ b} × {[Y(1)−Y(0)]− b}+ Y(0). (3)

As an aside, notice the formulation of auction payoffs in equations (2) and (3) is dif-
ferent from typical set-ups. As mentioned previously, in most auction models the term
Y(0) is set to zero because it is assumed that a bidder only accrues utility when she wins
the auction. However, this convention is not suitable to our setting given the interpreta-

9With a fixed budget, poor bidding also affects the quality of inference when wastage of experimental re-
sources leads to reduced collection of experimental data, leading to smaller samples and reduced statistical
precision.
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tion of the terms Y(1) and Y(0). In particular, a consumer might have a baseline propen-
sity to purchase the advertiser’s product even if he is not exposed to her ad, which is
associated with the term Y(0). Exposure to the ad might affect this propensity, further
implying that Y(1) 6= Y(0).

Optimal bidding

The advertiser is assumed to be risk-neutral, and to look for a bid that maximizes the
expected payoff from participating in the auction,

π̄(b|x) = E1,0,CP[π(b, Y(1), Y(0), BCP)|x], (4)

where the subscripts “1, 0, CP” on the expectation operator indicate that the expectation is
taken with respect to the conditional distribution of Y(1), Y(0) and BCP on x. Analogous
to the assumption that the advertiser does not fully know the distribution of Y(1) and
Y(0), we assume that she also does not know the distribution of BCP. This implies that the
advertiser faces uncertainty over the joint conditional distribution of Y(1), Y(0) and BCP

on x, which we denote by F (·, ·, ·|x). It is important to note that the fact that we postulate
that there exists a distribution for BCP does not imply that competitors are randomizing
bids or following mixed strategies, although it does allow for it. As typical in game-
theoretic approaches to auctions, a given bidder, in this case the advertiser, treats the
actions taken by her competitors as random variables, which is why we treat BCP as being
drawn from a probability distribution.10

Solving for b∗(x) in the presence of uncertainty over F (·, ·, ·|x) is a non-standard
and highly non-trivial auction problem. The problem is non-standard because under the
outlined circumstances, the advertiser faces two levels of uncertainty. The first, “lower-

10This modeling approach for competition, summarizing it by BCP, is reduced-form. Typically BCP is
more precisely defined because more information about the environment is available. For example, if the
advertiser knew she was competing against M competitors, then BCP would correspond to the highest or-
der statistic out of the M competing bids. If a reserve price was in place, then BCP would further be the
maximum between this reserve price and the highest bid. This order statistic could be further characterized
depending on what assumptions are made by the signals or information that competitors use to pick their
bids, such as symmetry. If M is unknown but the advertiser knows the probability distribution governing
M, then BCP is the highest order statistic integrated against such distribution. The reason why we follow
this reduced-form approach is twofold. The first is due to practical constraints: in settings such as ours, ad-
vertisers rarely have information about the number and identities of competitors they face, so conditioning
on or incorporating it would be infeasible. The second is that we are focusing on the optimization problem
faced by a single advertiser, who takes the actions of other agents as given. Since BCP can incorporate both a
varying number of competitors and a reserve price, it is a convenient modeling device to solve this problem.
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order” uncertainty is similar to the one faced by bidders in typical auction models: the
advertiser is uncertain about what her competitors bid, which is encapsulated by BCP. She
is also uncertain about her own valuation. As mentioned above, under this formulation
the advertiser’s valuation corresponds to the treatment effect, Y(1)−Y(0), which is never
observed in practice.

The second, ”higher-order” uncertainty is not present in standard auction models
and is also the source of the inference goal. While in the majority of auction models a
given bidder does not have complete knowledge of her valuation or of her competing
bids, she does know the distributions from which these objects are drawn, which would
correspond to the conditional joint distribution of Y(1), Y(0) and BCP on x in our model.
This is not the case here where the advertiser faces uncertainty regarding F (·, ·, ·|x).

To see why this bidding problem is non-trivial, notice that without access to data
informative of this distribution, the advertiser would have to integrate over F (·, ·, ·|x) to
construct the expected payoff from auction participation. The optimization problem she
would then need to solve is:

max
b

EF {E1,0,CP [π(b, Y(1), Y(0), BCP)|F, x]|x} . (5)

In equation (5), the inner expectation is taken with respect to Y(1), Y(0) and BCP while
keeping their joint distribution fixed, where π(b, Y(1), Y(0), BCP) is given in equations (2)
and (3). Thus, it reflects the aforementioned lower-order uncertainty. In turn, the outer
expectation is taken with respect to F (·, ·, ·|x), which is reflected in the subscript “F” and
on the conditioning on F in the inner expectation. At the most general level, the advertiser
would consider all trivariate probability distribution functions whose support is the three-
dimensional positive real line. As such, the optimization problem given in (5) is neither
standard nor tractable, and the solution to this problem is in all likelihood highly sensitive
to the beliefs over distributions the advertiser can have.

Without access to data, the advertiser would have no choice but to try to solve the
optimization problem in (5). However, as we noted above, achieving the inference goal re-
quires the collection of data, which can also be used to address her economic goal. There-
fore, instead of tackling the optimization problem in (5), one strategy for optimizing bid-
ding would be to use the data collected in the experiment to construct updated estimates
of E1,0,CP [π (b, Y(1), Y(0), BCP)|F, x], and to perform bid optimization with respect to this
estimate as the experiment progresses. This way, the data generated from the experiment

17



are used to address both the advertiser’s inference goal and to optimize expected profits
in order to address her economic goal, so that both goals are pursed simultaneously.

Issue 4: Aligning the inference and economic goals

This leads to the final issue: how to balance the simultaneous pursuit of both the inference
and economic goals in the experiment? This issue arises because typical strategies aimed
at tackling one of the goals can possibly have negative impacts on accomplishing the other,
suggesting an apparent tension between the two.

To see this, consider what would happen if the experiment focused only on the ad-
vertiser’s inference goal by randomizing bids without any concurrent bid optimization.
We already alluded to the consequences of this for the advertiser’s economic goal in our
previous discussion: pure bid randomization can hurt the advertiser’s economic goal by
inducing costs from suboptimal bidding.

Consider now what would happen if the experiment focused only on the adver-
tiser’s economic goal: learning b∗(·). Notice from equations (2), (3) and (4) that the payoffs
from bidding b are stochastic from the advertiser’s perspective, and that the optimal bid,
b∗(·), is the maximizer of the expected payoff from auction participation, π̄(b|x), which
is an unknown objective function to the advertiser. Therefore, in this setup, pursuing
the economic goal involves finding the best bid to play in an environment where pay-
offs are stochastic, and maximizing expected payoffs against a distribution which has to
be learned by exploration. A MAB or RL approach is thus attractive in this situation be-
cause it can recover b∗(·) while minimizing the costs from suboptimal bidding, which
pure randomization does not assess. By following this strategy the advertiser would
adaptively collect data to learn a good bidding policy by continuously re-estimating and
re-optimizing π̄(b|x).

In principle, these data could also be used to estimate CATE(x) by running the re-
gression in (1) for each x, for example. However, the adaptive nature of the data collec-
tion procedure induces autocorrelation in the data, which can impact asymptotic statis-
tical and econometric properties of estimators. Moreover, even if all desired properties
hold, underlying properties of the data and the algorithm used can affect the estimator
adversely. To see this, consider the following example. For simplicity, assume once again
that P = 1 so that x can be ignored and further assume that Pr(BCP ≤ b∗) ≈ 1. A good al-
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gorithm would converge quickly, eventually yielding relatively few observations of Y(0)
compared to those of Y(1), which would hinder the inference goal since typical estimators
for CATEs based on such imbalanced data tend to be noisy.

This framing demonstrates that the inference and economic goals can possibly be in
conflict. The advertiser’s goals are clearly related since they both depend on knowledge
about the distribution F (·, ·, ·|·). The challenge faced by the advertiser in accomplishing
her goals is that this distribution is unknown to her. While there are known approaches
to gather data and tackle each of the advertiser’s goals in isolation, it is unclear whether
they can perform satisfactorily in achieving both goals concurrently. Addressing this is
the core remaining piece for experimental design, which is discussed next.

3 Balancing the advertiser’s objectives

The strategy we adopt to balance the two goals leverages the microfoundations of the
experiment by recognizing that the goals are linked to each other by the economic logic of
optimal bidding. Because the bidding logic depends on the auction format, the extent to
which the two goals are balanced will also differ by auction format. In particular, we will
show that, in SPAs, the inference and economic goals can be perfectly aligned, while in
FPAs, leveraging this linkage is still helpful, but the goals can only be imperfectly aligned.

To characterize our approach, we consider the limiting outcome of maximizing the
true expected profit function with respect to bids when the joint distribution F (·, ·, ·|·) is
known to the advertiser. In what follows, we will use the expressions in equations (2) and
(3) ignoring the second term, Y(0), because it does not depend on the advertiser’s bid,
b. This expression also has the benefit of directly connecting the potential outcomes to
this auction-theoretic setting, with the treatment effect Y(1)− Y(0) taking the role of the
advertiser’s valuation.

We combine equations (2) and (4) to write the object she aims to learn in an SPA as
the maximizer with respect to b of:

π̄(b|x) ≡ E [π(b, Y(1), Y(0), BCP)|x]
= Pr (BCP ≤ b|x)×E {[Y(1)−Y(0)]− BCP|BCP ≤ b; x} , (6)

In an FPA, we combine equations (3) and (4) to write the object she aims to learn as the
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maximizer with respect to b of:

π̄(b|x) ≡ E [π(b, Y(1), Y(0), BCP)|x]
= Pr (BCP ≤ b|x)×E {[Y(1)−Y(0)]− b|BCP ≤ b; x} . (7)

Once again, the expectation in equations (6) and (7) is taken with respect to Y(1), Y(0) and
BCP, but the subscript “1,0,CP” is omitted to ease notation. The conditioning on the distri-
bution F is also omitted since π̄ (·|x) is the true expected profit function, which therefore
utilizes the true conditional distribution F (·, ·, ·|·) to compute the relevant expectations
and probabilities. We denote the maximizers of these respective expressions by b∗(x).

To ensure that b∗(x) is well-defined, we maintain the following weak technical as-
sumption on F (·, ·, ·|·).

Assumption 2. Well behaved F (·, ·, ·|·)
(i) The joint distribution F(·, ·, ·|x) admits a continuous density, f (·, ·, ·|x), over R3

+ for all x.
(ii) E [Y(1)|x] < ∞, E [Y(0)|x] < ∞, and E [BCP|x] < ∞ for all x.
(iii) The density of BCP given x, fCP (·|x), is strictly positive in the interior of R+ for all x.
(iv) fCP(bCP|x)

FCP(bCP|x)
is decreasing in bCP for all x.

