
Estimating Parameters of Structural Models Using Neural Networks

Max Wei and Zhenling Jiang*

This draft: June 3, 2021

Abstract

Machine learning tools such as neural networks are increasingly applied in marketing
and economics to learn complex relations in data. The learned relations allow machines
to perform various tasks, such as recognizing objects from images or recognizing emotions
from speech. This paper explores using a neural net to learn the relation between data
(moments) and the parameter values of a structural economic model, so that it can
“recognize,” or estimate, these parameter values from the data (moments). We train the
neural net with the datasets generated by the structural model under different parameter
values. The neural net can be trained to give not only the point estimates of parameters
but also their statistical accuracy. We show this Neural Net Estimator (NNE) converges
to meaningful and well-known limits when the number of training datasets is sufficiently
large. NNE does not require computing integrals over the unobservables in the structural
model. Thus, it is suitable for models where such integrals are costly in MLE/GMM. We
benchmark NNE in two Monte Carlo studies. NNE is able to achieve high estimation
accuracies under very light estimation costs.

Keywords: structural estimation, neural networks, machine learning, computational
costs, market entry, choice models.

*Marshall School of Business, Unversity of Southern California and Wharton School, University of Pennsyl-
vania. Email: yanhaowe@usc.edu; zhenling@wharton.upenn.edu. We thank Eric Bradlow, Greg Lewis, Laura
Liu, Aviv Nevo, Holger Sieg, Shunyuan Zhang, and the seminar participants at the 42nd Marketing Science
Conference, QME 2020 Conference, UCLA Anderson, and Northwestern Kellogg for their very constructive
comments. Max thanks Sam Boysel for research assistance.

1

1 Introduction

Machine learning tools are increasingly applied in the empirical research of marketing and

economics. They have been used to classify traditionally intractable data, such as images and

audios, or build flexible models to explain and predict economic outcomes, such as consumer

choices.1 These applications rely on the strong capability of machine learning methods to

learn complex relationships in the data. Among them, neural networks (together with the

algorithms to train them) have been a powerful method to learn functions. For example,

neural networks are frequently used to recognize objects in images, effectively learning a

mapping from the high-dimensional pixel data of an image to the label for the object in the

image (e.g., a cat, elephant, or giraffe).

This paper explores an alternative application of neural networks. We use neural nets

to “recognize,” or estimate, the parameter values of a given structural econometric model,

by learning a mapping from data to parameter values. To train the neural net, we use the

structural model to simulate a number of datasets, each of which generated under a different

set of parameters. These datasets, together with the known parameter values underlying

each of them, constitute the training set from which the neural net learns the mapping from

data to parameters. The neural net, once trained, can be applied to the real data to give the

estimates for parameters. Alongside point estimates, the neural net can also be trained to

output the statistical accuracy of the point estimates for inferences.

We study both the theoretical and practical properties of this proposed estimation ap-

proach, which we refer to as the Neural Net Estimator (hereafter NNE). As theoretical prop-

erties, we establish that NNE tends to meaningful and well-known limits when the number

of training datasets is sufficiently large. NNE does not require computing integrals over the

unobservables in the structural model (it only requires using the model to generate training

datasets). Thus, as to applications, the approach should be suitable for models where these

integrals impose a major cost in the evaluations of likelihood (for MLE) or moment functions

(for GMM). We benchmark NNE in two Monte Carlo studies. It is able to achieve good

estimation accuracy with very light estimation costs. In addition, we demonstrate that NNE

can be used in a way to help pinpoint the source of identification for a parameter.

In the next section, we provide a general formulation of NNE. We start with a conceptual

framework of structural estimation. An economic model specifies some outcome g(xi, εi;θ)

1See, e.g., Kleinberg et al. (2017), Zhang et al. (2019), Chiong and Shum (2019), and Liu et al. (2019).
Athey (2018) offers a comprehensive review on the impact of machine learning on economics.

2

that depends on a set of observables xi, unobservables εi, and structural parameters θ.

Depending on the model, g(·) can represent a utility maximization problem, a game between

firms, etc. Let yi denote the observed outcome. An estimator provides a mapping from

datasets to parameter values:

{yi,xi}ni=1 7→ θ. (1)

Extremum estimators (e.g., MLE and GMM) start with this mapping’s right side, searching

through parameter guesses to maximize an objective function. For MLE, this objective

function is the likelihood. Let I(·) be the indicator function; the likelihood for observation

i equals P (yi|xi,θ) =
∫
I {yi = g(xi, εi;θ)} dP (εi). In many models, this integral over the

unobservables εi is evaluated via simulations, which entails solving g(·) at many draws of εi.

On top of this, an optimization routine needs to evaluate the likelihood at many different

parameter guesses. A similar computational burden applies to GMM.

We attempt to use neural networks to directly learn the mapping in (1). The goal is to

have a neural net that outputs the correct parameters when given a dataset generated by

the structural model under those parameters. We train this neural net using a “training set,”

which is constructed as follows. Let ` = 1, ..., L index the members of the training set. For

each `, we draw parameter values θ(`) from a parameter space Θ. Then, for each i ∈ {1, ..., n}
we draw ε

(`)
i and compute y

(`)
i = g(xi, ε

(`)
i ;θ(`)). The collection {θ(`), {y(`)

i ,xi}ni=1} consti-

tutes a member of the training set. We train a neural net to predict θ(`) from {y(`)
i ,xi}ni=1

across all `. After training, the neural net can be applied to the real dataset {yi,xi}ni=1 to

output the parameter estimates for the real data.

In some applications, using an entire dataset as the input for NNE requires a large neural

net, which can be costly to train. To this end, we replace each dataset with a set of summary

statistics, such as the first, second, and cross moments of xi and y
(`)
i . The neural net then

learns a mapping from data moments to parameter values. There are two consequences of

using data moments as the input of the neural net. First, the cost to train the neural net

(after generating the training datasets) need not increase with data size n. Second, the

parameters are identified from the data moments (which falls into the same line with the

method of moments). In this regard, neural nets offer some practical flexibility in that they

self-select relevant inputs via training. Specifically, we may include possibly redundant data

moments — if certain moments do not contribute to parameter identification, they will not

help explain the variation in parameters across ` in the training set, and thus the neural net

3

will learn not to use these moments for estimating parameters.2

In addition to point estimates, NNE can also provide the statistical accuracy for these

point estimates. We let the neural net output a set of standard deviations (SDs) alongside the

point estimates for parameters. Intuitively, these SDs are trained to measure the discrepancies

between NNE’s point estimates and true parameter values in the training set. The neural

net can also be configured to output an entire covariance matrix instead of individual SDs

for inferences.

We establish several theoretical results. We show as the training set’s size L → ∞,

the point estimates by an appropriately trained NNE converge to the mean of the limited-

information Bayesian parameter posterior (with a flat prior). Here, “limited-information”

indicates that the posterior is conditional on a set of data moments instead of the entire

data. The SDs given by NNE converge to the standard deviations of the posterior. The

covariance matrix given by NNE converges to the covariance matrix of the posterior. These

asymptotics are in L and hold for any dataset size n. We derive these results using the

econometric literature on the learning properties of neural networks (e.g., White, 1990; Chen,

2007). These results provide us with a theoretical justification for the parameter estimates

outputted by NNE in general.

Because NNE attempts a direct mapping from data to parameters, it does not require

computing integrals over unobserved variables in the model. This property offers a useful

practical benefit, because one major source of burden in structural estimation is the need

to integrate over unobservables (usually via simulations) to evaluate the likelihood for MLE

or moment conditions for GMM. As a result, NNE is suitable for models where the main

estimation burden lies in the heavy model simulations to evaluate these integrals. Notable

examples are models with rich unobserved firm or consumer heterogeneity. However, NNE

may not be suitable for problems where these integrals have closed forms, or the main burden

lies elsewhere. For example, the biggest cost in models of dynamic decisions or games is often

from solving the dynamic program rather than simulations (the same policy function can be

used across the simulations under a given set of parameter values).

Along the above line, we conduct two Monte Carlo studies: a market entry game with

unobserved profit shocks (Section 3) and a continuous choice model with random coefficients

(Section 4). NNE is able to achieve smaller estimation errors compared to MLE and GMM

2More precisely, NNE learns the expectation of parameters conditional on the included data moments
as L → ∞ for any fixed n (see Section 2). In this sense, introducing redundant moments does not add
finite-sample bias in NNE.

4

under similar and light estimation costs. The intuition behind this result lies in the different

trade-offs between accuracy and costs that simulations introduce in the different estimators.

For MLE or GMM, using simulations to evaluate the likelihood or moment functions intro-

duces a source of inaccuracy to the estimates. Increasing the number of simulations reduces

the inaccuracy but adds the cost of estimation. NNE is not affected by this inaccuracy. But

it receives the inaccuracy caused by training the neural net based on a finite number of sim-

ulated training datasets L. Increasing L (accompanied by a more flexible neural net) reduces

the inaccuracy but adds the cost. In our studies of the two standard structural models,

NNE can achieve good estimation accuracy while incurring a very light cost. This result is

consistent with the exceptional learning capability of neural nets in general.

A useful property of NNE is that once trained, it can be applied to a newly simulated

dataset with almost no extra cost. This property allows us to use NNE to conveniently ex-

plore parameter identification. Specifically, we may apply NNE to many simulated datasets,

then compare the datasets for which a parameter can be precisely recovered vs. the datasets

for which the recovery is difficult. This comparison often offers clues for the source of iden-

tification for that parameter. We illustrate this idea in an exercise that attempts to identify

the information structure of an entry game.

This paper adds to a fast-growing literature at the intersection of machine learning and

marketing/economics. Machine learning tools, such as random forests, neural networks, and

reinforcement learning, have been applied to various marketing questions (e.g., Timoshenko

and Hauser, 2019; Liu et al., 2019; Zhu et al., 2020; Yoganarasimhan, 2020). Our paper joins

a stream of works that leverage machine learning tools in estimation problems. For example,

Kaji et al. (2020) apply adversarial machine learning to estimation, where they train classifier

algorithms to measure the distance between real and simulated data. Lewis and Syrgkanis

(2018) use the adversarial approach to select moment conditions. Wager and Athey (2018)

apply random forests to estimate heterogeneous treatment effects. Chernozhukov et al. (2018)

study using machine learning to capture high-dimensional nuisance parameters. Our paper

is the first to use neural nets to learn a direct mapping from data to parameter estimates and

statistical accuracy of these estimates. Further, we establish theoretical properties for NNE

by drawing from the econometric literature on the general statistical properties of neural nets

(e.g., Chen, 2007; Farrell et al., 2019).

This paper is broadly related to the literature that develops computationally light estima-

tors (e.g., Bajari et al., 2007; Pakes et al., 2007; Su and Judd, 2012). Each of these estimators

5

mitigates the burden of solving a certain class of economic models. Our estimator, however,

focuses on mitigating the burden of evaluating integrals over unobservables. In this aspect,

our estimator shares the same focus with indirect inference (Gourieroux et al., 1993; Collard-

Wexler, 2013; Bao and Ni, 2017). Indirect inference uses an auxiliary reduced-form model

to summarize data, and chooses the parameters of the structural model to minimizes the

distance between the summary statistics of the real and simulated data. However, note that

indirect inference still falls under extremum estimators. NNE differs in that it attempts a

direct mapping from data to parameters and leverages machine learning methods.

2 Learning parameters from data

In this section, we start by describing a conceptual framework of structural estimation. Under

this framework, we describe how NNE computes the estimates for structural parameters and

the statistical accuracy of these estimates. We also establish asymptotic results for NNE.