Assumption 2 not only is mild but also relatively common in auction models and
is made solely for tractability. Assumptions 2(i) and 2(ii) are minimal requirements. In
causal inference terms, Assumption 2(iii) is equivalent to an overlap assumption that
0 < P(D = 1|x) < 1, where P(D = 1|x) is the propensity score. Letting D ≡ 1 {BCP ≤ b}
as before, so that P(D = 1|x) ≡ P(BCP ≤ b|x), Assumption 2(iii) implies 0 < P(BCP ≤
b|x) < 1. In addition, Assumption 2(iii) could in principle be relaxed as we will mention
below. Finally, Assumption 2(iv) is only required to determine b∗(x) for FPAs. It states that
the conditional distribution of BCP on x has a decreasing reversed hazard rate. As argued
by Block et al. (1998), this property holds for several distributions, including all decreas-
ing hazard rate distributions and increasing hazard rate Weibull, gamma and lognormal
distributions.

We now investigate the relationship between b∗(·) and CATE(·) under Assumptions
1 and 2. If the distribution F (·, ·, ·|·) was known, computing CATE(·) would be straight-
forward, as would be solving for b∗(·) by maximizing expression (6) or expression (7).
The results below characterize this relationship first for SPAs and then for FPAs.

Proposition 1. Optimal bid in SPAs
If Assumptions 1 and 2 hold and the auction is an SPA, b∗(x) = max {0, CATE(x)}.
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Proof. To prove Proposition 1, we first rewrite equation (6):

π̄(b|x) = Pr {BCP ≤ b|x} {E [Y(1)−Y(0)|BCP ≤ b; x]−E [BCP|BCP ≤ b; x]}
= Pr {BCP ≤ b|x} {E [Y(1)−Y(0)|x]−E [BCP|BCP ≤ b; x]}
= Pr {BCP ≤ b|x} {CATE(x)−E [BCP|BCP ≤ b; x]}

=
∫ b

0
[CATE(x)− bCP] fCP(bCP|x)dbCP,

where the second equality follows from Assumption 1. Notice that π̄(b|x) becomes a
bidder’s expected payoff from a second-price sealed-bid auction in which the bidder’s
private value equals CATE(x). Because the advertiser cannot submit negative bids, when
CATE(x) ≤ 0 the optimal bid is b∗(x) = 0 since the integrand is negative and fCP(·|x) >
0 in the interior of R+ due to Assumption 2(iii). Otherwise, notice that the integrand
is non-negative as long as b(x) ≤ CATE(x), which implies the optimal bid cannot be
greater than CATE(x). Once again, due to Assumption 2(iii), fCP(·|x) > 0, so that b∗(x) =
CATE(x).11

We now characterize the analogous relationship for FPAs.

Proposition 2. Optimal bid in FPAs
If Assumptions 1 and 2 hold and the auction is an FPA, b∗(x) = max

{
0, χ−1 [CATE(x)]

}
,

where χ (b) = b + FCP(b|x)
fCP(b|x)

.

Proof. To prove Proposition 2, we proceed as above, by rewriting equation (7):

π̄(b|x) = Pr {BCP ≤ b|x} {E [Y(1)−Y(0)− b|BCP ≤ b; x]}
= Pr {BCP ≤ b|x} {E [Y(1)−Y(0)|x]− b}
= FCP (b|x) {CATE(x)− b} ,

where, once again, the second equality follows from Assumption 1. If CATE(x) ≤ 0, it is
straightforward to verify that b∗(x) = 0 since the advertiser cannot submit negative bids.
Consider now the case where CATE(x) > 0. The first-order condition with respect to b is
given by

CATE(x) = b +
FCP (b|x)
fCP (b|x)

≡ χ(b). (8)

11Notice that Assumption 2(iii) could be relaxed to assuming that fCP(·|x) is strictly positive on neigh-
borhoods around 0 and CATE(x).
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Assumption 2(iii) ensures that χ(0) = 0. In addition, Assumption 2(iv) implies that the
right-hand side of equation (8) is monotonically increasing in b. Hence, χ(·) is invertible,
which yields a unique solution. Denoting its inverse by χ−1(·), the optimal bid is therefore
given by b∗(x) = max

{
0, χ−1 [CATE(x)]

}
.

Implications

Propositions 1 and 2 have three implications. First, they show how the optimal bids, b∗(x),
are related to CATE(x). In an SPA, Proposition 1 shows that whenever displaying the ad
is beneficial, that is, when CATE(x) ≥ 0, one should bid the CATE(x). In an FPA, Propo-
sition 2 shows that whenever displaying the ad is beneficial, one should bid less than the
CATE(x).12 In turn, when ad-exposure is detrimental, that is, when CATE(x) < 0, the
propositions convert this qualitative fact into a clear economic policy as the advertiser
would have no interest in displaying the ad in the first place, which can be guaranteed
by a bid of zero. A consequence of these relationships is that the advertiser can follow
a MAB or RL strategy in the experiment to learn b∗(·), and once they are learned, can
obtain CATEs by leveraging these relationships. This will form the basis of the algorithm
we propose in the next section.

Second, one sees from the propositions that, for both SPAs and FPAs, the object of
inference, CATE(x), is a common component of the expected payoff associated with the
bids one could consider for a given x. Thus, if one thinks of bids as “arms” in the sense
of a bandit, leveraging the economic structure of the problem induces cross-arm learning
within each context (i.e., pulling each arm contributes to learning CATEs). This cross-arm
learning, which is purely a consequence of maintaining a link to economic theory, helps
the bandit-learner proposed in the next section infer the CATE(x) more efficiently, which,
in turn, also allows a more efficient learning of the optimal bidding policy for each context.

Third, the propositions show precisely how the inference and economic goals can
be aligned in the experiment. For SPAs, Proposition 1 is powerful because it implies that
whenever displaying the ad is beneficial, the advertiser’s economic and inference goals
are perfectly aligned, as learning b∗(x) and estimating CATE(x) consist of the same task.
Our proposed experimental design for SPAs will be to find the best bid for each x, b∗(x),
and set that to be the CATE(x). This design will have the feature that achieving good

12Equation (8) shows that b∗(x) 6= CATE(x) whenever CATE(x) 6= 0 because the right-hand side con-
sists of a sum of two non-negative terms. In particular, if CATE(x) > 0 it follows that b∗(x) < CATE(x)
due to the typical bid shading in FPAs.
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performance in learning the best bid does not come at the cost of reduced performance on
measuring CATEs or vice versa.

For FPAs, Proposition 2 is also helpful because it implies that whenever displaying
the ad is beneficial, the advertiser’s economic and inference goals reinforce each other, as
learning b∗(x) helps learning CATE(x) in the experiment. Our proposed experimental de-
sign for FPAs will be to find the best bid for each x, b∗(x), and set χ [b∗(x)] to be CATE(x).
However, because the inference and economic goals are not perfectly aligned, the design
will have the feature that good performance in learning optimal bids may come at the cost
of reduced performance in learning the CATEs or vice versa.

4 Accomplishing the advertiser’s objectives

We leverage Propositions 1 and 2 to develop an experimental design that concurrently ac-
complishes the advertiser’s goals. Our proposal comprises an adaptive design that learns
b∗(·) over a sequence of display opportunities. We begin by stating the following assump-
tion, which we maintain throughout the analysis.

Assumption 3. Independent and identically distributed (i.i.d.) data
{Yi(1), Yi(0), BCP,i}

iid∼ F(·, ·, ·|xi) and xi
iid∼ Fx(·).

Assumption 3 is a typical assumption made in stochastic bandit problems, that the
randomness in payoffs is i.i.d. across occurrences of play. It imposes restrictions on the
data generating process (DGP). For instance, if the same user appeared more than once
and if his potential outcomes Y(1) and Y(0) were serially correlated, this condition would
not hold. In turn, if competing bidders solved a dynamic problem because of longer-term
dependencies, budget or impression constraints, BCP could become serially correlated as
a result, in which case this condition would also not hold.

Assumption 3 justifies casting the advertiser’s problem as a MAB. In particular,
when Assumptions 2 and 3 hold, b∗(x) is well-defined and common across auctions for
every x for SPAs and FPAs. Under these assumptions, it is natural to represent the ad-
vertiser’s economic goal as a contextual MAB problem. In such setting, the advertiser
considers a potentially context-specific set of rx = 1, ..., Rx arms, each of which associated
with a bid, brx . The advertiser’s goal can be expressed as minimizing cumulative regret
from potentially bidding suboptimally over a sequence of auctions while learning b∗(·).
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Hence, as customary, we implicitly assume that for each x the grid contains the optimal
bid, b∗(x).

Algorithms used to solve MAB problems typically base the decision of which bid to
play in round t, bt, on a tradeoff between randomly picking a bid to obtain more infor-
mation about its associated payoff (exploration) and the information gathered until then
on the optimality of each bid (exploitation). The existing information at the beginning
of round t is a function of all data collected until then, which we denote by Wt−1. Each
observation i in these data, whose structure is displayed in Table 1 for SPAs and FPAs, is
an ad display auction.

Table 1: Snapshot of data structure

i bi xi Di Yi Yi(1) Yi(0) BCP,i
SPA FPA

1 b1 x1 1 y1 y1 − bCP,1 ≤ b1

2 b2 x2 0 y2 − y2 ≥ b2 ≥ b2
...

...
...

...
...

...
...

...
...

For the analysis of SPAs it will be useful to define the variable B̄CP ≡ min{BCP, b}.
Stacking the data presented in Table 1 across auctions for each round τ, it follows that we
can write Wt = {bτ, xτ, Dτ, Yτ, B̄CP,τ, ωτ}t

τ=1 for SPAs and Wt = {bτ, xτ, Dτ, Yτ, ωτ}t
τ=1 for

FPAs. In both cases, the ωs are seeds, independent from all other variables, required for
randomization depending on which algorithm is used.

Notice that these data suffer from two issues. The first, common to both auction
formats, is the fundamental missing data problem in causal inference referenced before
(Holland, 1986): that Y(1) and Y(0) are not observed together at the same time. The
second regards what we observe regarding BCP and differs across the two auction formats.
For SPAs, we have a censoring problem related to the competitive environment: for SPAs,
BCP is only observed when the advertiser wins the auction; otherwise, all she knows is
that it was larger than the bid she submitted. Hence, the observed data have a similar
structure to the one in the model defined by Amemyia (1984) as the Type 4 Tobit model.
However, for FPAs this restriction is stronger: we never observe BCP and only have either
a lower or upper bound on it depending on whether the advertiser wins the auction, so
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that the observed data has a Type 5 Tobit model structure.

There are two points of departure between this setup and a standard MAB problem.
First, in the latter, each arm is associated with a different DGP, so it is commonly assumed
that the reward draws are independent across arms. This is not true in our setting: given
the economic structure of the problem, conditional on x the values of {Y(1), Y(0), BCP} are
the same regardless of which arm is pulled, which creates correlation between rewards
across arms. In particular, this is a nonlinear stochastic bandit problem as defined by
Bubeck and Cesa-Bianchi (2012). Second, on pulling an arm the advertiser observes three
different forms of feedback: an indicator for whether she wins the auction and obtains
treatment (ad-exposure), the highest competing bid conditional on winning for SPAs or
a bound on it conditional on losing, or a bound on the highest competing bid for FPAs,
and the reward. This contrasts with the canonical case in which the reward forms the
only source of feedback, and fits into the class of “complex online problems” studied by
Gopalan et al. (2014).

5 Bidding Thompson Sampling (BITS) algorithm

We now propose a specific procedure to achieve the advertiser’s goals, which is a version
of the TS algorithm. Since it aims to learn the advertiser’s optimal bid, we refer to it as
Bidding Thompson Sampling (BITS).

5.1 General procedure

It is not our goal to solve for or implement the optimal learning policy that minimizes cu-
mulative regret over a finite number of rounds of play. In fact, a general solution for MAB
problems with correlated rewards across contexts and arms such as the one we consider
is not yet known. What we require is an algorithm that performs “well” in terms of min-
imizing cumulative regret and that can easily accommodate and account for information
shared across arms. Hence, we make use of the TS algorithm (Thompson, 1933), which is a
Bayesian heuristic to solve MAB problems.13 TS typically starts by parametrizing the dis-
tribution of rewards associated with each arm. Since our problem departs from standard
MAB problems in that the DGP behind each of the arms, that is, the distribution F(·, ·, ·|·),

13See Scott (2015) for an application to computational advertising and Russo et al. (2018) for an overview.
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is the same, we choose to parametrize it instead and denote our vector of parameters of
interest by θ. Expected rewards depend on θ, so we will often write π̄(·|·, θ). This is the
same approach followed by Gopalan et al. (2014), who showed that, in a setting that has
similarities to ours, the TS algorithm exhibits a logarithmic regret bound. This is the sense
in which we consider it to perform “well.”

The algorithm runs while a criterion, ct, is below a threshold, T. After round t, the
prior over θ is updated by the likelihood of all data gathered by the end of round t, Wt.
We denote the number of observations gathered on round t by nt and the total number
of observations gathered by the end of round t by Nt = ∑t

τ=1 nτ. If nt = 1 for all t the
algorithm proceeds auction by auction. We present it in this way to accommodate batch
updates. Given the posterior distribution of θ given Wt, we calculate

ψt(brx |x) ≡ Pr (arm rx is the best arm |Wt; x) (9)

and update the criterion ct. In round t + 1, arm rx is pulled for each observation with
context x with probability ψt(brx |x). The generic structure of the TS algorithm is outlined
below.

Algorithm 1: Thompson Sampling

1 Set priors, ψ0(·|·), c0 and T.
while (ct < T) do

2 Pull arms according to ψt−1(·|·).
3 Combine new data with previously obtained data in Wt.
4 Update the posterior distribution of θ with Wt.
5 Compute ψt(·|·), ct and b∗t (·).

end

5.2 Parametrizing distribution of rewards

We now present the specific parametrization we use in our problem. Because of the struc-
ture of the data we described in Section 4 and because of the algorithm we use, our pro-
cedure requires reimplementing a Bayesian estimator to a Type 4 or Type 5 Tobit model
on each round. Hence, the specific parametric structure we impose is chosen to make this
estimator as simple as possible and, consequently, to speed up the implementation of the
algorithm.
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Let Xi be the following P−dimensional vector of mutually exclusive dummies:

Xi ≡ [1 {xi = x1} ,1 {xi = x2} , ...,1 {xi = xP}]′ . (10)

Notice that there is a one-to-one correspondence between the vector Xi and the variable
xi. Hence, we will use them interchangeably. We assume thatlog Yi(1)

log Yi(0)
log BCP,i

 ∣∣∣Xi
i.i.d.∼ N


 X′iδ1

X′iδ0

X′iδCP

 ,

 σ2
1 ρσ1σ0 0

ρσ1σ0 σ2
0 0

0 0 σ2
CP


 ≡ N

([
∆′Xi

X′iδCP

]
,

[
Σ 0
0′ σ2

CP

])
,

(11)

where ∆ ≡ [δ1, δ0]. We collect the parameters in θ ≡
[
δ′1, δ′0, δ′CP, σ2

1 , σ2
0 , σ2

CP, ρ
]′.

Notice that this parametrization directly imposes Assumption 1 and that it implies
that CATE(Xi) = exp

{
X′iδ1 + 0.5σ2

1
}
− exp

{
X′iδ0 + 0.5σ2

0
}

. In addition, since the poten-
tial outcomes are never observed simultaneously, ρ is not point identified without further
restrictions.14 Hence, since our interest is in CATE(·) and since it does not depend on ρ,
we follow Chib and Hamilton (2000) and explicitly assume that ρ = 0. This assumption
has the benefit of simplifying the algorithm we present. A more general version that al-
lows for ρ 6= 0 is given in Appendix C. Finally, notice that (11) also implies that for SPAs
the expected payoff is:

π̄(b|Xi, θ) = Φ
(

log b− X′iδCP

σCP

)
× CATE(Xi)

−Φ
(

log b− X′iδCP

σCP
− σCP

)
× exp

{
X′iδCP + 0.5σ2

CP

}
,

(12)

and for FPAs the expected payoff is:

π̄(b|Xi, θ) = Φ
(

log b− X′iδCP

σCP

)
× [CATE(Xi)− b] , (13)

where Φ(·) is the cumulative distribution function of the standard normal distribution
and where we omit the terms that do not depend on b for brevity.

14However, it is possible to exploit the positive semidefiniteness of Σ to partially identify ρ. See, for
example, Vijverberg (1993) and Koop and Poirier (1997).
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5.3 Choice of priors

We choose independent normal-gamma priors, which are conjugate to the normal like-
lihood induced by the DGP in (11). We choose these priors solely for convenience since
they speed up the algorithm. For k ∈ {1, 0, CP}, we set:

σ−2
k ∼ Γ (αk, βk)

δk|σ2
k ∼ N

(
µδk , σ2

k A−1
k

)
,

(14)

where {αk, βk}k∈{1,0,CP} are non-negative scalars,
{

µδk

}
k∈{1,0,CP} are P−dimensional vec-

tors and {Ak}k∈{1,0,CP} are P-by-P matrices. For the gamma distribution, the parametriza-
tion is such that if G ∼ Γ(α, β), then E[G] = α/β. We discuss how to use historical data to
choose the parameters of the prior distributions below.

5.4 Drawing from posterior: Gibbs sampling

Implementing the algorithm requires computing updated probabilities, ψt(·|·), which can-
not be done analytically because of the missingness and censoring in the feedback data.
Nevertheless, it is still possible to exploit conditional conjugacy via data augmentation and
use Gibbs sampling to obtain draws from the posterior distribution of θ given Wt. Using
these draws we can then estimate ψt(·|·) via Monte Carlo integration. We first describe the
steps of this estimation procedure for SPAs, which combines the methods introduced by
Chib (1992) and Koop and Poirier (1997) in a single Gibbs sampling algorithm with data
augmentation, and then describe how it can be modified to accommodate FPAs. Bayesian
data augmentation forms an elegant way to solve the censoring and missingness prob-
lems induced by the ad-auction. In each draw, we augment the Markov chain with the
missing potential outcomes and competing bids, and then perform Bayesian inference on
the required treatment effects conditioning on these augmented variables.

5.4.1 Data augmentation

The first step in our procedure is to draw the missing values from our data conditional
on (Wt, θ). We begin by drawing the missing values {log BCP,i}i:Di=0. Given (Wt, θ) and
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under (11), it follows that:

log Bmiss
CP,i

∣∣∣Di = 0, log Yi, log B̄CP,i, log bi, Xi, θ
d
=

log Bmiss
CP,i

∣∣∣Di = 0, log bi, Xi, δCP, σ2
CP ∼ TN

(
X′iδCP, σ2

CP, log bi,+∞
)

, (15)

where d
= means equality in distribution and TN

(
δ∗, σ2

∗ , l, u
)

denotes the truncated normal
distribution with mean δ∗, variance σ2

∗ , lower truncation at l and upper truncation at u.

Now we proceed to draw the missing values {log Yi(1)}i:Di=0 and {log Yi(0)}i:Di=1.
Given (Wt, θ) and under (11), it follows that:

log Ymiss
i (1)

∣∣∣Di = 0, log Yi, log B̄CP,i, log bi, Xi, θ
d
=

log Ymiss
i (1)

∣∣∣Di = 0, Xi, δ1, σ2
1 ∼ N

(
X′iδ1, σ2

1

)
(16)

and,

log Ymiss
i (0)

∣∣∣Di = 1, log Yi, log B̄CP,i, log bi, Xi, θ
d
=

log Ymiss
i (0)

∣∣∣Di = 1, Xi, δ0, σ2
0 ∼ N

(
X′iδ0, σ2

0

)
. (17)

Now, defining,

δmiss
i = Di × X′iδ0 + (1− Di)× X′iδ1 (18)

σ2,miss
i = Di × σ2

0 + (1− Di)× σ2
1 , (19)

we can combine (16) and (17) into:

log Ymiss
i

∣∣∣ log Yi, Di, log B̄CP,i, log bi, Xi, θ
d
=

log Ymiss
i

∣∣∣Di, Xi, δ1, δ0, σ2
1 , σ2

0 ∼ N
(

δmiss
i , σ2,miss

i

)
. (20)
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5.4.2 Creating the “complete” data

Given a draw from the distributions given above,
{

log Ymiss
i , log Bmiss

CP,i

}
, we can construct

the “complete” data implied by that draw of the Markov chain:

log Ỹi(1) = Di log Yi + (1− Di) log Ymiss
i

log Ỹi(0) = Di log Ymiss
i + (1− Di) log Yi

log B̃CP,i = Di log B̄CP,i + (1− Di) log Bmiss
CP,i .

(21)

5.4.3 Drawing from posterior distribution

The last step is to draw new parameters from their full conditional distributions. Col-
lect the parameters of the priors in θprior ≡

{
µδk , Ak, αk, βk

}
k∈{1,0,CP}. For ease of no-

tation, we stack all the “complete” data by the end of round t in the following Nt-by-
1 vectors: log Ỹt(1), log Ỹt(0), log B̃CP,t, Dt and log bt. We also use the Nt-by-P matrix
Xt, whose ith row is the vector X′i , and collect them all in the complete data set W̃t ≡[
log Ỹt(1), log Ỹt(0), log B̃CP,t log bt, Dt, Xt

]
. Finally, let the (q− 1)th draw of the parame-

ters be θ(q−1) =
[
δ
′(q−1)
1 , δ

′(q−1)
0 , δ

′(q−1)
CP , σ

2,(q−1)
1 , σ

2,(q−1)
0 , σ

2,(q−1)
CP

]′
. Given the structure of

the model, it then follows that the full conditional distributions of the parameters simplify
in the following way:

σ
2,(q)
CP

∣∣∣θ(q−1), θprior, W̃t
d
= σ

2,(q)
CP

∣∣∣ log B̃CP,t, Xt, µδCP , ACP, αCP, βCP

σ
2,(q)
1

∣∣∣θ(q−1), θprior, W̃t
d
= σ

2,(q)
1

∣∣∣ log Ỹt(1), Xt, µδ1 , A1, α1, β1

σ
2,(q)
0

∣∣∣θ(q−1), θprior, W̃t
d
= σ

2,(q)
0

∣∣∣ log Ỹt(0), Xt, µδ0 , A0, α0, β0

(22)

and, letting σ2,(q) ≡
[
σ

2,(q)
1 , σ

2,(q)
0 , σ

2,(q)
CP

]′
,

δ
(q)
CP

∣∣∣σ2,(q), δ
(q−1)
1 , δ

(q−1)
0 , δ

(q−1)
CP , θprior, W̃t

d
= δ

(q)
CP

∣∣∣σ2,(q)
CP , log B̃CP,t, Xt, µδCP , ACP

δ
(q)
1

∣∣∣σ2,(q), δ
(q−1)
1 , δ

(q−1)
0 , δ

(q−1)
CP , θprior, W̃t

d
= δ

(q)
1

∣∣∣σ2,(q)
1 , log Ỹt(1), Xt, µδ1 , A1

δ
(q)
0

∣∣∣σ2,(q), δ
(q−1)
1 , δ

(q−1)
0 , δ

(q−1)
CP , θprior, W̃t

d
= δ

(q)
0

∣∣∣σ2,(q)
0 , log Ỹt(0), Xt, µδ0 , A0.