2.1 Structural model estimation

A parametric model specifies an outcome g(xi, εi;θ) that depends on: (i) a vector of observed

characteristics xi, (ii) a vector of unobservables εi, and (iii) a vector of model parameters

θ. (Throughout this paper, the word “model” exclusively refers to the economic model to

be structurally estimated, in order to avoid confusion with machine learning “models.”) For

example, in a classic entry game (Berry, 1992), each i indexes a market, the output of g

collects the entry decision of each firm in market i, variable xi collects the characteristics of

the firms in market i, and εi collects the unobserved profit shocks of the firms in market i.

Let yi denote the outcome for observation i in the data. The method of maximum

likelihood estimation (MLE) estimates the parameters as follows

θ̂MLE = argmax
θ∈Θ

1

n

n∑
i=1

logP (yi|xi;θ),

where

P (yi|xi;θ) =

∫
I {yi = g(xi, εi;θ)} dP (εi). (2)

In the above, P (εi) is the distribution of εi specified by the structural model. Note that to

evaluate the likelihood, the unobserved shocks εi need to be integrated out as in equation

6

(2). In an entry game, these shocks are the unobserved parts of firms’ profits. In a choice

model with random coefficients, these shocks are the deviations of individuals’ coefficients

from their population means.

For many models, there is no explicit expression for the integral in equation (2), and one

must evaluate it via Monte Carlo simulations. To do so, one makes R random draws of εi from

P (εi) and then solves the structural model for each draw of εi to compute g(xi, εi;θ).3 On

top of this, an optimization routine needs to evaluate the likelihood at hundreds or thousands

of different θ’s. As researchers move to increasingly complex models to better capture data,

the large number of simulations required to carry out the estimation becomes increasingly an

obstacle in implementing these models.

An alternative to MLE is the generalized method of moments (GMM).4 To construct

the moment conditions for GMM, one often makes use of the model-predicted outcome,

g̃i =
∫
g(xi, εi;θ)dP (εi). Common moment conditions include the orthogonality between xi

and the prediction residuals yi − g̃i. For many models, the integral to calculate g̃i needs

to be evaluated through simulations, which can create a large estimation cost for the same

reason above.

More generally, we can think of any estimator as a mapping from the space of datasets

to the space of parameter sets:

{yi,xi}ni=1 7→ θ. (3)

Extremum estimators, including MLE and GMM, start with the right hand side of this

mapping. They make parameter guesses and check whether a particular guess produces good

fit with data as measured by the likelihood or moment functions.

In recent years, there has been an upward trend in harnessing machine learning tools for

empirical modeling in marketing and economics. The focus has primarily centered around two

aspects: (i) adding traditionally intractable features in xi, such as the sentiments expressed

in reviews or photos, or (ii) devising more flexible functional forms for g, such as via random

forests. This paper focuses on a different aspect: estimating θ using machine learning tools,

3In some dynamic decision models, given a set of parameter values, the dynamic problem only needs to
be solved once for different draws of εi. The main estimation cost is from solving for the policy function of
the dynamic problem. In this case, NNE is unlikely to offer large cost advantages.

4GMM is often applied when MLE is difficult to implement. One example is when yi is continuous, so
that the observed outcomes will always be evaluated as probability zero events with finite draws of εi. See
Section 4. However, this difficulty does not apply if the model permits a closed-form likelihood function (e.g.,
Borkovsky et al., 2017).

7

which we now describe.

2.2 Learning parameter values

Our goal is to recover θ from a dataset D ≡ {yi,xi}ni=1, by using neural nets to directly

learn the mapping in (3). To motivate, let us consider a simple model where a closed form

for mapping (3) is available. In linear regressions, we know that the OLS projection formula,

(
∑n

i=1 xix
′
i)
−1(
∑n

i=1 xiyi), provides a mapping from data to the regression coefficients. Pre-

tending for a moment that we do not know this formula, we may nevertheless ask machine

learning tools, which are designed to learn complex functions (Goodfellow et al. 2016), to

learn and approximate the formula. While this idea is redundant for linear regressions, it

becomes useful for more complex models, for which closed-form expressions of mapping (3)

are generally not available.

By learning the mapping (3), we essentially try to “predict” the structural parameter

values from a given dataset. The literature on machine learning tells us that the key to a

good predictor is a good training set. In most machine learning tasks (e.g., image classifi-

cation), good training sets require laborious human labeling. Fortunately, in the context of

NNE, a training set can be created using the structural model without much human effort.

Specifically, let ` = 1, 2, ..., L. For each `, draw θ(`) uniformly from a parameter space Θ.5

Let D(`) ≡ {y(`)
i ,xi}ni=1 denote a dataset that is generated using the model under θ(`) and

conditional on the observed {xi}ni=1.

Now, we can train a machine learning algorithm, such as neural networks, using the

training set:

{θ(`),D(`)}`=1,2...,L (4)

The training adjusts the machine learning algorithm so that it can predict θ(`) from D(`) as

accurately as possible. Once trained, the algorithm can be used to estimate the parameter

values for the real data.

One practical problem here is that the dimension of D can be large. For example, if

yi ∈ R2, xi ∈ R10, and n = 1000, then the representation of D requires a vector of size

5In practice, one can choose Θ to cover all parameter values that are considered economically reasonable
for the application at hand. More formally, one can verify whether a choice of Θ is reasonable by checking
whether the NNE estimates are sensitive to Θ. We provide more details in the appendix.

In addition, one can draw θ(`) from a non-uniform distribution, particularly if it is a meaningful prior over
Θ. Our results on the convergence to Bayesian posterior will still hold (with the understanding that the
posterior is computed under this non-uniform prior instead of the flat prior).

8

(2 + 10)n = 1.2×104. Neural nets accepting this size of inputs are not uncommon nowadays,

but take a fair amount of time to train. More importantly, it is not necessary to use the

entirety of D: the method of moments has taught us that a set of data moments is often

sufficient for recovering parameters.

We replace D with a vector of data moments, denoted as m. For example, assuming xi

includes a constant, we may specify m to collect the elements in∑n
i=1 yix

′
i

n
,

∑n
i=1 y

2
ix
′
i

n
, and

∑n
i=1 yi(x

2
i)
′

n
.

In the above, y2
i and x2

i both denote elementwise squares. For yi ∈ R2, xi ∈ R10, the

dimension of m in this example is 20 + 20 + 20 = 60, a much more manageable input size

for neural nets. Depending on the application, we may also include moments of demeaned yi

and xi (e.g., the cross-covariance) or moments of higher orders.

Replacing D with m leads to the same identification requirement as in the method of

moments.6 That is, the parameters are identified from the moments selected into m. We may

not obtain meaningful estimates if a relevant moment is missing from m. On the other hand,

NNE offers some flexibility in that we do not have to precisely select the relevant moments —

we can include potentially redundant moments. If a moment inm is redundant for identifying

parameters, it will not help explain the variation in parameters across the training datasets,

which means that the neural net will learn (via training) not to use this moment for estimating

parameters. Therefore, with a sufficiently large L, introducing redundant moments in NNE

should not add finite-sample bias in parameter estimates.7 This intuition is consistent with

our later Proposition 1-3 (which hold for any finite n).

Using the data moments m(`) to represent the data D(`), our training set becomes:

{θ(`),m(`)}`=1,2...,L. (5)

Use f : m 7→ θ to generically denote any member of the family of mappings from the space

of moments to the space of parameter values. We seek to find a specific mapping f̂ in this

family such that θ(`) ' f̂(m(`)),∀`. If we denote the moments from the real data as m(0),

6Lack of identification can arise in structural models for multiple reasons (notably with multiple equilibria;
see Tamer, 2010). This paper does not attempt to tackle this issue. In this paper, we focus on the problem of
estimation given identification.

7For finite-sample bias problem with redundant moments in GMM, see Chen and Liao (2015) and the
references therein.

9

then the parameter estimates for the real data are simply the plug-in estimates f̂(m(0)).

We construct f̂ using neural nets. Here, we do not delve into the details of neural nets.

For our exposition, it is sufficient to consider neural nets as a flexible functional form for

f parameterized by a set of “edge weights” (see Appendix A.1 for more details). As in

most machine learning algorithms, an appropriate neural net is trained by minimizing a loss

function. Let k index the dimensions of θ. We first consider the loss function that computes

the mean squared error (MSE) of a candidate f in the training set:

C1(f) = L−1
L∑
`=1

∑
k

[
fk(m

(`))− θ(`)
k

]2
. (6)

We choose f̂ as the neural net f that minimizes C1. There are alternative loss functions

that we will consider later. In terms of computation, the minimization of any loss function

can be quickly performed via a routine known as back-propagation, which is implemented

in popular computational softwares such as Matlab and R. Note that we do not have a

regularization term in the loss function. This choice puts us in the standard econometric

framework for neural networks where the neural net complexity is taken to be small relative

to the training set. Adding a regularization term would trade off bias for variance, and may

require debiasing.8

An important question is whether the trained neural net is able to give meaningful pa-

rameter estimates. In practice, we can assess this question by examining the test error of

f̂ . Specifically, we simulate additional datasets ` = L+ 1, ..., L∗ to form a test set, and then

calculate the test error as the mean squared error of f̂ in the test set. Importantly, note

that no parts of the test set have been used in the training of f̂ . In other words, the test

error reflects how well NNE recovers parameter values from the datasets that it has not seen

during training.

There is also theoretical basis for NNE to give meaningful parameter estimates. Particu-

larly, one can show that f̂ converges to something meaningful as L → ∞. We first describe

the intuition of this result. Note that conditional on {xi}ni=1, there is a joint distribution

P (θ,m) implied by the uniform distribution over Θ and the structural model (which gener-

ates m given θ). The pairs {θ(`),m(`)}L`=1 are i.i.d. samples from the distribution P (θ,m).

As a result, the loss function C1 in (6) is a sample version of the following expected loss,

8See Chernozhukov et al. (2018).

10

where the expectation is taken over P (θ,m).

C1(f) =
∑
k

E [fk(m)− θk]2 .

Intuitively, with L→∞, minimizing C1 approaches minimizing C1. From probability theory,

we know that an expected square error such as E [fk(m)− θk]2 is minimized by choosing

fk(m) = E(θk|m) for all m. Therefore, we would expect f̂ to approach E(θ|m) as a function

of m. This expectation E(θ|m) can be seen as a best estimate for parameters given the data

moments. If we use the language of Bayesian statistics, E(θ|m) is known as the mean of

the limited-information Bayesian posterior (under the flat prior over Θ). Here, “limited-

information” indicates that the posterior is conditional on a set of data moments rather than

the complete dataset (Kim, 2002). We should obtain the standard Bayesian posterior mean

if using the training set (4) instead.

We formalize the above intuition with the help of the nonparametric literature on the

general properties of neural nets. To derive asymptotic results, we introduce a sequence of

function spaces {FL}∞L=1. Here, FL generically denotes a set of functions representable by a

class of neural nets. Because the exact specification of FL concerns only technical aspects of

deriving asymptotic results (as White 1989 also points out), we describe it in the appendix.

For our exposition below, the key property is that the complexity of FL grows with L (in

the form of more hidden units and larger bounds for edge weights). The intuition follows the

general theory of nonparametric fitting — the fitting model needs to adapt to sample size.

The proposition below is shown using Chen (2007) and White (1990). As above, let

E(θ|m) be the function of m that gives the conditional mean of parameters. Let f̂L denote

the neural net in FL that minimizes the loss function C1. We use the 2-norm ‖·‖ to measure

functions: ‖f‖ ≡
[∫ ∑

k fk(m)2dP (m)
]1/2

. A norm of zero means f is zero a.s.