(23)

The specific forms of these full conditional distributions are presented in Appendix A.
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5.4.4 Summary

The full Gibbs sampling procedure is summarized below. If one wishes to allow for ρ 6= 0
the procedure has to be adjusted. We present this more general algorithm in Appendix C.

Algorithm 2: Gibbs sampling

1 Set θ(0) and θprior.
for (q = 1, ..., Q) do

2 Draw
{

log Ymiss,(q)
i (1), log Ymiss,(q)

i (0), log Bmiss,(q)
CP,i

}Nt

i=1
according to

equations (15)−(20).

3 Construct
{

log Ỹ(q)
i (1), log Ỹ(q)

i (0), log B̃(q)
CP,i

}Nt

i=1
according to equation (21).

4 Draw θ(q) according to equations (22)−(23).
end

5.5 Adaptation to FPAs

The procedure described above for SPAs can be used with minor adjustments to handle
FPAs. Accommodating FPAs involves two substantive changes. The first is that we use
the expected profit function for FPAs in (13) rather than the one for SPAs in equation (12).
The second change is a function of the different data the advertiser would have access
to in an FPA. As noted before, under an FPA, BCP is always missing, which necessitates
the normalization σ2

CP = 1. However, under Assumption 1 BCP is conditionally indepen-
dent from Y(1) and Y(0) given x, and therefore the augmentation step for BCP would not
depend on observed outcomes given x. Therefore, instead of embedding the Bayesian
approach to the Tobit model by Chib (1992) in the BITS algorithm, we use the Bayesian
approach to a Probit model introduced by Albert and Chib (1993).

More concretely, in addition to drawing the missing values {log BCP,i}i:Di=0 accord-
ing to (15) with σ2

CP = 1, we also draw the missing values {log BCP,i}i:Di=1 according to,

log Bmiss
CP,i

∣∣∣Di = 1, log Yi, log B̄CP,i, log bi, Xi, θ
d
=

log Bmiss
CP,i

∣∣∣Di = 1, log bi, Xi, δCP ∼ TN
(
X′iδCP, 1,−∞, log bi

)
. (24)

Hence, instead of creating the variable log B̃CP,i according to equation (21), we equal it to
log Bmiss

CP,i for all i. Other than these two modifications, the rest of the procedure remains
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unchanged.

5.6 Estimating optimality probability of each arm and implied CATECATECATEs

Once the draws from the posterior θ(q) are obtained as above in round t, for each draw
θ(q), context x and arm brx , we can compute π̄(brx |x, θ(q)) via equation (12) for SPAs or
equation (13) for FPAs. The probability that an arm brx is best for context x as of round t
is estimated by averaging over the Q draws:

ψ̂t(brx |x) =
1
Q

Q

∑
q=1

1

{
π̄
(

brx

∣∣∣x, θ(q)
)
> π̄

(
br′x

∣∣∣x, θ(q)
)

for all r′x 6= rx

}
, (25)

which is used then for allocation of traffic as outlined in Algorithm 1.

Given ψ̂t(brx |x), and leveraging Proposition 1, the procedure implies that, for an
SPA, CATE(x) is

brx with probability ψ̂t(brx |x), (26)

that is, we read off CATE(x) as the label associated with what the procedure implies is
the best bid-arm for that x. This leads to the following estimator of CATE(x) in an SPA,

ĈATEt(x) =
Rx

∑
rx=1

ψ̂t(brx |x)× brx . (27)

For an FPA, we can estimate the bid-adjustment in equation (8) for each bid-arm brx by
averaging the inverse of the reversed hazard rate of BCP at that x over the q = 1, ..., Q
draws of θ(q). Leveraging Proposition 2, the procedure implies that in an FPA,

χ̂t(brx) ≡ brx +
1
Q

Q

∑
q=1

FCP

(
brx |x; θ(q)

)
fCP
(
brx |x; θ(q)

) with probability ψ̂t(brx |x), (28)

that is, we read off CATE(x) as the label associated with what the procedure implies is
the best bid-arm for that x plus the bid-adjustment term for that bid-arm. This leads to
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the following estimator of CATE(x) for FPAs

ĈATEt(x) =
Rx

∑
rx=1

ψ̂t(brx |x)× χ̂t(brx). (29)

In equations (28) and (29), FCP(·|·) and fCP(·|·) are, respectively, the conditional CDF
and PDF of BCP on x evaluated at the draws θ(q), so that the bid-adjustment is the inverse
of the reversed hazard rate of BCP averaged over the Q draws from the updated posterior
distribution. By assumption 2(iv), the inverse of the reversed hazard rate is monotonically
increasing in the bid for each draw. The average over draws is therefore a weighted sum
of monotonically increasing functions, which is also monotonically increasing. Therefore,
we are guaranteed that the estimates χ̂t(brx) in equation (28) are monotonically increas-
ing in brx , so a well-defined mapping between the bid-value and ĈATEt(x) exists. For
the specific parametrization chosen in equation (11), FCP(·|·) and fCP(·|·) correspond to a
lognormal distribution with parameters X′iδCP and σ2

CP, which makes it easy to compute
the right-hand side of equation (29) at the end of each round.

5.7 Stopping the experiment

The last piece required to complete the discussion of the experiment is a decision criterion
for when to stop the experiment. Before outlining our suggested criterion, we note at the
outset that an advantage of the adaptive cost control in the experiment is that the adverse
profit consequences of allowing it to run without stopping are low: as the experiment pro-
ceeds, more traffic is assigned to the bid-arm that provides highest expected payoff from
auction participation to the advertiser, so continuing to let the experiment run protects the
advertiser’s interests from continued auction participation. In this situation, the proposed
experimental design can be viewed simply as an explore-exploit scheme for optimal bid-
ding that also has an auxiliary benefit of delivering estimates of CATEs to the advertiser.
In other use-cases, the proposed experimental design forms the basis of an explicit test the
advertiser runs in order to measure CATEs, for which developing a principled approach
to stoppage is useful (see Scott, 2015 and Geng et al., 2020 for examples). With this latter
perspective in mind, this section discusses stopping rules that terminate the experiment
when the inference goal is achieved with reasonable precision.

The simplest stopping rule is to specify the total number of rounds the algorithm has
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to run through, in which case ct = t and T is some exogenous threshold, which could map
to a notion of time or budget available to run the experiment. A more nuanced stopping
rule uses the data collected through the algorithm to inform the decision of when to stop
the experiment. The stopping rule discussed below follows this approach. We motivate
it first in a non-contextual setting to provide intuition, and then generalize it to the more
complex contextual case.

5.7.1 Non-contextual case

Consider first a non-contextual MAB problem, that is, x can take only one value. Thus, we
omit x for the remaining of this section to ease notation. The algorithm aims to identify the
best bid-arm while minimizing the costs of experimentation. Therefore, we can leverage
a stopping rule based on the confidence with which the optimal arm was found. More
precisely, suppose we set T = 0.95 and:

ct = max
r

ψ̂t(br). (30)

We can interpret this as a decision to stop when the posterior distribution of θ given Wt

leads us to believe that the arm with current highest probability of being the optimal arm
is the true best arm with at least 95% probability. By virtue of equation (26) for SPAs, ψ̂t(br)

also represents the probability, based on the current posterior, with which we believe that
bid-arm value br is the true ATE. Analogously, by virtue of equation (28) for FPAs, ψ̂t(br)

represents the probability, based on the current posterior, with which we believe the ad-
justed bid-arm value χ̂t(br) is the true ATE. Thus, we can also interpret the stopping rule
in equation (30) as a decision to stop when the posterior distribution of θ given Wt leads
us to believe that the ATE value associated with the arm with current highest probability
of being the true best arm is the true ATE with at least 95% probability.

This stopping rule has an attractive feature in that it has a well-defined interpretation
in terms of Bayes factors, which are often used for Bayesian hypothesis testing. Let ζt(br)
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be the posterior odds ratio of arm r being the optimal arm by the end of round t. Then,

ζt(br) =
Prt(br is the optimal bid)

Prt(br is not the optimal bid)

=
Prt(br is the optimal bid)

1− Prt(br is the optimal bid)

=
ψt(br)

1− ψt(br)
. (31)

Thus, ct can alternatively be constructed as maxr ζ̂t(br), with corresponding threshold
T = 19, so that stopping is based off a threshold on the implied Bayes factor.15

5.7.2 Contextual case

The contextual case is more complex because now there is not a single best arm, but P
best arms. Thus, a natural but conservative approach would be to require 95% posterior
probability over a list of P arms as being the optimal ones. In this case, the threshold rule
can be expressed by:

ct = min
x∈X

max
rx

ψ̂t(brx |x), (32)

while maintaining the requirement that ct > T = 0.95. Consequently, upon stoppage
there would be at least 95% posterior probability on the CATE(x) value associated with
the bid-arms for each x.

In some scenarios, the advertiser’s inference objective may be to estimate and per-
form inference on the unconditional ATE. Under these circumstances, the stopping rule
above is likely to be too stringent. The ATE is the weighted average of CATE(x) over the
distribution of x. To achieve the goal of learning the weighted average of CATEs with a
given level of precision, it is not necessary to learn every CATE(x) with the same level of
precision. We now present a slightly less demanding stoppage criterion that reflects this.

Recall that the context x takes P values, indexed by p = 1, ..., P, and that for each
value xp we consider Rxp different bid-arms. Consequently, considering only the val-

15It is important to emphasize that following this stopping rule is not equivalent to conducting a se-
quential Bayesian hypothesis test. Such procedure would require us to establish a null hypothesis that one
specific arm was the best and base the decision to stop solely on this arm’s Bayes factor or posterior odds
ratio. Instead, here we remain agnostic as to which arm is the best, and base our decision to stop on which
arm has strongest evidence in its favor.
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ues from the grids the ATE can take at most R ≡ ∏P
p=1 Rxp values because ATE =

∑P
p=1 Fx(xp)× CATE(xp) and because each CATE(xp) can take Rxp values. Consider the

R values that ATE can take and select a grid composed of the Υ unique values among
these R, which we denote oυ for υ = 1, ..., Υ. An alternative criterion is to stop the exper-
iment when the posterior at the end of a round implies with at least 95% probability that
the ATE is equal to one of the oυ values in this grid.

To make this criterion precise, consider, for each oυ, a sequence s over the P contexts
such that the implied estimate of ATE from these values equals oυ. In other words, s is a
sequence of values

{
bs

rxp

}
p=1,...,P

, each taken from one of the Rxp values in the grid of each

context xp, such that oυ = ∑P
p=1 Fx(xp)× bs

rxp
for SPAs and oυ = ∑P

p=1 Fx(xp)× χ̂t

(
bs

rxp

)
for FPAs. Let Sυ be the total number of such sequences. Then the alternative stopping
criterion is given by:

ct = max
υ∈{1,...,Υ}

{
Sυ

∑
s=1

P

∑
p=1

Fx(xp)× ψ̂t

(
bs

rxp

∣∣∣xp

)}
(33)

and we stop when ct > T = 0.95. Notice that while this decision rule depends on the
confidence with which we believe to have found the true ATE as implied by the posterior
distribution of θ given Wt, traffic is still allocated to each arm according to (25). Hence,
the decision to stop the experiment is aligned with the advertiser’s inference goal, while
the way it performs randomization is aligned with her economic goal.

Notice that this stopping criterion presupposes that the distribution from which con-
texts are drawn, Fx(·), is known to the researcher. When this is the case, the grid of values
{oυ}υ=1,...,Υ is fixed for SPAs, but it changes for FPAs because the values χ̂t (brx) change
over the rounds. When this is not the case, one could replace it with empirical frequen-
cies estimated using data collected via the algorithm, in which case the grids will vary
across rounds for both auction formats. While we expect the stopping rule given in (33) to
shorten the duration of the experiment when compared to the one given in (32), we found
in simulations that the difference between these two rules is minimal.16

16It is important to mention that the statistical implications of data-driven stoppage in sequential experi-
ments is still being debated in the literature. Even though data-based stopping rules are known to interfere
with frequentist inference, which motivated the development of new methods to explicitly account for this
interference both for non-adaptive (Johari et al., 2019) and adaptive (Yang et al., 2017; Jamieson and Jain,
2018; Ju et al., 2019) data collection procedures, Bayesian inference has historically been viewed as immune
to optional stopping rules (Lindley, 1957; Edwards et al., 1963; Savage, 1972; Good, 1991). Nevertheless,
a recent debate has emerged concerning the effects of optional stopping on frequentist properties and in-
terpretation of Bayes estimators (Yu et al., 2014; Sanborn and Hills, 2014; Rouder, 2014; Dienes, 2016; Deng
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5.8 Practical considerations and extensions

We conclude the experimental design discussing some practical considerations that arise
in implementation and ways in which the design can be extended to accommodate varia-
tions in the experimentation environment and advertiser goals.

5.8.1 Regret minimization versus best-arm identification

We implement BITS under a regret minimization framework based on the viewpoint that
the advertiser seeks to maximize her payoffs from auction participation during the exper-
iment. We could alternatively cast the problem as one of pure best-arm identification as
studied by Bubeck et al. (2009), for example. In the best-arm identification formulation,
the problem is cast in terms of pure exploration, so the role of adaptive experimentation is
to obtain information efficiently before committing to a final decision involving the best-
arm identified with that information.17 To leverage Propositions 1 and 2, what we need
is a MAB framework to recover the arm with highest expected reward, so the core idea
behind our proposed approach ports in a straightforward way to this alternative formu-
lation of the experimental objective.

5.8.2 Parametric assumptions and alternative algorithms

More flexible parametric specifications can be used instead of (11) and (14).18 A more
flexible distribution may be especially desirable for FPAs due to the explicit dependence
of the CATEs on the distribution of BCP via equation (8). The cost of more flexibility is that
the researcher has to employ more complex MCMC methods, which may be slower than
the Gibbs sampling algorithm presented above. If the updating becomes slow, the induced
latency may form an impediment to implementation in practical ad-tech settings. This is
because conditional conjugacy is likely to fail under alternative parametric specifications.
Furthermore, any algorithm with convergence guarantees could in theory be used instead

et al., 2016; Schönbrodt et al., 2017; Wagenmakers et al., 2019; Tendeiro et al., 2019; de Heide and Grünwald,
2020; Rouder and Haaf, 2020; Hendriksen et al., 2021). We do not attempt to resolve this debate in this paper.
In several simulations we ran, we found that the practical impact of optional stopping was minimal in our
setting.

17Russo (2020) provides an adaptation of TS to best-arm identification. For an example of a study that
adopts this approach to identify an optimal treatment assignment policy, see Kasy and Sautmann (2021).

18For a discussion of how more flexible parameterizations can be used for Bayesian estimation of treat-
ment effects, see, for example, Heckman et al. (2014).
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of the proposed BITS algorithm if the practitioner is not comfortable with making specific
distributional assumptions, which may not be required for these other methods.

5.8.3 Obtaining draws from posterior distribution

The method we presented requires the researcher to employ Gibbs sampling in each
round, which becomes slower as the number of rounds increases. This is because the
it requires the posterior to be updated conditioning on the data collected from the begin-
ning of the experiment. The size of these data grows as we increase the rounds. If the
procedure becomes too slow, Sequential Monte Carlo (SMC) or particle filtering methods
could instead be used to speed up the sampling.19 In SMC, one updates conditioning on
the data collected in the most recent round, rather than from the beginning of the exper-
iment. SMC is also attractive if the practitioner chooses to use more flexible parametric
specifications.

5.8.4 Using additional data on competing bids

It is straightforward to adapt the BITS procedure if different types of auction data are
made available. For SPAs, we have assumed the advertiser only observes BCP when she
effectively has to pay this amount; otherwise, all she knows is that it is bounded below
by b. On the other hand, for FPAs the advertiser never observes BCP. These assumptions
characterize the most stringent data limitations in these auction environments.

In some scenarios, the data limitations may be less stringent. For instance, if the
transaction price from the auction is made public by the AdX to auction participants, the
advertiser can possibly obtain a more precise lower bound on BCP whenever the trans-
action price is larger than b in SPAs. This yields a new definition of B̄CP. Accommodat-
ing this does not require any modification to the BITS procedure, but does require us to
assume that the transaction price is also independent from the potential outcomes condi-
tional on x. For FPAs, disclosure of the transaction price would imply that the advertiser
would observe BCP whenever she lost the auction, which would give rise to an analogous
procedure as the one adopted above for SPAs.

Finally, in the event BCP itself is made public by the AdX, the algorithm simplifies

19For an application of SMC methods to MAB problems, see Cherkassky and Bornn (2013).
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further since the censoring problem vanishes. Hence, the practitioner can update the pos-
terior distribution over the parameters δCP and σ2

CP analytically, without the need to use
the Gibbs sampling procedures because of the exact conjugacy implied by (11) and (14).

5.8.5 Budget constraints

The current formulation does not explicitly incorporate budget constraints, which can
be present and relevant in practice for running experiments. Nevertheless, budget con-
straints are implicitly considered in the design by the use of a stopping rule for the exper-
iment as discussed in Section 5.7. While there are more general RL tools to perform bid
optimization in the presence of budget constraints, such as Cai et al. (2017), these methods
do not address causal inference tasks. Part of the complication is that the optimal bidding
policy becomes a function both of x and of the remaining budget, and linking it to CATEs
becomes non-trivial. Formal incorporation of budget constraints would therefore need
extending the algorithm beyond its current scope, and is left as a topic for future research.

5.8.6 Choosing priors to address the cold start problem

While priors always play an important role in Bayesian inference, they can become even
more important in the context of experimentation as a way to deal with a “cold start”
problem. Well-informed priors might situate the algorithm at a good starting point, short-
ening the duration of the experiment and, consequently, decreasing its costs. On the other
hand, poorly specified priors might have the opposite effect and become inferior even to
diffuse, non-informative priors. We discuss briefly how historical data that may be avail-
able to the advertiser can be used to inform the choice of the prior parameters. We assume
the experimenter has access to a historical data set Wn = {bi, Xi, Di, Yi, B̄CP,i}

n
i=1 for SPAs

and Wn = {bi, Xi, Di, Yi}n
i=1 for FPAs.

To leverage the historical data, we can equate the means and variances of the prior
distributions to the approximate means and variances of estimators of δ1, δ0, δCP, σ2

1 , σ2
0

and σ2
CP, where the last estimator is only required for SPAs. It is straightforward to de-

velop a maximum likelihood estimator (MLE) for the prior parameters, which, in this case,
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are
√

n−consistent and asymptotically normal. The MLE sets, for k ∈ {1, 0, CP},
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(34)

Notice that for the parameters of the Gamma distributions this is equivalent to:
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(35)

For the purposes of this estimation we assume that Di ⊥⊥ Yi(1), Yi(0)|Xi. Since we
maintain Assumption 1, the only potential source of dependence between Di and the po-
tential outcomes is bi. The validity of this assumption is not a concern when the algorithm
is implemented for actual experimentation since the bids bi are under the control of the
experimenter. If the historical data come from an experiment in which bids were random-
ized, this condition is also satisfied. If the assumption is violated in the historical data, the
resulting priors have some bias; however, the experimentation algorithm will still consis-
tently recover the true CATEs. Further details about the estimators leveraging historical
data and their computation are relegated to Appendix B.

6 Simulation evaluations of proposed approach

This section provides simulation results documenting the performance of the proposed
approach. We first discuss the results for SPAs, and then for FPAs. Within each, we first
show that the algorithm works as intended in a non-contextual setup, and then demon-
strate performance under the more involved contextual setup. Performance on the eco-
nomic goal is assessed using cumulative pseudo-regret as the performance metric. Per-
formance on the inference goal is assessed using the Mean Squared Error (MSE) as the
performance metric. The algorithm is compared to several alternative experimental de-
signs for each scenario. Overall, the results show that the proposed approach performs
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well and is superior to the other considered alternatives.

6.1 SPAs

6.1.1 Non-contextual case

We begin by considering the non-contextual case, in which P = 1 so we can ignore x.
Our goal is to show that the BITS algorithm works in practice in recovering the true ATE.
Additionally, we assess its performance in achieving both the inference and economic
goals relative to alternative methods.

DGP, simulation details and grids of bids

For these simulations, we assume that:log Yi(1)
log Yi(0)
log BCP,i

 iid∼ N


0.809

0.22
0.4

 ,

0.49 0 0
0 0.81 0
0 0 0.25


 , (36)

where the value of δ1 is chosen so that ATE = 1. These values are chosen for the sake of
illustration.

We simulate 1,000 different epochs. Each epoch has T = 100 rounds, each of which
with 50 new observations, so that nt = 50 for 1 ≤ t ≤ 100. We keep these values fixed and
change the grid of bids we use to assess how the performance of our algorithm changes.
In particular, we consider three different grids:

1. 3 arms: b ∈ {0.6, 1.0, 1.5}

2. 5 arms: b ∈ {0.6, 0.8, 1.0, 1.25, 1.5}

3. 10 arms: b ∈ {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5}

Since the width of bids and the number of observations are kept fixed while the number
of arms increases, we expect the performance of BITS to deteriorate with finer grids.
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Approaches under consideration

We consider the following experimental approaches to estimate the ATE:

1. A/B test (A/B): to randomize treatment, the A/B test simply randomizes with equal
probability the bid placed from the same grid of bids used by BITS. In other words,
the A/B test is a design that implements equal allocation of experimental traffic to
various arms non-adaptively. Once the data are collected, the ATE is estimated by
running a regression of Y on D using the experimental sample. Under pure bid
randomization, the estimated slope coefficient from this regression is consistent for
the ATE due to Assumption 1.