Proposition 1. Suppose: (i) Θ is compact; (ii) the moments m has a compact support; (iii)

E(θ|m) is continuous in m. Under the loss function (6), we have ‖f̂L − E(θ|m)‖ → 0 in

probability as L→∞. �

All proofs are given in Appendix A.4. In words, the proposition says, by increasing

the number of simulated datasets in the training set, we can obtain an approximation to

E(θ|m) to an arbitrary precision. Note that the result is in L → ∞ and thus holds for any

data size n. The conditions are relatively mild: the compactness of Θ is also assumed in

11

standard treatment of MLE and GMM. The support-compactness of m can be restrictive

technically but is satisfied in many applications (see Farrell et al. 2019 for some discussion).

The continuity condition for E(θ|m) is satisfied in most applications, and in particular does

not preclude θ from taking discrete values.

The main purpose of the theoretical result here is to provide a justification for the param-

eter estimates given by our proposed approach. Though the justification is provided through

a link to Bayesian posteriors, it is important to note that at least in this paper, we do not at-

tempt to establish NNE as a Bayesian method. In marketing, Bayesian methods are typically

used in hierarchical forms to capture and estimate the individual parameters of consumers.

In this paper, the focus for our applications of NNE is to reduce the costs of estimating the

main parameters in some structural models.

2.3 Learning accuracy

The development so far has focused on the point estimates of parameters. Next, we focus on

computing the statistical accuracy of these point estimates to allow inferences. Continuing

with the link to E(θ|m) established above, we seek to estimate Var(θ|m). In the terminology

of Bayesian statistics, we seek to estimate the variance of the limited-information posterior

distribution.9

First, we configure the neural net so that its output has two parts. Using f to denote

a neural net, we write f = (µ,V), where µ gives a mean vector and V gives a covariance

matrix. With this notation, it is understood that the outputs of f are re-arranged and

duplicated, if necessary, into a mean vector and a covariance matrix. For example, f needs

to give only the lower triangular entries of the covariance matrix, and if we restrict V to be

diagonal, f only needs to give the diagonal entries. In applications, one may also want to

re-parameterize the covariance matrix using the Cholesky decomposition.10

In the training set, let (µ(`),V (`)) ≡ f(m(`)) for each `. In other words, µ(`) and V (`)

are the two parts of the output given by the neural net for the training dataset `. We use

the following loss function to train the neural net. The loss function uses the log density

9An alternative approach to assess the accuracy of the estimates by NNE is bootstrapping. In principle,
one can apply bootstrapping to NNE in the same way that it applies to MLE or GMM. However, bootstrapping
is computationally heavy in general.

10An alternative way to compute Var(θ|m) is to rely on Proposition 1 to train separate neural nets for
the first and second moments of P (θ|m). Then, the variance can be computed as the difference between the
second moment and the first moment squared. We give more details, as well as the asymptotic result, of this
approach at the end of Appendix A.4.

12

function of a normal distribution (however, it does not require normality on the underlying

distribution of θ given m, as we will show).

C2(f) = L−1
L∑
`=1

log
(
|V (`)|

)
+
(
θ(`) − µ(`)

)′ (
V (`)

)−1 (
θ(`) − µ(`)

)
. (7)

We train a neural net f̂ that minimizes this loss function C2. Very importantly, C2 does not

require P (θ|m) to be normal. Specifically, for any general distribution for P (θ|m), if we

restrict V to be diagonal, then f̂ will consistently estimate the mean and variances of this

distribution. If we allow a full covariance matrix V , then f̂ will additionally consistently

estimate the covariance terms of this distribution. We formalize these results below. For this

proposition, we use f̂L to denote a minimizer of the loss function (7) in FL.

Proposition 2. Suppose condition (i) - (iii) in Proposition 1 hold, and in addition: (iv)

Var(θ|m) is continuous in m and Var(θ|m) ≥ δ for some δ > 0. Under loss (7) with diagonal

covariance matrix, we have ‖f̂L − f∗‖ → 0 in probability with f∗ = [E(θ|m),Var(θ|m)].

In addition to condition (i)-(iv) above, suppose: (v) Cov(θ|m) is continuous in m and

its smallest eigenvalue is bounded below by some positive number. Under loss (7) with full

covariance matrix, we have ‖f̂L − f∗‖ → 0 in probability with f∗ = [E(θ|m),Cov(θ|m)]. �

Note the proposition does not make any distributional assumption on P (θ|m). Neverthe-

less, it is useful to point out that P (θ|m) generally tends to a normal distribution as n→∞.

This result comes from Bayesian statistics, where it is known that under regularity condi-

tions, parameter posteriors tend to normality as the data size n becomes large (Gelman et al.,

2004). The same result also holds for limited-information Bayesian posterior (Kim, 2002). In

applications, if one is willing to assume an (approximately) normal P (θ|m), then the mean

and covariance matrix given by f̂(m(0)) are adequate to characterize the full distribution of

θ given the data moments m(0).

The intuition behind Proposition 2 can be obtained by, again, looking for the population

version of the loss function. In fact, we can gain more intuition from a more general version

of the loss function as follows. Let φ(·;γ) be a family of positive density functions for θ

parameterized by vector γ ∈ Γ for some space Γ. Let the neural net f output the components

of γ. Let

13

C3(f) = L−1
L∑
`=1

− log φ
[
θ(`); f(m(`))

]
. (8)

Note that C3 reduces to C2 if φ takes the probability density of normal distributions; it

further reduces to C1 if we assume an identity covariance matrix for the normal density. More

generally, loss functions based on a log probability density are known as the cross-entropy

loss functions in the machine learning literature.

Similar to how we have seen C1 as a sample version of C1, the loss function in (8) can be

seen as a sample version of

C3(f) = −E [log φ (θ; f(m))] .

As we know from statistical theory, minimizing the above expectation for any m amounts

to a minimization of the Kullback–Leibler divergence from the density φ to the distribution

P (θ|m). As a result, it is reasonable to expect the trained neural net to parameterize φ

such that the Kullback–Leibler divergence from φ to P (θ|m) is as small as possible, even

if φ is not correctly specified to include the latter’s true distribution. As it turns out, the

Kullback–Leibler divergence from a normal family φ to any general distribution is minimized

when φ takes the mean and covariance matrix of that distribution (White, 1982), thus we

have Proposition 2.

We formalize the above intuition regarding C3 in the following proposition. For this

proposition, let f̂L denote the neural net in FL that minimizes the loss function C3. We use

KL(·‖·) to denote the Kullback–Leibler divergence. Recall that Γ denotes the space for γ

that parameterizes the density family φ(·;γ).

Proposition 3. Let the loss function be (8). Suppose: (i) Γ is compact with a non-empty

interior, (ii) m has a compact support, (iii) φ is continuously differentiable on Θ × Γ, (iv)

E [log φ(θ;γ)|m] is continuous in m and γ, (v) for each m, argminγ∈ΓKL [P (θ|m) ‖ φ(θ;γ)]

is a single point in the interior of Γ. Let f∗(m) denote the minimizing point in (v). Then

‖f̂L − f∗‖ → 0 in probability. �

In words, NNE asymptotically minimizes the distance between φ and P (θ|m). The key

conditions are a sufficient level of continuity and the uniqueness of the distance-minimizing

density in the φ family. Compared to the two propositions above, these conditions in Propo-

14

sition 3 are more high-level. However, they allow us to show that the link between NNE and

Bayesian statistics holds under the much more general loss function.

In this section, we have provided a treatment of NNE as an alternative approach for

parameter estimation and inference. By construction, an important property of NNE is that

it does not require computing integrals over the unobserved variables in the structural model

(All that it requires is the ability to simulate the model to generate the training datasets).

These integrals are generally needed to evaluate likelihood or moment functions. Thus, NNE

likely holds an advantage in the problems where the computational burden to evaluate these

integrals is particularly high. We examine this intuition with Monte Carlo studies in the next

sections.

Finally, note that the application of NNE does not preclude one from using the inference

theory of extremum estimators (which is admittedly far more fully established in literature).

One can use NNE to produce a set of parameter estimates, and then feed them as start-

ing values for extremum estimators. Good starting values significantly reduce the cost of

implementing extremum estimators.

3 Monte Carlo: Market Entry Game

In the previous section, we establish asymptotic results for NNE when the number of training

datasets is sufficiently large. In this and next session, we use Monte Carlo studies to examine

NNE’s performance in applications. This section focuses on estimating entry games, where

multiple firms simultaneously decide whether to enter a market. The strategic interactions

between firms introduce a potentially complex mapping from the parameters to the observ-

able outcomes (i.e., the entry decisions), which makes the estimation a non-trivial task (see

Ellickson and Misra 2011 for a summary of the challenges in estimating entry games).

Entry games have the feature that makes NNE suitable: the probabilities for firms’ entry

decisions need to integrate over unobserved firm heterogeneity, and the simulations required

to evaluate these integrals constitute a major part of the estimation cost. The simulations

also introduce inaccuracy in the likelihood or moment functions, which leads to additional

estimation errors. NNE avoids integrating over the unobservables and thus may require a

lower cost (for the same estimation errors) or allow smaller estimation errors (at the same

cost).

Below, we first briefly describe the setup. Then, we implement NNE and compare it with

15

extremum estimators. Finally, we explore using NNE to find the source of identification for

the information structure of the game.

3.1 Model and data setup

We describe the model, the standard approaches to estimate the model, and how we simulate

datasets for the Monte Carlo study. We roughly follow Berry (1992). Index markets by

k ∈ {1, ...,K}. There are J potential firms in each market. Each firm decides whether to

enter the market. We use sj,k ∈ {0, 1} to indicate whether firm j ∈ {1, ..., J} in market k

enters the market. The profit for an entering firm is specified as

πj,k = x′j,kβ − δNk + εj,k,

where xj,k collects some observed characteristics for the firm, Nk ≡
∑J

j=1 sj,k is the number

of entrants in market k, and εj,k is a profit shock unobserved to econometrician but known

to all the firms. We assume εj,k follows i.i.d. N (0, 1).

A firm enters if and only if it makes positive profit:

sj,k =

1, if πj,k > 0;

0, otherwise.
(9)

There can be multiple Nash equilibria. For example, consider J = 2 and a market that

can support only one firm to be profitable; either firm entering is an equilibrium. Since our

focus here is not the multiplicity issue, we use a selection rule assumed by Berry (1992),

which asks firms to enter by the order of profitability. Specifically, rank firms by x′j,kβ+ εj,k.

We ask the highest ranked firm to enter first, then ask the second highest firm to enter, ...,

until we reach a firm that finds it not profitable to enter.11

Given a selection rule, we can write down the likelihood function in the MLE as follows.

K∑
k=1

log Pr (sk|xk;β, δ) ,

where sk is the vector collecting s1,k, ..., sJ,k, and xk is the matrix collecting x1,k, ...,xJ,k.

11Alternative selection rules (see Ellickson and Misra, 2011) can greatly increase the computational cost
to simulate a game. Generally, for models that are costly to simulate, an estimator that requires a smaller
number of simulations, such as NNE, provides an even larger saving of computational time.

16

The likelihood term for market k, Pr(sk|xk;β, δ), is the probability of observing the entry

outcome sk in the data given the values of xk and the parameters. Note that it is a joint

probability over all the firms in market k, which accounts for the interdependence among the

firms’ entry decisions.

The entry probability Pr(sk|xk;β, δ) is evaluated by simulations. Specifically, let r =

1, ..., R index the simulations. Each simulation r draws a vector ε
(r)
k and then computes the

associated Nash equilibrium s
(r)
k under xk, β, and δ. We approximate the entry probability

by R−1
∑R

r=1 I{s
(r)
k = sk}, that is, the portion of simulation draws that result in the same

entry outcome as observed in the data. However, there are two caveats. First, because entry

decisions are discrete, the simulated likelihood is a non-smooth function of parameters. This

non-smoothness causes difficulties for optimization routines. The second problem is related

but more fundamental. The number of possible entry outcomes for a market is 2J , which is

large even with a modest J such as J = 5 or 10. Thus, unless R is very large, we are likely

to run into the case where an observed outcome sk does not match any of the simulated

outcomes. In this case, sk is evaluated as a probability zero event and the likelihood function

is undefined. A common solution to these problems is to smooth the likelihood function. We

provide details in Appendix A.2.

Aside from MLE, a common estimation strategy for entry games is GMM. One defines a

firm-specific residual νj,k as the difference between the observed and predicted entry decisions:

νj,k = sj,k − E (sj,k|xk;β, δ) , j = 1, ..., J.

The expectation on the right hand side above is evaluated by simulations as R−1
∑R

r=1 s
(r)
j,k .

To construct moment conditions, we interact νj,k with xk separately for every j. GMM does

not have the problem of the objective function being undefined as described above for MLE.

But the objective function is still non-smooth with respect to the parameters. Thus, one may

use a non-gradient-based optimization routine. We use pattern search.

One may think of the Bayesian approach as an alternative estimation strategy (particu-

larly considering our theoretical results that link NNE to Bayesian posteriors). However, the

Bayesian approach typically has not been used to estimate entry games, probably because

it holds no clear advantages over MLE in this case. In marketing, the Bayesian approach is

more often used in hierarchical forms to facilitate the estimation of individual-level parame-

ters featured in some models.

Our Monte Carlo study first uses the entry model to generate datasets, then applies various

17

estimators (MLE, GMM, and NNE) on these generated datasets to recover parameters. For

exposition, we will refer to any such generated dataset as a “real” dataset, to distinguish it

from the also-model-generated datasets used to train NNE.

Specifically, we generate a “real” dataset as follows. We set the number of markets K =

1000 and the number of firms J = 5. For each market and firm, xj,k is drawn as a 11-

by-1 vector. The first element x1,j,k is a market-specific characteristic i.i.d. N (0, 1) across

markets. So x1,j,k = x1,1,k for j = 2, ..., J . (Examples of market-specific characteristics are

the consumer population or the median household income in a market.) Elements x2,j,k to

x6,j,k are the firm dummies interacted with a second market-specific characteristic that is

again i.i.d. N (0, 1) across markets. Elements x7,j,k to x11,j,k are simply the firm dummies.

Finally, we draw a vector of εk for each market k and solve for the associated Nash equilibrium

to produce sk.

3.2 Implementing NNE

Now we describe the application of NNE in the entry game. The implementation of NNE

has two steps: generating the training set and applying a neural net to the training set.

For the first step, we use the entry model to generate L∗ = 5000 datasets to construct 5000

parameter-moment pairs, {θ(`),m(`)}L∗`=1. Among these pairs, we use 90% for training and

the rest 10% for testing.

Specifically, we generate the parameter-moment pairs as follows. Let ` = 1, ..., L∗. For

each `, we first draw δ(`) uniformly from the unit interval [0, 1] and each element of β(`)

uniformly from [−1
2 ,

1
2]. This range for the parameter space Θ is chosen to allow a variety of

distributions for the number of entrants across markets. As discussed in Section 2.2, in a real

application, one can choose Θ based on what parameter values are considered economically

reasonable. In addition, one can conduct a sensitivity analysis of the NNE estimates to help

decide Θ. We describe this analysis in more detail in Appendix A.3.

Given θ(`) = (δ(`),β(`))′, we draw ε
(`)
k for each market k and solve the associated entry

equilibrium to realize the entry decision s
(`)
j,k ∈ {0, 1} for all j. The entry decisions imply

the number of entrants N
(`)
k =

∑J
j=1 s

(`)
j,k. Let y

(`)
j,k = (s

(`)
j,k, N

(`)
k)′. For the data-summarizing

momentsm(`), we include: (i) the mean and covariance matrix of y
(`)
j,k, (ii) the cross-covariance

matrix between y
(`)
j,k and xj,k, and (iii) the mean and variance of xj,k. This configuration

amounts to 5+22+22 = 49 moments to be fed to NNE. In principle, one need not include the

moments involving xj,k only, because such moments are constant across `. However, we find

18

Figure 1: Estimates by NNE in Test Set for Market Entry

Notes: The top row plots the NNE estimates against true parameter values in the test set (500 datasets). The
bottom row plots the distribution of NNE’s estimation errors in the test set. The NNE shown here is trained
using loss C1.

that depending on the application, including these moments may slightly reduce the burden

in training the neural net.

We apply a simple neural network using one hidden layer with the rectifier activation

function.12 For L∗ = 5000, we use 128 units in the hidden layer (It is a common practice to

use the powers of 2 as the number of hidden units). We find that the results in our Monte

Carlo studies are, to a large extent, not sensitive to the choice of neural net configuration.

The training of this neural net takes about 10 seconds with Matlab’s deep learning package

on a regular desktop. We give more details on how we configure and train neural nets in

Appendix A.1.

To evaluate estimation accuracy, we apply the trained neural net to each dataset in the

10% test set. The top row of Figure 1 plots the NNE estimates against the true parameter

values, for δ, β1, and β2. The clear concentration around the 45 degree lines shows that

12All of our results hold using sigmoid activation functions. The rectifier is a more popular choice for the
activation function in practice because it tends to reduce the burden of training.

19

Table 1: NNE’s Test-Set Performance for Market Entry

Squared-error loss C1:

δ β1 β2 β3 - β11

Mean Bias 0.004 (.002) -0.001 (.001) -0.002 (.002) ...
RMSE 0.045 (.001) 0.031 (.001) 0.056 (.002) ...
Mean SD - - - -

Entropy loss C2:

δ β1 β2 β3 - β11

Mean Bias -0.001 (.002) -0.002 (.001) 0.004 (.003) ...
RMSE 0.043 (.002) 0.027 (.001) 0.055 (.002) ...
Mean SD 0.039 (.001) 0.026 (.001) 0.051 (.001) ...

Notes: The statistics shown are based on NNE’s outputs in the test set (500 datasets). RMSE stands for root
mean squared error. SD refers to the standard deviation estimated by NNE. The numbers in parentheses are
standard errors for the reported statistics.

the NNE recovers parameter values with reasonable accuracy. The bottom row of Figure 1

plots the distributions of the estimation error, defined as the difference between the NNE

estimate for a parameter and true value for that parameter. We see that the distributions in

all plots are centered around zero. We omit plotting the estimates for β3 to β11, because these

parameters are either firm fixed effects or associated with firm 2-5 and all firms are symmetric.

Including these parameters in the figure will not change our conclusions qualitatively. The

NNE presented in Figure 1 is trained using the squared-error loss C1. The plots for the NNE

trained using the entropy loss C2 are very similar, thus we omit showing them here.

Table 1 provides summary statistics for the estimation errors in the test set. The upper

panel reports the NNE trained using C1, whereas the lower panel reports the NNE trained

using C2 with a diagonal V . We see the mean biases in both panels are all close to zero.

Note these biases are with respect to the true parameters drawn from the uniform prior on

Θ. The table also reports the root mean squared errors (RMSEs). To put the numbers in

perspective, consider an estimator that always outputs the center of each parameter’s range

in Θ. Given that we set each parameter’s range to be an interval of unit length, the RMSE

for such an estimator would be
∫ 1

0 (t − 1/2)2dt ' 0.289. The much smaller RMSEs shown

in Table 1 indicate that the NNE recovers parameter values with good accuracy, consistent

with what we have seen in Figure 1.

The lower panel of Table 1 also reports the mean standard deviations (SDs) as outputted

20

by the NNE (as
√

diag(V)). Note that the SD is larger for the parameter for which the RMSE

is larger, suggesting that the SDs correctly measure the accuracy of the point estimates by

NNE. The overall smaller magnitude of the mean SDs compared to the RMSEs can be

attributed to the heteroskedasticity in estimation errors — when a set of random errors have

different standard deviations, the RMSE tends to over-estimate the mean of these standard

deviations.

3.3 Comparison to other estimators

We compare NNE with extremum estimators. The comparison is made by drawing multiple

“real” datasets (in the way described at the end of Section 3.1). For each “real” dataset,

we obtain three sets of estimates for θ using NNE, MLE, and GMM, respectively. The

implementation of NNE follows our discussion in Section 3.2. The implementations of MLE

and GMM follow Section 3.1.

Table 2 reports the RMSEs (root mean squared errors) of the parameter estimates by the

three estimators, averaged across 250 “real” datasets. For NNE, L∗ denotes the combined

size of the training and test sets (L = 0.9L∗). For MLE and GMM, R denotes the number

of simulations used to evaluate the entry probabilities in each market. All estimators use the

same parameter bounds Θ. Again, we focus on parameter δ, β1, and β2. Including the other

parameters in the presentation does not change our conclusions qualitatively.

We discuss Table 2 from two aspects: computational burden and estimation errors. In

terms of computational burden, we focus on the simulation cost, that is, the total number of

game simulations required to carry out the estimation. For NNE, this cost equals L∗ ×K,

where K is the number of markets. For MLE and GMM, this cost equals R times K times

the number of objective function evaluations needed by the optimization routines. Note,

compared to MLE, the optimization routine in our implementation of GMM requires a larger

number of objective function evaluations because: (i) it is non-gradient-based, and (ii) the

optimization routine is run twice, with the results from the first time used to calculate the

optimal weighting matrix for the moment conditions.

To be complete, Table 2 also reports the compute time. Note the compute time can

vary depending on the code implementation (such as the degree of vectorization) as well as

hardware. For NNE, the compute time includes the training of the neural net, which, as we

discussed, is a fixed cost that is tied with neither the data size (i.e., K) nor the cost of model

simulation (e.g., an alternative equilibrium selection rule that makes it harder to compute the

21

Table 2: RMSEs of Different Estimators in Market Entry

δ β1 β2 β3 - β11 Compute
time*

Simulation
Costs

NNE:
L∗ = 1000 0.054 0.033 0.071 ... 11 1×106

(.003) (.002) (.003) ...

L∗ = 5000 0.040 0.026 0.056 ... 14 5×106

(.002) (.001) (.003) ...

MLE:
R = 10 0.072 0.032 0.064 ... 11 7.5×106

(.003) (.001) (.003) ...

R = 100 0.040 0.027 0.057 ... 33 73.9×106

(.002) (.001) (.003) ...

R = 1000 0.036 0.023 0.052 ... 179 704.2×106

(.002) (.001) (.002) ...

GMM:
R = 2 0.104 0.037 0.060 ... 16 6.1×106

(.005) (.002) (.003) ...

R = 20 0.096 0.032 0.051 ... 52 82.7×106

(.004) (.002) (.003) ...

R = 200 0.093 0.031 0.051 ... 261 998.4×106

(.004) (.002) (.003) ...

Notes: L∗ is the combined size of the training and test sets. R is the number of entry games simulated
to evaluate the entry probabilities in a market. Simulation cost displays the total number of entry games
simulated to carry out the estimation. For NNE, this cost simply equals L∗ times K. For MLE and GMM,
the cost equals R times K times the number of objective function evaluations by optimization routines. The
optimization routines bound parameters within Θ and use the center of Θ as the starting point. The numbers
shown in the table are averaged across 250 “real” datasets. For each “real” dataset, the true parameter values
are drawn uniformly from Θ.
*Compute time is in seconds and based on Matlab codes; it can vary depending on the code implementation
as well as hardware.