2. Explore-then-commit (ETC): this approach proceeds as an A/B test for the first half of
the experiment, that is, for the first 50 rounds; it then collects all data from these 50
rounds and runs a regression of Y on D as above to estimate the ATE. In the second
half of the experiment, this approach places this estimate as the bid for arriving
impressions, thus committing to what was learned in the first part of the experiment
to exploitation of that information in the latter part.

3. Off-the-shelf Thompson Sampling (TS): this is the basic implementation for the TS al-
gorithm to this setting. It assumes that the rewards obtained from each arm are in-
dependent draws from arm-specific normal distributions. It then updates the mean
and variance of each such distribution in the usual way employing only observa-
tions obtained from that arm. We use the conjugate normal-gamma priors with un-
informative parameters for all arms. To estimate the probabilities that each arm is
optimal, we take 1,000 draws from each normal distribution and use Monte Carlo
integration.

4. Bidding Thompson Sampling (BITS): to implement our algorithm, we make use of non-
informative priors for all parameters, that is, we set αk = βk = µδk = Ak = 0
for k ∈ {1, 0, CP}. Every time we run Gibbs sampling, we set the initial values to
δ
(0)
1 = δ

(0)
0 = δ

(0)
CP = 0 and σ

2,(0)
1 = σ

2,(0)
0 = σ

2,(0)
CP = 1. We take Q = 1,000 draws,

drop the first half and use only the multiples of 10 (510, 520, etc.) to estimate the
optimality probabilities to mitigate possible dependence between the draws.

Criteria of comparison
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To compare the performance of the aforementioned methods we consider two metrics.
The first, cumulative pseudo-regret, represents the economic goal. Following Bubeck and
Cesa-Bianchi (2012), the pseudo-regret from method ι on round t is given by:

Pseudo-regretι,t = π̄(b∗)−
R

∑
r=1

Prι,t (br is pulled)× π̄(br), (37)

and therefore cumulative pseudo-regret at round t is given by:

Cumulative pseudo-regretι,t =
t

∑
τ=1

Pseudo-regretι,τ

= t× π̄(b∗)−
t

∑
τ=1

R

∑
r=1

Prι,τ (br is pulled)× π̄(br). (38)

Notice that for the A/B test it follows that Prι,t (br is pulled) = 1/R for all t, and therefore
it exhibits constant pseudo-regret and linear cumulative pseudo-regret. Moreover, we
note that for ETC the bid placed when t > 50 does not belong to the original grid, but is
rather the OLS estimate from the regression of Y on D using the data gathered on the first
50 rounds. Finally, we note that for both TS and BITS the probability Prι,t(·) is not known
exactly; instead, it is estimated via Monte Carlo integration.

The second metric, MSE, represents the inference goal. We define the estimated MSE
of the ATE of method ι as:

M̂SEι,ATE =
1
E

E

∑
e=1

(
ÂTEι,e − ATE

)2
, (39)

where e indexes the epoch and E is the total number of epochs, which, in our simulations,
is 1,000. The term ÂTEι,e is the estimate of ATE obtained at the end of epoch e by method
ι. For the A/B test this estimate corresponds to the OLS estimate of the slope coefficient
of the regression of Y on D using data from all 100 rounds, while for ETC it corresponds
to the same object using data from the first 50 rounds. In turn, for TS and BITS we use
the final optimality probabilities to average over all bids in the grid, that is, we have that
ÂTEι,e = ∑R

r=1 ψ̂ι,T,e (br)× br.

Results

We now present the results from our simulation exercises. Before comparing BITS to the
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other methods, we first demonstrate it succeeds in recovering the optimal bid and, there-
fore, the ATE. To do so, for each round t we create a boxplot of ψ̂t(b∗) = P̂rt(b∗ is optimal)
across the 1,000 epochs, where the edges of the box correspond to the interquartile range
and the darker stripe corresponds to the median. For the algorithm to work we require
that limt→+∞ ψ̂t(b∗) = 1. Figure 1 displays results using each of the three grids of bids
described above.

Looking at the figure, we see that the BITS algorithm converges to the true optimal
bid as data accumulate, which is most easily seen in Figure 1a due to the simplicity of
its design since it considered only three arms. Unsurprisingly, as the number of arms
increases the speed of convergence of the algorithm diminishes, as seen in Figures 1b and
especially 1c. Notice that this is not only a function of the number of arms, but also because
we kept its width fixed. Making the grid finer implies that the arm-specific expected
rewards are closer to one another, so that the algorithm requires more data to precisely
estimate and distinguish them.

Having shown that the BITS algorithm consistently recovers the optimal bid, we
now proceed to compare it to the aforementioned alternative methods. We begin by dis-
playing the evolution of cumulative pseudo-regret averaged over the 1,000 epochs. Figure
2 displays the results for each method separately for each grid of bids.

Looking at the figure, we see that the BITS algorithm dominates the alternative meth-
ods in terms of average cumulative pseudo-regret. This is because BITS incorporates re-
gret minimization as an explicit goal and fully exploits the structure of the data. As ex-
plained above, cumulative pseudo-regret is linear for an A/B test. For ETC, it increases
much more slowly after the first 50 rounds. This is because 50 rounds worth of data, which
in this cases corresponds to 2,500 observations, is enough to obtain a precise estimate of
b∗ = ATE. It is interesting to note that the off-the-shelf TS algorithm converges much
more slowly than BITS, illustrating the consequence of ignoring the structure of the data.
Under our specification, the off-the-shelf TS algorithm does not even overcome the simple
ETC policy in terms of average cumulative pseudo-regret. Finally, notice that adding more
bids to the grid while keeping its width fixed has a beneficial effect for minimizing regret.
This is because while having more bids slows down the convergence of the algorithm, it
considers bids whose expected rewards are closer to the optimal one.

To conclude this analysis, we now present the results for M̂SEι,ATE as defined above.
Once again, we compute different results for each one of the three grids of bids we con-
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Figure 1: Convergence of BITS algorithm for SPAs
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Figure 2: Average cumulative pseudo-regret per method for SPAs
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sider. Results are displayed in Table 2.

Table 2: M̂SEι,ATE for each estimation method for SPAs

Estimation method (ι) 3 arms 5 arms 10 arms

A/B 0.007 0.007 0.007

ETC 0.012 0.013 0.016

TS 0.031 0.023 0.019

BITS 0.002 0.005 0.006

A few patterns become apparent. First, the ordering of performance does not change
across the grids: BITS is the best at minimizing M̂SEι,ATE, followed by A/B, ETC and
then TS. Second, the performance of A/B does not seem to be altered by the inclusion of
additional arms, while ETC is only slightly affected.

The effects of including additional arms is more interesting when we consider the
adaptive methods, TS and BITS. Since the width of the arms is fixed, these results reflect
the tradeoff between two elements: the addition of more arms with expected rewards that
are closer to the optimal and the speed of convergence. For a slow algorithm such as TS,
while the inclusion of additional arms further slows it down, it also forces the algorithm
to consider options that are closer to the optimal one. As a result, at the end of 100 rounds
the algorithm puts relatively more mass on closer-to-optimal arms, which diminishes its
M̂SEι,ATE. On the other hand, the end result is reversed for a fast algorithm such as BITS:
the decrease in the speed of convergence offsets the consideration of more near-to-optimal
alternatives, increasing the M̂SEι,ATE.

Summary

The results displayed above showcase the qualities of the BITS algorithm for SPAs. As ex-
pected, it provides a consistent approach to recovering the optimal bid as shown in Figure
1 and it dominates typical alternative approaches to estimate the ATE in terms of regret as
shown in Figure 2. In addition, we also document that the algorithm performs well on the
inference goal via the M̂SEι,ATE, which is illustrated in Table 2. While these results are a
function of the specification we chose for the simulation exercises, they indicate that BITS
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is an attractive option to achieve the advertiser’s dual objectives.

6.1.2 Contextual case

Having established the validity of BITS for the non-contextual case, we now proceed to
analyze its performance for the contextual case. For brevity, we do not compare BITS to
alternative methods here (the qualitative nature of the comparisons remain unaltered). In-
stead, we simply document its performance in recovering multiple bids, and thus CATEs,
at the same time.

DGP, simulation details and grids of bids

For these simulations, we assume that:log Yi(1)
log Yi(0)
log BCP,i

 ∣∣∣Xi
iid∼ N


0.81 1.04 1.25 1.43 1.57

0.20 0.31 0.45 0.59 0.70
0.25 0.33 0.40 0.47 0.55

Xi,

0.36 0 0
0 0.64 0
0 0 0.25


 . (40)

Hence, we have P = 5 contexts. The vector δ1 is chosen so that the ATEs equals 1.00, 1.50,
2.00, 2.50 and 3.00. We assume that the contexts are equiprobable, so that the uncondi-
tional ATE is 2.00.

We simulate 1,000 different epochs. Each epoch has T = 100 rounds, each of which
with 100 new observations, so that nt = 100 for 1 ≤ t ≤ 100, divided equally across the 5
contexts. Each context has its specific grid of bids under consideration. In particular, we
consider the following grids:

1. Context 1: b ∈ {0.25, 0.50, 1.00, 1.25, 1.50}

2. Context 2: b ∈ {0.50, 1.00, 1.50, 2.00, 2.50}

3. Context 3: b ∈ {1.00, 1.50, 2.00, 2.50, 3.00}

4. Context 4: b ∈ {1.00, 1.75, 2.50, 3.25, 4.00}

5. Context 5: b ∈ {1.00, 2.00, 3.00, 4.00, 5.00}
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Results

To demonstrate the validity of BITS to the contextual case we display the evolution of
two objects. First, to show that the BITS consistently recovers b∗(x) for all x, we plot
the interquartiles and median across the 1,000 epochs of the lowest estimated optimality
probability of the true optimal arm for each round across the different contexts, that is,
minx∈X ψ̂t (b∗(x)|x). The convergence of this object to 1 implies that all best arms are
concurrently recovered. Figure 3a shows that this is achieved.

Second, we show that the unconditional pseudo-regret per round, averaged over the
different contexts, converges to 0. This is a consequence of BITS identifying the best arm
for all contexts concurrently. Results are displayed in Figure 3b.

6.2 FPAs

6.2.1 Non-contextual case

We again begin with the non-contextual case. The structure of this exercise is very similar
to the one implemented for SPAs.

DGP, simulation details and grids of bids

For these simulations, we assume that:log Yi(1)
log Yi(0)
log BCP,i

 iid∼ N


0.736

0.22
0.481

 ,

0.49 0 0
0 0.81 0
0 0 1


 , (41)

where the value of δ1 is chosen so that ATE = 0.8 and the value of δCP is chosen so that
b∗ = 0.5. Again, these values are chosen for the sake of illustration.