22

Nash equilibrium). In this sense, the simulation cost should be a more informative measure of

computational burden if one wants to extrapolate our results to heavier structural estimation

scenarios.

In the third row of Table 2, we configure R = 10 for MLE so its simulation cost is on par

with that of NNE at L∗ = 5000. We see the NNE has the smaller RMSEs. In fact, the NNE

has comparable or smaller RMSEs than MLE at R = 100, though the latter configuration

incurs a much higher simulation cost. It is only when R is increased to 1000 that the RMSEs

of MLE become smaller than those of NNE.

The intuition behind these results is consistent with our analysis in Section 2. In general,

we know MLE is asymptotically efficient. However, this efficiency assumes that the likelihood

function is accurately evaluated. But in this case, evaluating the entry probability in the

likelihood requires simulations (to integrate over the unobserved profit shocks). To get a

sense of the inaccuracy caused by simulations, note that with J = 5 firms, there are 2J = 32

possible entry outcomes in a market. With R = 10, each entry outcome is covered by less than

1/3 of a simulation, on average. The simulation errors, which require R → ∞ to diminish,

introduce inaccuracy in the evaluations of entry probability and thus the likelihood function.

Because NNE does not require the evaluation of entry probability, it is not affected by this

particular inaccuracy. In addition, the efficiency of MLE is an asymptotic result. With a

finite dataset, MLE can be less efficient than some estimators.13

The above intuition regarding the simulation errors carries to the comparison between

NNE and GMM. We see that NNE with L∗ = 5000 has smaller RMSEs than GMM at a

similar simulation cost (R = 2), and holds some advantages even as GMM incurs higher

simulation costs (R = 20 and R = 200). Compared to MLE, an additional issue with GMM

is that the estimation accuracy is bounded by the amount of information in the data captured

by the moment conditions. This issue remains even as R → ∞ (which is also suggested by

the numbers reported in the table). Here, we have used a set of moment conditions that are

standard for entry games (see Section 3.1). We explore this issue further in the next Monte

Carlo study (Section 4).

NNE has its own source of inaccuracy that stems from using a neural net to learn the

estimator mapping. This inaccuracy is not shared by extremum estimators and is a function

of the size of the training set (e.g., compare L∗ = 1000 with L∗ = 5000 in Table 2). However,

13Examples include shrinkage estimators and Bayesian estimator. From Section 2, we know there is a close
connection between NNE and Bayesian estimator.

23

we see that the powerful ability of neural nets to learn functions, commonly demonstrated

elsewhere (e.g., classifying images, forecasting data variables), carries over to the parameter

estimation problem: In this Monte Carlo study, a simple single-hidden-layer neural net is able

to learn an estimator with good performance from a modest-sized training set (L∗ = 5000).

Finally, we discuss a result on the issue of model mis-specification. Compared to other

estimators, NNE might seem more reliant on the structural model being correct because it

explicitly uses the model-generated datasets for training. Therefore, a question is how the

estimator would behave with a mis-specified model. Our development in Section 2, which

establishes an asymptotic equivalence between NNE and Bayesian statistics, suggests that

NNE should not be more vulnerable to model mis-specification than traditional methods in

general. We examine this theoretical implication with a Monte Carlo exercise under the mar-

ket entry model. We change the true effect of entries on profits to be in log scale (−δ logNk),

but still assume the linear model (−δNk) in estimation. The estimates for δ (unreported

here) show that the biases in NNE, MLE, and GMM tend to be in the same direction and

have very similar magnitudes. This result is consistent with what our theory suggests.

3.4 Exploring sources of identification

In this subsection, we apply NNE to model selection. Specifically, we ask NNE to separately

identify two different information structures for the entry game, complete information and

incomplete information. We also use NNE to explore which data feature enables this separate

identification. An important aspect of this exercise is that it shows how machine learning

tools, which are usually regarded as black-box predictors, can be used in a way to discover

the source of identification for structural models.

The entry model that we have described so far assumes complete information. Below, we

describe the model with incomplete information (Seim, 2006), where each firm j’s knowledge

of its own shock εj,k is private. A firm does not see the profit shocks of competing firms.

This game permits a Bayesian Nash equilibrium, where each firm makes the entry decision

based on the probabilities that other firms will enter. Let pj,k be the probability that firm j

will enter market k. We have in equilibrium, for any j,

sj,k = 1 iff x′j,kβ − δ

1 +
∑
i 6=j

pi,k

+ εj,k > 0.

24

Table 3: Summary of NNE in Market Entry with Model Selection

δ β1 β2 β3 - β11 η

Mean Bias 0.001 (.003) -0.001 (.001) -0.002 (.003) ... -0.015 (.009)

RMSE 0.062 (.002) 0.034 (.001) 0.057 (.002) ... 0.180 (.010)

Mean SD 0.057 (.001) 0.032 (.001) 0.056 (.002) ... 0.132 (.005)

Notes: Same as Table 1.

Notes: The figure plots SD(η̂) against the true parameter value of δ in the test set. SD(η̂) is the standard
deviation of P (η|m) as estimated by NNE.

Figure 2: When Can the Two Models of Entry be Separated?

Note that the plus 1 term in the parentheses accounts for firm j’s own entry. Thus,

pj,k = Φ

x′j,kβ − δ − δ∑
i 6=j

pi,k

 ,

where Φ is the c.d.f. of the standard normal distribution. The equilibrium entry probabilities

are given by the vector pk that solves the above equation for all j = 1, ..., J .

Suppose we want to know which model, the complete-information game or the incomplete-

information game, provides a better description of a dataset. Two subsequent questions arise.

First, whether any variation in the data allows us to separate the two models? Second, which

variation in the data allows us to separate the two models?

We first ask NNE to help answer the first question. To do so, we draw an additional

binary parameter η(`) uniformly from {0, 1} when generating the training and test sets. If

25

η(`) = 0, we simulate s
(`)
k with the complete-information game. If η(`) = 1, we simulate

s
(`)
k with the incomplete-information game. We construct m(`) in the same way as before.

We train the neural net to produce an estimate η̂ for this binary parameter that selects the

information structure in addition to the estimates for other parameters. By our results in

Section 2, η̂ should reflect Pr(η = 1|m), the Bayesian belief that the data moments come

from the incomplete-information game.

Table 3 summarizes NNE’s performance in the test set. From the last column, we see the

RMSE of η̂ is substantially smaller than an estimator that always predicts η = 0.5 (which

would have a RMSE of 0.5), implying that NNE is mostly able to tell which of the two models

underlies a dataset.

Now we turn to the second question, which data variation separates the two models? We

note that NNE has a unique advantage in answering this question: it readily provides the

levels of statistical accuracy of η̂ across many different datasets (in the test set). We may

compare the datasets for which SD(η̂) is small vs. the datasets for which SD(η̂) is large.

Because a large SD(η̂) indicates difficulties to identify η, the comparison may offer us clues

for the source of identification for η.

Figure 2 plots SD(η̂) against the true value of δ in the test set. Recall δ is the negative

effect of an entry on firm profits. We see it is easier to separate the two models when δ is large.

This pattern points to an important difference between the two models under larger δ. With

a relatively large δ, it is much more unlikely to observe many entrants (e.g., Nk = J) in the

complete-information game than in the incomplete-information game. The reason is that the

incomplete-information game permits outcomes with regrets (i.e., a firm finds itself ending

up with negative profits), but the complete information game does not. NNE capitalizes on

this difference to identify which game is at play.

Note that in order to perform a similar exercise as the one in Figure 2 with MLE or

GMM, one would have to run the complete estimation procedure separately for each simulated

dataset. The total cost will be very high if not prohibitive in heavy estimation problems. For

NNE, however, the neural net only needs to incur training once, after which it can be applied

to new simulated datasets with virtually zero additional costs.

26

4 Monte Carlo: Continuous Choice

Many applications in marketing and economics focus on consumer decisions. In this section,

we describe a Monte Carlo study of a continuous choice model with random coefficients. In a

way, it complements the Monte Carlo study in the previous section that focuses on discrete

choices under strategic interactions. This continuous choice model features highly nonlinear

parameters, including the variances of the random coefficients and the degrees of decreasing

marginal effects, which are known to be difficult to estimate accurately.

Random coefficients, or more generally any form of rich unobserved consumer heterogene-

ity, make NNE a potentially suitable estimator. This is because NNE avoids the integrals

over the unobserved heterogeneity that are required to evaluate the likelihood or moment

functions.

4.1 Model and data setup

Models allowing for continuous choices have been applied in marketing to study purchase

quantities (e.g., Chintagunta, 1993; Dubé, 2004; Chan, 2006). We describe a simple continuous-

choice model that can be seen as a component of the more complex models used in these

applications. Consumer i chooses the consumption quantity of a product, denoted as yi, and

the quantity of an outside option, denoted as yoi . (The model can be extended to allow more

than one product aside from the outside option.) Consumer i’s utility is specified as

Ui(yi, y
o
i) = ψi log(yi) + log(yoi),

where ψi > 0 denotes the preference for the product in question. Preference for the outside

good is normalized to 1. The log-linear form captures diminishing marginal utility. Let

xi collect the observed characteristics of the consumer. Let xk,i, k = 0, ...,K denote the

dimensions of xi, among which x0,i = 1. Preference for the product ψi is parameterized as

ψi = exp

(
β̃0,i +

∑K

k=1
β̃k,i · xαk

k,i

)
.

In the above, β̃k,i ∼ N (βk, σk) for each k ∈ {0, ...,K}. These are random coefficients to cap-

ture unobserved heterogeneity across consumers. Parameter αk ∈ [0, 1] allows for decreasing

marginal effects of xk,i. The exponential form ensures that ψi is non-negative.

27

Consumer i maximizes utility Ui under the budget constraint:

yoi + piyi ≤ Bi.

For our purposes, it suffices to consider the simplified case where pi = 1 and Bi = 1. In

this case, a consumer’s choices always satisfy yoi = 1− yi, so we only need to track yi in the

estimation.

In the data, one observes the purchased quantity yi and consumer characteristics xi for

each consumer i. Use vector θ ≡ (β′,σ′,α′)′ to collect all the parameters to be estimated.

Continuous choice models are typically estimated using GMM, thanks to the difficulty in

evaluating the likelihood (in MLE or Bayesian estimation) — the probability for simulated

choices to match an observed continuous outcome yi is always zero. In general, simulating the

likelihood is difficult when outcome variables are continuous. There is an additional reason

for us to focus on GMM: it facilitates a more direct comparison with NNE which is also based

on moments. To construct the moment conditions for GMM, define residuals ε1,i and ε2,i as

the differences between the observed and model-predicted choice quantities:

ε1,i = yi − E (yi|xi;θ) ;

ε2,i = y2
i − E

(
y2
i |xi;θ

)
.

We include the second-order residual ε2,i to help estimate the variance parameters, σ. The

moment conditions are constructed by interacting εi ≡ (ε1,i, ε2,i)
′ with (x′i,

√
x′i, logx′i)

′.

Here, the nonlinear transformations of xi are added to help estimate the parameters for the

decreasing marginal effects, α.14

The two conditional expectations in the definitions of ε1,i and ε2,i are evaluated with

simulations, as 1
R

∑R
r=1 y

(r)
i and 1

R

∑R
r=1(y

(r)
i)2, where y

(r)
i , r = 1, ..., R denote the simu-

lated choices of consumer i. To simulate a choice for consumer i, we draw a set of random

coefficients, β̃0,i, ..., β̃K,i, and solve the associated utility maximization problem.