We simulate 1,000 different epochs. Each epoch has T = 100 rounds, each of which
with 50 new observations, so that nt = 50 for 1 ≤ t ≤ 50. We keep these values fixed and
change the grid of bids we use to assess how the performance of our algorithm changes.
In particular, we consider three different grids:

1. 3 arms: b ∈ {0.1, 0.5, 1.0}
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Figure 3: Convergence of BITS algorithm for contextual case for SPAs
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2. 5 arms: b ∈ {0.1, 0.3, 0.5, 0.75, 1.0}

3. 10 arms: b ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

As before, since the width of bids and the number of observations are kept fixed while
the number of arms increases, we expect the performance of BITS to deteriorate as the
number of arms increases.

Results

To demonstrate that the BITS algorithm recovers the optimal bid for FPAs we replicate Fig-
ure 1 in Figure 4. Once again, for the algorithm to work we require that limt→+∞ ψ̂t(b∗) =
1, which is indeed obtained as seen from the figure.

We now compare the performance of the BITS algorithm to that of A/B, ETC and TS
using the same criteria as above. We start by replicating Figure 2. Results are displayed
below in Figure 5. They are qualitatively identical to the previous ones in that BITS per-
forms best compared to the other methods. One qualitative difference from the SPA case is
noticeable: now the off-the-shelf TS outperforms the ETC policy, which uses the collected
data to choose the best bid as the one whose observations yield highest sample profit, at
least for the duration of this experiment. We note that the gap between these two methods
diminishes as more arms are added to the grid.

As above, we also compare these methods in terms of ˆMSE. However, we cannot
perform this comparison with the off-the-shelf TS. Since this method does not exploit the
link to auction payoffs, Proposition 2 no longer holds, so estimating the ATE leverag-
ing this relationship is not viable. In turn, the estimator of ATE for BITS is ÂTEι,e =

∑R
r=1 ψ̂ι,T,e (br) × χ̂T(br). Results comparing against the other methods are displayed in

Table 3.

Unlike before, BITS is now dominated by A/B and ETC on the inference goal. This
is not surprising. Since Proposition 1 no longer holds, the pursuit of the inference and
the economic goals are not perfectly aligned for FPAs. Hence, pursuit of the economic
goal (in which BITS beat the other methods) may come at the cost of performance of the
economic goal. Another way to see the reduced performance on the inference goal in
FPAs compared to SPAs is that in FPAs we have two sources of uncertainty in estimating
the ATE, which lead to a higher M̂SE: the uncertainty over the optimal arm, as before
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Table 3: M̂SEι,ATE for each estimation method for FPAs

Estimation method (ι) 3 arms 5 arms 10 arms

A/B 0.004 0.003 0.003

ETC 0.007 0.007 0.007

BITS 0.010 0.023 0.011

in SPAs, plus the uncertainty arising from the MCMC draws used to construct the ATE.
Nevertheless, we note that the M̂SEs are still low, demonstrating that BITS can perform
well in estimating the ATE for FPAs.

Finally, unlike in SPAs, the recovery by BITS of the true best bid in an FPA does
not automatically imply it recovers the true ATE without bias. While solving the MAB
problem consistently recovers b∗, to estimate the ATE in FPAs we also need to consistently
estimate FCP(·)

fCP(·)
as seen in equation (8). One could wonder how the reversed hazard rate

of BCP is identified with FPAs, when one never actually observes BCP. The intuition for
the identification is that in each FPA auction we participate in, we observe a bound on
BCP corresponding to the bid we place. When we win an auction with a context x, the bid
placed b is an upper bound on BCP. When we lose an auction with a context x playing bid
b, the bid placed b is a lower bound on BCP. Thus, each auction yields an observation on
the upper and lower bounds on BCP. Under Assumption 1, these observations are from
the truncated above or below marginal distributions of BCP, and under Assumption 2,
there will be observations of upper and lower bounds of BCP for all b within the bid-grid
for all x. Hence, the distribution of BCP is identified for each x, as is its reversed hazard
rate and, consequently, the CATEs.

To demonstrate that the ATE is recovered without bias, Figure 6 shows the estimated
density across epochs of the ATE estimated by BITS. Specifically, we estimate the ATE via
equation (29) for each epoch, and use a Gaussian kernel and Silverman’s rule-of-thumb
bandwidth. Looking at the figure, we see that the distribution is centered at ATE = 0.8,
the true value, for all grid sizes, although, as expected, convergence is quicker when the
number of arms is smaller.
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Figure 4: Convergence of BITS algorithm for FPAs
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Figure 5: Average cumulative pseudo-regret per method for FPAs
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6.2.2 Contextual case

We now replicate the results for the contextual case for FPAs.

DGP, simulation details and grids of bids

For these simulations, we assume that:log Yi(1)
log Yi(0)
log BCP,i

 ∣∣∣Xi
iid∼ N


 0.65 0.75 0.85 0.95 1.05

0.20 0.30 0.40 0.50 0.60
−1.38 −0.50 0.20 0.80 1.31

Xi,

1.44 0 0
0 1.21 0
0 0 1.00


 . (42)

Hence, we have P = 5 contexts. The vector δCP is chosen so that b∗ equals 0.50, 0.75, 1.00,
1.25 and 1.50. We assume the contexts are equiprobable.

We simulate 1,000 different epochs. Each epoch has T = 100 rounds, each of which
with 100 new observations, so that nt = 100 for 1 ≤ t ≤ 100, divided equally across the 5
contexts. Each context has its specific grid of bids under consideration. In particular, we
consider the following grids:

1. Context 1: b ∈ {0.25, 0.375, 0.50, 0.625, 0.75}

2. Context 2: b ∈ {0.25, 0.50, 0.75, 1.00, 1.25}

3. Context 3: b ∈ {0.40, 0.70, 1.00, 1.30, 1.60}

4. Context 4: b ∈ {0.45, 0.85, 1.25, 1.65, 2.05}

5. Context 5: b ∈ {0.50, 1.00, 1.50, 2.00, 2.50}

Results

We replicate Figure 3 obtained for SPAs, with analogous results displayed in Figure 7.
Looking at the figure, we see we obtain the same qualitative patterns, demonstrating that
the BITS algorithm succeeds in concurrently recovering the optimal bid for different con-
texts when the auction mechanism is an FPA.
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7 Concluding remarks

An online experimental design for causal inference for RTB advertising is presented. The
experimental design leverages the theory of optimal bidding under sealed-bid SPAs and
FPAs to align the twin goals of obtaining economic payoff maximization and inference on
the expected effect of advertising for varying subpopulations. The algorithm is framed as
a contextual bandit implemented via a modified TS that is adaptively updated via MCMC.
The SPA environment is historically the most popular auction format for RTB ads and the
proposed experimental design perfectly aligns the economic and inference goals of the
advertiser in this environment. Extensions to the more complex FPA environment, which
has become more recently popular, are also presented.

Some broader implications of the experimental design beyond RTB advertising are
worth mentioning. First, the ideas presented here can be useful in other situations outside
of ad-auctions where there is a cost to obtaining experimental units and where managing
these costs is critical for the viability of the experiment. Another implication is that, in
business experiments, incorporating the firm’s payoff or profit maximization goal into the
allocation and acquisition of experimental units is helpful. Given the burgeoning utiliza-
tion of experimentation by firms, we believe that leveraging this perspective in business
experiments more broadly has value. Finally, another takeaway from the proposed ap-
proach is that it demonstrates the utility of embedding experimental design in the micro-
foundations of the problem, which enables leveraging economic theory to make progress
on running experiments more efficiently. This aspect could be utilized in other settings
where large-scale experimentation is feasible and where economic theory puts structure
on the behavior of agents and associated outcomes.
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Appendix

A Full conditional distributions for Gibbs sampling

This section outlines the specific full conditional distributions used to sample from the
posterior of the Markov chain induced by the BITS algorithm. In Section 5.4.3, because of
the parametric forms in (11) and (14), we have that,

σ
−2,(q)
CP
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log Ỹt(1)− Xtδ̂1,t

)
+
(
δ̂1,t − µδ1

)′
X′tXt

(
A1 + X′tXt

)−1 A1
(
δ̂1,t − µδ1

)])
σ
−2,(q)
0
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where

δ̂CP,t =
(
X′tXt

)−1 X′t log B̃CP,t

δ̂1,t =
(
X′tXt

)−1 X′t log Ỹt(1)

δ̂0,t =
(
X′tXt

)−1 X′t log Ỹt(0),

(A.3)

B Maximum likelihood estimators used on historical data

This section describes in more detail the maximum likelihood estimators (MLEs) that can
be used† to choose the parameters of the prior distributions. The assumptions we make
on the historical data are the same as the ones discussed in Section 5.8.6.

B.1 Potential outcomes

We begin by describing how we use historical data to pick the parameters for the prior
distributions associated with the potential outcomes. Because we are maintaining the
assumption that Di ⊥⊥ Yi(1), Yi(0)

∣∣Xi, we can simply use OLS on historical data to pick
the parameters since it is equivalent to the MLE. In particular, define Xi1 ≡ DiXi. It follows
that:

δ̂1 =

(
1
n

n

∑
i=1

Xi1X′i1

)−1(
1
n

n

∑
i=1

Xi1 log Yi

)
,

σ̂2
1 =

1
n

n

∑
i=1

(
log Yi − X′i1δ̂1

)2

and

√
n

[
δ̂1 − δ1

σ̂2
1 − σ2

1

]
d−→ N

([
0
0

]
,

[
σ2

1
(
E
[
Xi1X′i1

])−1 0
0′ 2σ2

1

])
.

Hence,

ˆAvar
[√

n
(
δ̂1 − δ1

)]
= σ̂2

1

(
1
n

n

∑
i=1

Xi1X′i1

)−1
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and

ˆAvar
[√

n
(

σ̂2
1 − σ2

1

)]
= 2σ̂4

1 .

The estimators δ̂0 and σ̂2
0 are analogous to the ones above, with Xi0 ≡ (1−Di)Xi replacing

Xi1, so we omit them for brevity.

B.2 Highest competing bid for SPAs

Even though we maintain the assumption of treatment exogeneity, we still have to ac-
count for censoring of the highest competing bid. Given the normality assumption, the
censoring characterizes a standard Tobit model. To make its MLE more computationally
manageable, we first reparametrize the model so that the log-likelihood function becomes
globally concave as first shown by Olsen (1978). Let ℵCP ≡ σ−1

CP δCP and iCP ≡ σ−1
CP . The

log-likelihood of the data is then given by:

log L (Wn|ℵCP,iCP) =
1
n

n

∑
i=1

{
Di log

[
iCPφ

(
iCP log bCP,i − X′iℵCP

)]
+ (1− Di) log

[
Φ
(
X′iℵCP −iCP log bi

)]}
.