Similar to our Monte Carlo exercises in Section 3, we use the model to generate a “real”

dataset, upon which we apply different estimators to recover the parameter values. To gen-

erate a “real” dataset, we draw xi as a 4 by 1 vector, where x0,i = 1 and x1,i, x2,i, and x3,i

are each drawn i.i.d. from the exponential distribution with a mean of 1. The exponential

14Alternatively, we have also used x2
i and x3

i as the nonlinear transformations to construct moments. They
result in larger RMSEs for both NNE and GMM. All of our results hold qualitatively.

28

Table 4: RMSEs of Different Estimators in Continuous Choice

β1 σ1 α1 Other
parameters

Compute
time*

Simulation
costs

NNE:
L∗ = 1000 0.102 0.147 0.184 ... 9.2 5×106

(.006) (.007) (.009) ...

L∗ = 5000 0.092 0.120 0.155 ... 22 25×106

(.006) (.007) (.009) ...

GMM:
R = 1 0.135 0.163 0.220 ... 14 6.8×106

(.009) (.012) (.018) ...

R = 5 0.125 0.151 0.183 ... 26 35.8×106

(.008) (.014) (.018) ...

R = 50 0.112 0.142 0.175 ... 140 377.5×106

(.008) (.013) (.017) ...

Notes: For GMM, R is the number of choices simulated per consumer to evaluate her expected choice.
Simulation cost displays the total number of choices simulated in order to carry out the estimation. For
NNE, this cost equals L∗ times n. For GMM, this cost equals R times n times the number of objective
function evaluations by the optimization routine. The GMM optimization routine bounds parameters within
Θ and uses the center of Θ as the starting point. The numbers shown are averaged across 250 “real” datasets.
For each “real” dataset, the true parameter values are drawn uniformly from Θ.
*Compute time is in seconds and based on Matlab codes; it can vary depending on the code implementation
as well as hardware.

distribution ensures that xk,i is positive so that xαk
k,i is well defined. We set the number of

consumers n = 5000. For the parameter space Θ, we specify βk ∈ [−1
2 ,

1
2], σk ∈ [0, 1], and

αk ∈ [0, 1] for all k. This Θ allows a wide variety of distributions for yi over the [0, 1] support

(e.g., bell-shaped, heavily skewed towards 0, heavily skewed towards 1).

4.2 Implementing NNE and comparing to GMM

For NNE, we construct the training and test sets {θ(`),m(`)}L∗`=1 as follows. First, we draw

θ(`) uniformly from the parameter space Θ. Given θ(`), we simulate a purchase quantity y
(`)
i

for each consumer i (by drawing a set of random coefficients and solving the associated utility

maximization problem).

We constructm(`) in parallel to the moment conditions used in GMM. Specifically, let ȳ
(`)
i

denote y
(`)
i demeaned across i. We include in m(`) the cross moments between (ȳ

(`)
i , (ȳ

(`)
i)2)′

and (x′i,
√
x′i, logx′i)

′. Like in GMM, the purpose of the square term of ȳ
(`)
i is to help estimate

29

σ and the purpose of the nonlinear transformations of xi is to help estimate α. We also add

the mean of y
(`)
i and xi to m(`). Note there are duplicate elements in m(`), but we do not

need to remove them because generally neural nets can self-select the useful inputs. We use

the same configuration of neural networks as in the market entry game.

We benchmark the performance of NNE against that of GMM. As with the Monte Carlo

study for the market entry game, we generate 250 “real” datasets. For each “real” dataset, we

obtain two sets of estimates for θ using NNE and GMM, respectively. Both NNE and GMM

use the same parameter space Θ.

Table 4 reports the results. As in Section 3, we shall focus on the simulation cost as a

measure for computational burden. This measure counts the total number of model simu-

lations required to carry out an estimation procedure. The minimization routine for GMM

requires about a thousand objective function evaluations. As a result, we see that GMM

at R = 1 incurs a similar simulation cost as NNE at L∗ = 1000. However, the NNE has

smaller RMSEs. As R increases, the RMSEs of GMM become smaller, but the simulation

cost increases. Compared to NNE at L∗ = 5000, GMM at R = 50 incurs about ten times

the simulation cost but still has larger RMSEs. Overall, the results are consistent with those

that we have seen in the market entry game (Table 2).

To be complete, Table 4 also reports the compute time. For NNE, the compute time

includes the training time of the neural net. We see NNE can achieve smaller estimation

errors with less compute time. However, do note the compute time can vary depending on

the code implementation (e.g., the degree of vectorization) as well as hardware.

5 Conclusion

In this paper, we propose a novel approach to estimate the parameters of structural econo-

metric models. It takes advantage of the fact that structural models can be used to generate

datasets. These generated datasets, together with the parameter values under which they are

generated, can be used to train a machine learning tool to “recognize” parameter values from

datasets. Different from extremum estimators, the Neural Net Estimator does not require

an optimization routine to search over parameter guesses. Instead, it tries to learn a direct

mapping from the space of data moments to the space of parameter values. For suitable

structural estimation problems, NNE is able to achieve comparable or smaller estimation

errors than simulated MLE and GMM, while incurring a significantly lower computational

30

cost.

The paper leaves several possibilities unexplored, which can open interesting avenues for

future research. The first possibility is the application on very large-scale problems with

hundreds or more parameters, some of which may be nuisance parameters. It is useful to

note that though we have always configured NNE to estimate all the parameters of a struc-

tural model, doing so is not always necessary. There is nothing preventing one to configure

the neural net to learn estimating only a subset of parameters. One can exclude nuisance

parameters from this subset. The second unexplored possibility is that it may be possible

to pre-train a generally applicable NNE for some widely used, standard structural models.

When applying one of these structural models to a new dataset, researchers can directly use

the pre-trained NNE for that model. This approach will significantly reduce the costs for

researchers applying structural estimation.

31

A Appendix

A.1 Neural net configuration and training

A neural network is a vector function f parameterized by a set of “edge weights.” To facilitate

our discussion, we describe a neural network with two hidden layers (adding more layers is

not difficult conceptually). Let z0 denote the input vector and let z̃0 ≡ (z′0, 1)′ denote z0

augmented with the constant 1. The input z0 is first linearly mapped into w1z̃0 for some

matrix w1. Then we apply a nonlinear function ψ : R → R elementwise on w1z̃0 to obtain

z1 = ψ(w1z̃0). This ψ is known as the activation function. Next, let z2 = ψ(w2z̃1) for some

matrix w2. Finally, we compute the output of the neural net as f(z0) = w3z̃2 for some

matrix w3.

Figure 3 represents this neural net visually as the input-output operations among a collec-

tion of nodes (or units). Each unit of the first layer represents a dimension of the vector z0.

The middle two layers represent z1 and z2 (i.e., the hidden layers). The last layer represents

f(z0). Each edge (or arrow) assigns a unit as the input of another unit. The entries in

matrices w1, w2, and w3 can be represented as weights on these edges (and thus are known

as the edge weights of the neural net).

Configuration The numbers of layers and units in each layer are the choices of researchers.

As we add more layers and units, the neural net becomes more flexible and capable of learning

more complex mappings. However, very large neural networks are difficult to train and may

“overfit” to the training set, particularly when the size of training set L is relatively small. For

one-hidden-layer neural nets, a general rule that we find useful in practice and also supported

by theory (see Appendix A.4) is to let the number of hidden units grow roughly proportionally

to
√
L. In applications, one chooses among alternative configurations of neural net by looking

for optimal performance in the test set (as measured by the value of the loss function in the

test set).

In our Monte Carlo studies, we find it sufficient to use a single hidden layer network –

using two layers results in about the same test performance but a slightly higher training

cost. As to the number of hidden units, it is common to use the powers of 2. For L∗ = 5000,

we use 128 units – using 64 units gives a slightly worse test performance whereas using 256

units gives almost the same test performance. For L∗ = 1000, we use 64 units as roughly

suggested by the
√
L rule (recall L = 0.9L∗). Overall, we find that the parameter estimates as

32

Figure 3: A Neural Network with Two Hidden Layers

well as test performance are largely not sensitive to the neural net configuration, so one does

not have to find the precise configuration that optimizes the test performance. In addition,

note that different neural net configurations can be trained on the same training set, without

the need to simulate additional datasets. This observation means that in heavy structural

estimation scenarios where the most significant source of costs is model simulations, choosing

the configuration of the neural net should impose a relatively small incremental cost.

Training The training of a neural net adjusts the edge weights to minimize a loss function. A

basic training algorithm for neural nets is stochastic steepest descent, which basically moves

each edge weight in the direction opposite of the derivative of the loss function w.r.t. that

weight. These derivatives can be quickly computed using a method called back-propagation.

A more recent training algorithm is known as “Adam,” which is an extension of the stochastic

steepest descent. We use the implementation of Adam in Matlab’s deep learning package (the

specific Matlab function is trainNetwork).

A.2 Likelihood smoothing

In an entry game where firms enter by the order of profitability, we can smooth the likeli-

hood by exploiting a set of inequalities that directly characterize the sufficient and necessary

condition for Nash equilibrium. Note this approach may not be feasible under alternative

equilibrium selection rules, which makes MLE more difficult to implement in these cases.

Let π̃j,k ≡ x′j,kβ+ εj,k. A given outcome sk is the Nash equilibrium given a draw of εk if

and only if the following inequalities hold. (We omit the cases where some inequalities hold

33

with equality, which happen with probability zero).

π̃j,k − δNk > 0, ∀j : sj,k = 1,

−π̃j,k + δ(1 +Nk) > 0, ∀j : sj,k = 0,

min
j:sj,k=1

π̃j,k − max
j:sj,k=0

π̃j,k > 0.

To smooth the likelihood function, we take the left hand sides of the above J + 1 inequal-

ities, denote them as ξ1,k, ..., ξJ,k, and ξ0,k, and compute the “extent” to which sk is the Nash

equilibrium as:
1

1 +
∑J

j=0 e
−λξj,k

.

In the above, λ calibrates the degree of smoothing. For λ → +∞, the above expression is 1

iff ξj,k > 0 for all j = 0, 1, ..., J , which means there is no smoothing. For λ = 0, the above

expression becomes a constant, which corresponds to maximal smoothing. The econometric

literature suggests choosing λ ∝ R1/5, but the exact choice of λ tends to be problematic in

practice (Horowitz, 1992; Geweke and Keane, 2001). We choose λ = 3R1/5 for our application.

We reach this choice by inspecting plots of the likelihood function under various values of λ,

and selecting the value under which the likelihood function appears sufficiently smooth yet

not overly flat.

A.3 Parameter range

Before constructing the training set, one needs to decide the parameter range Θ from which

θ(`) is drawn. Here, we present a way to check whether a Θ is sufficiently large to cover

the true parameter values. The basic idea is to examine whether the parameter estimates

by NNE are sensitive to expansions of Θ. If they are, then Θ is likely not covering the true

parameter values.

Table 5 displays a sensitivity analysis of δ̂ in estimating the entry game. We fix a set of

true parameter values. The first row displays the NNE estimates when Θ has a rather small

range for δ. This range is displayed in the first column, and it is gradually expanded as we

move down the table. We see that the parameter estimates, especially δ̂ , stabilize in the last

two rows. This pattern indicates that the parameter ranges in the last two rows cover the

true parameter values, whereas the parameter range in the first row is too small. In fact, the

true parameter value for δ is 0.5.

34

Table 5: Sensitivity Analysis of NNE to Θ in Market Entry

Parameter range δ̂ β̂1 β̂2 β̂3 - β̂11

δ ∈ [0, 0.25] 0.269 (.02) 0.189 (.02) 0.266 (.05) ...
δ ∈ [0, 0.5] 0.462 (.03) 0.193 (.03) 0.222 (.05) ...
δ ∈ [0, 0.75] 0.504 (.04) 0.192 (.03) 0.213 (.05) ...
δ ∈ [0, 1] 0.497 (.04) 0.198 (.03) 0.209 (.05) ...