We use the Newton-Raphson algorithm to compute the estimator. This requires us
to compute the first and second derivatives of the log-likelihood function. We have that:
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∂ log L
∂ℵCP

=
1
n

n

∑
i=1

{
Di
(
iCP log bCP,i − X′iℵCP

)
+ (1− Di)

φ
(
X′iℵCP −iCP log bi

)
Φ
(
X′iℵCP −iCP log bi

)}Xi

∂ log L
∂iCP

=
1
n

n

∑
i=1

{
Di

[
1

iCP
− log bCP,i

(
iCP log bCP,i − X′iℵCP

)]

− (1− Di)
φ
(
X′iℵCP −iCP log bi

)
Φ
(
X′iℵCP −iCP log bi

) log bi

}
∂2 log L

∂ℵCP∂ℵ′CP
= − 1

n

n

∑
i=1

{
Di − (1− Di)

φ
(
X′iℵCP −iCP log bi

)
Φ
(
X′iℵCP −iCP log bi

)
×
[(

X′iℵCP −iCP log bi
)
−

φ
(
X′iℵCP −iCP log bi

)
Φ
(
X′iℵCP −iCP log bi

)]}XiX′i

∂2 log L
∂ℵCP∂iCP

=
1
n

n

∑
i=1

{
Di log bCP,i + (1− Di)

φ
(
X′iℵCP −iCP log bi

)
Φ
(
X′iℵCP −iCP log bi

)
×
[(

X′iℵCP −iCP log bi
)
−

φ
(
X′iℵCP −iCP log bi

)
Φ
(
X′iℵCP −iCP log bi

)] log bi

}
Xi

∂2 log L
∂i2

CP
= − 1

n

n

∑
i=1

{
Di

(
1

i2
CP

+ (log bCP,i)
2

)
− (1− Di)

φ
(
X′iℵCP −iCP log bi

)
Φ
(
X′iℵCP −iCP log bi

)
×
[(

X′iℵCP −iCP log bi
)
−

φ
(
X′iℵCP −iCP log bi

)
Φ
(
X′iℵCP −iCP log bi

)] (log bi)
2

}
.

Letting

H (ℵCP,iCP) =

 ∂2 log L(ℵCP,iCP)
∂ℵCP∂ℵ′CP

∂2 log L(ℵCP,iCP)
∂ℵCP∂iCP

∂2 log L(ℵCP,iCP)
∂ℵ′CP∂iCP

∂2 log L(ℵCP,iCP)

∂i2
CP

 ,

it then follows that

√
n

[
ℵ̂CP − ℵCP

îCP −iCP

]
d−→ N

(
0,−plim

n→∞

[
H
(
ℵ̂CP, îCP

)−1
])

.

To convert the parameters back to the original ones, we use the delta method. We
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have that:

j (ℵCP,iCP) =

[
i−1

CPℵCP

i−2
CP

]
,

which implies that

∇j (ℵCP,iCP) =
[

∂j(ℵCP,iCP)
∂ℵ′CP

∂j(ℵCP,iCP)
∂iCP

]
=

[
i−1

CP Ip −i−2
CPℵCP

0 −2i−3
CP

]
,

where Ip is the identity matrix with dimension p. Thus, by the delta method:

√
n

[
δ̂CP − δCP

σ̂2
CP − σ2

CP

]
d−→ N

(
0,−plim

n→∞

[
∇j
(
ℵ̂CP, îCP

)
H
(
ℵ̂CP, îCP

)−1
∇j
(
ℵ̂CP, îCP

)′])
.

Finally, ˆAvar
[√

n
(
δ̂CP − δCP

)]
and ˆAvar

[√
n
(
σ̂2

CP − σ2
CP
)]

are obtained by picking the
block diagonal elements of the matrix

−∇j
(
ℵ̂CP, îCP

)
H
(
ℵ̂CP, îCP

)−1
∇j
(
ℵ̂CP, îCP

)′
.

B.3 Highest competing bid for FPAs

When the data come from FPAs, the highest competing bid, BCP, is never observed. Given
our assumptions and the necessity to normalize σ2

CP = 1, to recover δCP we need to esti-
mate a standard Probit model. The log-likelihood of the data is then given by:

log L (Wn|δCP) =
1
n

n

∑
i=1

{
Di log Φ

(
log bi − X′iδCP

)
+ (1− Di) log

[
1−Φ

(
log bi − X′iδCP

)]}
.

Once again, to use the Newton-Raphson algorithm we need to compute the first and
second derivatives of the log-likelihood function. We have that:

∂ log L
∂δCP

= − 1
n

n

∑
i=1

{
Di

φ
(
log bi − X′iδCP

)
Φ
(
log bi − X′iδCP

) − (1− Di)
φ
(
log bi − X′iδCP

)
1−Φ

(
log bi − X′iδCP

)}Xi
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and

∂2 log L
∂δCP∂δ′CP

= − 1
n

n

∑
i=1

φ
(
log bi − X′iδCP

) {
Φ
(
log bi − X′iδCP

) [
1−Φ

(
log bi − X′iδCP

)]}−2

×
{[

Di −Φ
(
log bi − X′iδCP

)]
Φ
(
log bi − X′iδCP

) [
1−Φ

(
log bi − X′iδCP

)]
×
(
log bi − X′iδCP

)
+ φ

(
log bi − X′iδCP

) [
Di − 2DiΦ

(
log bi − X′iδCP

)
+Φ2 (log bi − X′iδCP

)]}
XiX′i .

We therefore have that:

√
n
(
δ̂CP − δCP

) d−→ N

(
0,−plim

n→∞

(
∂2 log L

∂δCP∂δ′CP

)−1)
.

C Gibbs sampling when potential outcomes are correlated

We now present a more general Gibbs sampling procedure that accommodates the possi-
bility that ρ 6= 0. When ρ 6= 0, the missing values log Ymiss

i depend on the observed values
log Yi even conditional on Di, which requires us to change the priors and the procedure
accordingly. To do so, we combine the Bayesian estimator for the standard Tobit model
introduced by Chib (1992) for SPAs or the Bayesian estimator for the Probit model intro-
duced by Albert and Chib (1993) for FPAs with the approach to estimate the parameters
in a seemingly unrelated regressions (SUR) model where all equations have the same set
of regressors with data augmentation in a single Gibbs sampling algorithm.20 We now
present these adaptations in detail.

C.1 Prior distributions

For k ∈ {1, 0} we replace (14) with

Σ−1 ≡
[

σ2
1 ρσ1σ0

ρσ1σ0 σ2
0

]−1

∼ W
(

ν, Ξ−1
)

δ ≡ vec(∆) =

[
δ1

δ0

]
∼ N

(
µδ, Σ⊗ A−1

δ

) (C.1)

20See Section 2.8.5 of Rossi et al. (2005) and Section 14.11 of Chan et al. (2020) for more details.
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where W (·, ·) denotes the Wishart distribution, ν is a non-negative scalar, Ξ is a 2-by-2

matrix, µδ =
[
µ′δ1

, µ′δ0

]′
is a 2P-by-1 vector and Aδ is a P-by-P matrix.21 We will also use

the following P-by-2 matrix: Mδ ≡
[
µδ1 , µδ0

]
.

C.2 Distributions of missing values, data augmentation and completion

Instead of (16) and (17) it now follows that:

log Ymiss
i (1)

∣∣∣Di = 0, log Yi, log B̄CP,i, log bi, Xi, θ
d
=

log Ymiss
i (1)

∣∣∣Di = 0, log Yi, Xi, δ, Σ ∼ N
(

X′iδ1 +
ρσ1

σ0

(
log Yi − X′iδ0

)
,
(

1− ρ2
)

σ2
1

)
(C.2)

and

log Ymiss
i (0)

∣∣∣Di = 1, log Yi, log B̄CP,i, log bi, Xi, θ
d
=

log Ymiss
i (0)

∣∣∣Di = 1, log Yi, Xi, δ, Σ ∼ N
(

X′iδ0 +
ρσ0

σ1

(
log Yi − X′iδ1

)
,
(

1− ρ2
)

σ2
0

)
,

(C.3)

while (15) and (24) remain the same. We can redefine δmiss
i and σ2,miss

i as

δmiss
i = Di

(
X′iδ0 +

ρσ0

σ1

(
log Yi − X′iδ1

))
+ (1− Di)

(
X′iδ1 +

ρσ1

σ0

(
log Yi − X′iδ0

))
(C.4)

and

σ2,miss
i =

(
1− ρ2

) [
Diσ

2
0 + (1− Di)σ

2
1

]
, (C.5)

respectively, and combine them into

log Ymiss
i

∣∣∣ log Yi, Di, Xi, δ, Σ ∼ N
(

δmiss
i , σ2,miss

i

)
. (C.6)

The completion process in (21) remains unchanged.

21We maintain independent priors for the parameters associated with {Y(1), Y(0)} and BCP because of
Assumption 1. Should this assumption be relaxed, we could then express (14) including δCP into δ and ∆
and the same for σ2

CP and the correlations between log BCP and log Y(1) and log Y(0) into the matrix Σ.
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C.3 Drawing from posterior distribution

We once again condition on the “complete” data, W̃t, and on the parameters of the prior
distributions. In addition to the previously defined objects, we will also use the following
Nt-by-2 matrix, log ỸPO,t ≡

[
log Ỹt(1), log Ỹt(0)

]
, as well as

∆̃t =
(
X′tXt + Aδ

)−1 (X′t log ỸPO,t + AδMδ

)
(C.7)

and

SSRt =
(
log ỸPO,t − Xt∆̃t

)′ (log ỸPO,t − Xt∆̃t
)
+
(
∆̃t −Mδ

)′ Aδ

(
∆̃t −Mδ

)
. (C.8)

To draw new values for σ2
CP (for SPAs only) and δCP we still utilize expressions (A.1)

and (A.2), respectively. However, instead of using these expressions to draw new values
for Σ and δ, we now leverage the following results:

Σ−1,(q)
∣∣∣θ(q−1), θprior, W̃t

d
= Σ−1,(q)

∣∣∣ log ỸPO,t, Xt, ν, Ξ, µδ, Aδ (C.9)

and

δ(q)
∣∣∣Σ(q), σ

2,(q)
CP , δ(q−1), δ

(q−1)
CP , θprior, W̃t

d
= δ(q)

∣∣∣Σ(q), log ỸPO,t, Xt, µδ, Aδ. (C.10)

For completeness, given the parametric assumptions we made it follows that:

Σ−1,(q)
∣∣∣ log ỸPO,t, Xt, ν, Ξ, µδ, Aδ ∼ W

(
ν + Nt, (Ξ + SSRt)

−1
)

(C.11)

and

δ(q)
∣∣∣Σ(q), log ỸPO,t, Xt, µδ, Aδ ∼ N

(
vec

(
∆̃t
)

, Σ(q) ⊗
(
X′tXt + Aδ

)−1
)

. (C.12)
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C.4 Summary

We summarize this adapted Gibbs sampling procedure below.

Algorithm 3: Gibbs sampling when ρ 6= 0

1 Set θ(0) and θprior.
for (q = 1, ..., Q) do

2 Draw
{

log Ymiss,(q)
i (1), log Ymiss,(q)

i (0), log Bmiss,(q)
CP,i

}Nt

i=1
using (15), and (24) for

FPAs, and (C.2)−(C.6).

3 Construct
{

log Ỹ(q)
i (1), log Ỹ(q)

i (0), log B̃(q)
CP,i

}Nt

i=1
according to (21).

4 Draw
{

Σ−1,(q), δ(q), σ
−2,(q)
CP , δ

(q)
CP

}
according to (A.1)−(A.2) and (C.7)−(C.12).

end
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