Notes: The table displays the NNE estimates for a simulated dataset under different choices of the parameter
range Θ. Specifically, the range of each dimension of β is [−0.5, 0.5]; the range of δ is given in the first column.
The true value of each dimension of β is 0.2; the true value of δ is 0.5. Numbers in parentheses are SDs
estimated by NNE.

A.4 Proofs

We first set up the preliminaries for proving Proposition 1-3. Because our asymptotics (L→
∞) are stated for any fixed data size n, our argument can be made either conditional on

{xi}ni=1 or by treating this part of the data as non-random. We adopt the non-random

approach, which is conceptually simpler. However, all the ensuing argument would carry

through with P re-defined as the conditional probability given {xi}ni=1.

Let P denote the probability distribution for (θ,m), where θ ∼ U(Θ) and m|θ follows

the distribution implied by the specification of the structural model, yi = g(xi, εi;θ), as well

as the researcher-defined rule that constructs m from {yi,xi}ni=1. Then, the members of the

training set {θ(`),m(`)}L`=1 are i.i.d. samples from P .

We now work towards a lemma that states the general conditions for a sequence of trained

neural networks to converge to a general target function. This lemma forms the basis of all

our proofs. We first define the function space where the target function resides. Let M
denote the support for m under P . Let F denote the function space F ≡ {f : M →
∆,f is continuous}, where ∆ is some subset of a Euclidean space. Let ‖·‖ denote the 2-

norm, that is, ‖f‖2 =
∫
‖f(m)‖2dP (m). All our propositions share the common goal of

learning some target function f∗ ∈ F that maps M to the interior of ∆. For example, in

proposition 1, f∗ is E(θ|m).

Next, we need to define the sequence of trained neural networks that we want to converge

to the target function as L → ∞. A proper definition of a trained neural network requires

two elements, the loss function and the class of neural nets within which we minimize the

loss function. For our purposes, it is sufficiently general to consider loss function constructed

35

from an individual loss function h : Θ×∆→ R:

C(f) = L−1
L∑
`=1

h
[
θ(`),f(m(`))

]
.

We are interested in f̂L such that C(f̂L) − inff∈FL
C(f) is a term that converges to 0 in

probability as L → ∞. If the infimum can be attained, then we can simply write f̂L ∈
argminf∈FL

C(f). Here, FL is the class of neural nets in which we minimize the loss function.

We shall focus on the sequence FL that is constructed from single-hidden-layer neural nets,

which are sufficient for our purpose. Deeper neural nets with more hidden layers are known

to provide better approximation capacity in applications. But, studies on their statistical

properties in the nonparametric literature are only recent (e.g., Farrell et al., 2019). In

comparison, studies on single-hidden-layer neural nets have been more extensive. We adopt

the same neural nets used in White (1989; 1990). Let ψ : R → R be any sigmoid function

(e.g., logistic function), r denote the dimension of m, and

F(q, b) ≡

f ∈ F : ∀k, fk(m) = w1k0 +

q∑
j=1

w1kjψ
(
w0j0 +

r∑
i=1

w0jimi

)
,

q∑
j=0

|w1kj | ≤ b,
q∑
j=1

r∑
i=0

|w0ji| ≤ qb

 . (10)

In the above formulation, F(q, b) denotes the single-hidden-layer neural networks with q

hidden units and weights w bounded in a way by b. A finite b makes F(q, b) a compact

space, which allows the infimum of the loss function to be attainable. We relax this bound as

L increases. Specifically, our lemma holds for any sequence {FL}∞L=1 given by FL = F(qL, bL)

for any qL and bL that grow sufficiently slow. By White (1989), one possible choice is qL ∝
√
L

and bL ∝ log(L).

We are in a position to spell out the lemma that connects f̂L with f∗.

Lemma 1. Let M and Θ be compact and let ∆ be compact with a non-empty interior. In

addition, assume the following:

(i) For any ε > 0, E [h(θ,f∗(m))] < inff∈F :‖f−f∗‖≥ε E [h(θ,f(m))].

(ii) h is continuously differentiable over Θ×∆.

36

Then, we have ‖f̂L − f∗‖ → 0 in probability. �

Proof. of Lemma 1: We prove the lemma using Chen (2007). Specifically, we need to show

the following conditions are satisfied. Recall that ‖·‖, when applied to a function, denotes

the 2-norm on F .

1. E [h(θ,f∗(m))] < inff∈F :‖f−f∗‖≥ε E [h(θ,f(m))] for any ε > 0.

2. For any L < L′, we have FL ⊆ FL′ ⊆ F , and there exists a sequence of functions

fL ∈ FL such that ‖fL − f∗‖ → 0.

3. E [h(θ,f(m))] is continuous in f under the norm ‖·‖ on F .

4. Each FL is compact under ‖·‖.
5. supf∈FL

|C(f)− E [h(θ,f(m))] | → 0 in probability as L→∞.

To see these conditions indeed give ‖f̂L−f∗‖ → 0 in probability, we need to make a series

of arguments. To ease notations, let Q(f) denote the population loss function E [h(θ,f(m))].

Given any ε > 0, take δ ≡ inff∈F :‖f−f∗‖≥εQ(f) − Q(f∗). By condition 1, we have δ > 0.

By condition 2, we can find a sequence fL ∈ FL that converges to f∗ in ‖·‖. Given the

definition f̂L ∈ argminf∈FL
C(f), we must have C(f̂L) ≤ C(fL). By condition 5, we have

Pr[|C(f̂L)−Q(f̂L)| < δ/3]→ 1 and Pr [|C(fL)−Q(fL)| < δ/3]→ 1 as L→∞. Therefore,

Pr[Q(f̂L) < Q(fL) + 2δ/3] → 1. By condition 1, 3, and the construction of fL, for any

sufficiently large L we have Q(fL) ≤ Q(f∗) + δ/3. Thus, Pr[Q(f̂L) < Q(f∗) + δ] → 1 for

any δ > 0. Using the definition of δ, we get Pr[Q(f̂L) < inff∈F :‖f−f∗‖≥εQ(f)] → 1. With

f̂L ∈ FL ⊆ F , the event of Q(f̂L) < inff∈F :‖f−f∗‖≥εQ(f) implies ‖f̂L − f∗‖ < ε. Thus, we

have Pr[‖f̂L − f∗‖ < ε]→ 1.

We now check these five conditions are satisfied. The first part of condition 1 is directly

provided for with assumption (i). They basically require the population loss E [h(θ,f(m))]

to have a unique minimum at f∗, and it is not approachable elsewhere.

Condition 2 is shown by Hornik et al. (1989) and White (1990). In general, neural nets

are dense sieves for the space of continuous functions (and square integrable functions).

Condition 3 needs the population loss function to be continuous in f . Our assumption

(ii) says h is Lipschitz continuous (because it is continuously differentiable over a compact

set). Therefore, there exist some c > 0 such that
∣∣h(θ,f(m))− h(θ,f ′(m))

∣∣ ≤ c‖f(m) −
f ′(m)‖ for any (θ,m). Thus,

∣∣Eh(θ,f(m))− Eh(θ,f ′(m))
∣∣ ≤ cE‖f(m) − f ′(m)‖ ≤

c
√

E‖f(m)− f ′(m)‖2 = c‖f − f ′‖ (the second step uses Jensen’s inequality). Therefore,

the population loss is continuous in f .

37

For condition 4, we note that the derivatives of the functions in FL are bounded, and thus

are Lipschitz continuous with a common Lipschitz constant. By the Arzela-Ascoli theorem,

any function sequence in FL must have a convergent subsequence. Thus, FL is compact.

Condition 5 is a high-level condition. It can be implied by the lower-level condition

3.5M in Chen (2007). We note that condition 5 does not inherit the specific metric between

functions used in condition 3.5M. We will use the sup norm ‖·‖∞ as this metric when applying

condition 3.5M.

Condition 3.5M(i) requires i.i.d. samples for the computation of C. This requirement

is satisfied by the construction of our training datasets. In addition, the condition requires

E
[
supf∈FL

|h(θ,f(m))|
]
<∞ for all L. This requirement is provided for by our assumption

(ii), which says that h is continuous and thus bounded over the compact Θ×∆.

Condition 3.5M(ii) is satisfied if there is a constant c > 0 such that for any θ and m, we

have |h(θ,f(m))−h(θ,f ′(m))| ≤ c‖f−f ′‖∞. To get this result, note the Euclidean distance

between f(m) and f ′(m) is bounded by
√

dim(∆) × ‖f − f ′‖∞. In addition, assumption

(ii) says h is Lipschitz continuous. Thus, we only need to take c as the product of
√

dim(∆)

and the Lipschitz constant of h.

Condition 3.5M(iii) says the number of balls required to cover FL cannot grow too fast.

This is satisfied with any sufficiently slow rates of qL and bL.

We have checked all the conditions for ‖f̂L − f∗‖ to converge to zero in probability.

Proof. of Proposition 1: We apply Lemma 1, with the target function as f∗ = E(θ|m). As

to ∆, we can use any compact set that contains conv(Θ) in its interior. The reason for taking

the convex hull is to accommodate cases where E(θ|m) may take values outside Θ, which

happens if some dimensions of θ take discrete values. In particular, with a compact Θ, we

may let ∆ = [θ, θ]p, where p denotes the dimension of θ and θ < θk < θ for all θ ∈ Θ and all

k = 1, ..., p.

Assumption (ii) of Lemma 1 is immediately provided by the square-error form of h, that

is, h(θ,f) =
∑

k(θk − fk)2.

As to assumption (i), we need to show f∗ minimizes the population loss in F and further,

‖f −f∗‖ ≥ ε can bound the population loss’s value at f away from this minimum. It suffices

to consider the case where θ is single-dimensional, because the population loss simply sums

38

across each dimension. Note

E(θ − f(m))2 =

∫
E
[
(θ − f(m))2|m

]
dP (m).

Take any f 6= f∗ . We have

E
[
(θ − f(m))2|m

]
− E

[
(θ − f∗(m))2|m

]
=E

[
−2θf(m) + 2θf∗(m) + f(m)2 − f∗(m)2|m

]
=− 2f∗(m)f(m) + 2f∗(m)2 + f(m)2 − f∗(m)2

= [f(m)− f∗(m)]2 .

The second equality uses the fact f∗ = E(θ|m). As a result,

E(θ − f(m))2 − E(θ − f∗(m))2 = ‖f − f∗‖2.

Thus, the difference between the population loss at f and the the population loss at f∗ is

exactly ‖f − f∗‖2. In particular, inff∈F :‖f−f∗‖≥ε E [h(θ, f(m))] = E [h(θ, f∗(m))] + ε2. Thus,

assumption (i) is satisfied.

Proof. of Proposition 2 - part (i): We apply Lemma 1, with f∗ = [E(θ|m),Var(θ|m)]. Again

let p be the dimension of θ. Because Var(θ|m) is assumed to be bounded away from zero

and Θ is bounded, we may choose v, v > 0 such that v < Var(θk|m) < v for all k. Let θ and

θ be defined as in the proof of Proposition 1, we may choose ∆ to be [θ, θ]p × [v, v]p.

The individual loss function is h(θ,f) =
∑

k− log(Vk)−V −1
k (θk−µk)2, where {µk, Vk}pk=1

are collected in f . Assumption (ii) of Lemma 1 is satisfied with this choice of h.

As to assumption (i), we use a similar argument as in the proof of Proposition 1. As

before, we consider the case where p = 1, so that we may write f ≡ (µ, V). The cases with

p > 1 follow because the population loss function again simply sums across each dimension

k. Fix a small ε > 0. Our argument starts by noting

Eh(θ,f(m)) =

∫
E [h(θ,f(m))|m] dP (m).

39

We first examine the part inside the integral. We have

E [h(θ,f(m))|m]− E [h(θ,f∗(m))|m]

= E
[
− log(V (m))− (θ − µ(m))2

V (m)
+ log(V ∗(m)) +

(θ − µ∗(m))2

V ∗(m)

∣∣∣m]
=
V ∗(m)

V (m)
− log

[
V ∗(m)

V (m)

]
− 1 +

V ∗(m)

V (m)
· (µ∗(m)− µ(m))2. (11)

The last equality uses the definitions µ∗(m) = E(θ|m) and V ∗(m) = Var(θ|m). We want to

show that the integral of (11) is bounded away from zero if ‖f − f∗‖ ≥ ε. We do this in two

steps.

First, let Q : ∆2 → R be defined as Q(t, t′) = t′2/t2 − log(t′2/t2)− 1 + (t′2/t2) · (t′1 − t1)2.

Then (11) equals Q(f(m),f∗(m)). Define d(m) ≡ inft∈∆:‖t−f∗(m)‖≥ε/2Q(t,f∗(m)). Note

d is positive because Q reaches its minimum zero only when t = t′. In addition, by Berge’s

theorem, d is a continuous function. This, together with the compactness of M, gives δ ≡
infm∈M d(m) > 0. We have the result that for any f and m, ‖f(m)−f∗(m)‖ ≥ ε/2 implies

(11) is no less than δ.

Second, let A ≡ {m ∈ M : ‖f(m) − f∗(m)‖ ≥ ε/2}. We have ‖f − f∗‖2 =
∫
‖f(m) −

f∗(m)‖2dP (m) ≤ P (A)c2 + (1− P (A))ε2/4, where c denotes an upper bound for ‖f(m)−
f∗(m)‖ implied by the compactness of ∆. A result of this inequality is that P (A) cannot be

too small if ‖f − f∗‖ is not too small. More precisely, there exists some τ > 0 such that for

any f , ‖f − f∗‖ ≥ ε implies P (A) ≥ τ .

Now, pick any f with ‖f − f∗‖ ≥ ε, we have

E [h(θ,f(m))]− E [h(θ,f∗(m))]

=

∫
{E [h(θ,f(m))|m]− E [h(θ,f∗(m))|m]} dP (m)

≥
∫
A
δdP (m)

≥ τδ.

In words, the population loss function at f is at least τδ > 0 larger than the population loss

at f∗, where neither τ or δ depends on f . Therefore, assumption (i) is satisfied.

Part (ii): We again apply Lemma 1. By the condition of the proposition, we can find

40

some λ > 0 such that the smallest eigenvalue of Cov(θ|m) is larger than λ. Let ∇ denote

the subset of Euclidean space that contains all possible values of the lower triangular part a

covariance matrix V such that v ≤ diag(V) ≤ v and the smallest eigenvalue of V is no less

than λ. Note ∇ is a compact subset of the convex cone that contains all the positive definite

matrices. We can then take ∆ = [θ, θ]p ×∇.

The specification of h(θ,f) = − log(|V |) − (θ − µ)′V −1(θ − µ), where f = (µ,V),

satisfies assumption (ii) in Lemma 1. Note, in particular, that matrix inverse is a continuously

differentiable operation on positive definite matrices.

The proof to show assumption (i) is satisfied can use a similar argument as the proof for

part (i). The target function f∗ is µ∗ = E(θ|m) and V ∗ = Cov(θ|m). Again we note the

population loss can be written as

Eh(θ,f(m)) =

∫
E [h(θ,f(m))|m] dP (m),

where the integrand satisfies, with f = (µ,V),

E
[
h(θ;f(m))

∣∣m]− E
[
h(θ;f∗(m))

∣∣m]
= E

[
log(|V ∗(m)|) + (θ − µ∗(m))′V ∗(m)−1(θ − µ∗(m))

∣∣m]
− E

[
log(|V (m)|) + (θ − µ(m))′V (m)−1(θ − µ(m))

∣∣m] . (12)

Because θ enters the above expectations in a quadratic way, (12) depends on the first and

second moments, but not the higher moments or distributional form, of P (θ|m). These first

and second moments are given by f∗(m). Therefore, we can write a function Q : ∆2 → R
like in the proof of part (i) such that Q(f(m),f∗(m)) equals (12) for any f and m. This

Q does not depend on the distributional form of P (θ|m), and it is continuous over ∆2 (note

both the matrix determinant and matrix inverse are continuous operations).

In addition, mint∈∆Q(t,f∗(m)) = 0 and is achieved at t = f∗(m). To see this, suppose

P (θ|m) is normal for a moment. By (12), we see Q(t,f∗(m)) is the Kullback–Leibler diver-

gence from a normal density parameterized by t ∈ ∆ to the normal P (θ|m). As a result,

Q(t,f∗(m)) as a function of t is always positive except when t takes the mean and covariance

of P (θ|m), that is, t = f∗(m). However, because Q does not depend on the distributional

form of P (θ|m), this result holds for non-normal P (θ|m) as well.

With these properties of Q established, the rest of the argument follows that in the proof

41

for part (i). So we shall not repeat it here.

Proof. of Proposition 3: We apply Lemma 1, with ∆ = Γ. With this choice of ∆, the target

f∗ as defined in the proposition is a member of F iff it is continuous. We will show f∗ is

continuous below.

Assumption (ii) of Lemma 1 is satisfied with h(θ,f(m)) = − log φ(θ;f(m)) and condition

(iii) of the proposition.

We proceed to verify assumption (i). To ease notation, let Q(γ,m) ≡ E
[
− log φ(θ;γ)

∣∣m].
By the definition of Kullback–Leibler divergence, we have

KL [P (θ|m) ‖ φ(θ;γ)] = Q(γ,m)− E
[
− logP (θ|m)

∣∣m] .
Note the second term on the right side does not involve γ. Therefore, by condition (v), we

know f∗(m) is equal to argminγ∈ΓQ(γ,m) for every m. Now, with the continuity provided

by condition (iv), Berge’s theorem says that f∗ is a continuous function.

Next, fix any small ε > 0. Consider the following function d:

d(m) ≡ inf
γ∈Γ:‖γ−f∗(m)‖≥ε/2

Q(γ,m)−Q(f∗(m),m).

Again by Berge’s theorem, we know d is continuous. Because f∗(m) is the unique point in

Γ that minimizes Q(γ,m), we also have d > 0. As a result, infm∈M d(m) is attainable and

positive, which we denote as δ > 0.

Let A ≡ {m ∈ M : ‖f(m) − f∗(m)‖ ≥ ε/2}. Using the same argument in the proof of

Proposition 2 part (i), we can find some τ > 0 such that for any f , ‖f − f∗‖ ≥ ε implies

P (A) ≥ τ .

42

Now for any f such that ‖f − f∗‖ ≥ ε, we have

E [h(θ,f(m))]− E [h(θ,f∗(m))]

=

∫ {
Q [f(m),m]−Q [f∗(m),m]

}
dP (m)

≥
∫
A

{
Q [f(m),m]−Q [f∗(m),m]

}
dP (m)

≥
∫
A
d(m) · dP (m)

≥ τδ.

In words, with ‖f − f∗‖ ≥ ε, the population loss function at f is at least τδ > 0 larger than

the population loss at f∗. Thus, assumption (i) is satisfied.

Lastly, we provide details for the alternative two-step approach of approximating the

posterior variance. Recall we have f̂ trained using C1 that converges to E(θ|m). Next, if

we can train a second neural net f̃ that converges to E(θ2|m), then we can use f̃ − f̂
2

for

Var(θ|m). This idea is similar to Hardle and Tsybakov (1997) that use a two-step approach

to estimate conditional variance in the context of kernel regressions. In the proposition

below, f̃L denotes the minimizer of the loss function L−1
∑L

`=1

∑
k[(θ

(`)
k)2 − fk(m(`))]2 with

the appropriate FL.

Proposition 4. Suppose the conditions of Proposition 1 hold and Var(θ|m) is continuous in

m. Then ‖f̃L − f̂
2

L − Var(θ|m)‖ → 0 in probability as L→∞. �

Proof. of Proposition 4: First, because Θ is assumed to be compact, the set Θ2 ≡ {θ2 : θ ∈
Θ} is also compact. So we can repeat the same argument as in the proof for Proposition 1

to show that ‖f̃L − E(θ2|m)‖ → 0 in probability.

Let c be a positive number such that Θ ⊆ [−c, c]p, where p is the dimension of θ. For

p = 1, we have for any m, |f̂L(m)2 − E(θ|m)2| = |f̂L(m) + E(θ|m)| · |f̂L(m) − E(θ|m)| ≤
2c|f̂L(m)−E(θ|m)|. Extending this result to p ≥ 1 and taking the integral overM, we have

‖f̂
2

L−E(θ|m)2‖ ≤ 2c‖f̂L−E(θ|m)‖. Therefore, Proposition 1 implies ‖f̂
2

L−E(θ|m)2‖ → 0

in probability as well.

Next, we use the fact Var(θ|m) = E(θ2|m) − E(θ|m)2. By the triangle inequality, we

have ‖f̃L − f̂
2

L −Var(θ|m)‖ ≤ ‖f̃L − E(θ2|m)‖+ ‖f̂
2

L − E(θ|m)2‖. Our proof is completed

by noting both terms on the right side of this inequality converge to zero in probability.

43

References

Athey, Susan (2018) “The impact of machine learning on economics,” in The economics of artificial

intelligence: An agenda: University of Chicago Press, pp. 507–547.

Bajari, Patrick, C Lanier Benkard, and Jonathan Levin (2007) “Estimating dynamic models of imper-

fect competition,” Econometrica, Vol. 75, No. 5, pp. 1331–1370.

Berry, Steven (1992) “Estimation of a Model of Entry in the Airline Industry,” Econometrica: Journal

of the Econometric Society, pp. 889–917.

Borkovsky, Ron, Avi Goldfarb, Avery Haviv, and Sridhar Moorthy (2017) “Measuring and Under-

standing Brand Value in a Dynamic Model of Brand Management,” Marketing Science.

Chan, Tat Y (2006) “Estimating a continuous hedonic-choice model with an application to demand

for soft drinks,” The Rand journal of economics, Vol. 37, No. 2, pp. 466–482.

Chen, XiaoHong (2007) “Large Sample Sieve Estimation of Semi-nonparametric Models,” Handbook

of Econometrics, Vol. 6B.

Chen, Xu and Zhipeng Liao (2015) “Select the valid and relevant moments: An information-based

LASSO for GMM with many moments,” Journal of Econometrics, Vol. 186, No. 2.

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney

Newey, and James Robins (2018) “Double/debiased machine learning for treatment and structural

parameters,” Econometrics Journal, Vol. 21(1).

Chintagunta, Pradeep K (1993)“Investigating purchase incidence, brand choice and purchase quantity

decisions of households,” Marketing Science, Vol. 12, No. 2, pp. 184–208.

Chiong, Khai and Matt Shum (2019) “Random Projection Estimation of Discrete-Choice Models with

Large Choice Sets,” Management Science, Vol. 65, No. 1, pp. 256–271.

Collard-Wexler, Allan (2013) “Demand Fluctuations in the Ready-Mix Concrete Industry,” Economet-

rica, Vol. 81, No. 3.

Dubé, Jean-Pierre (2004) “Multiple discreteness and product differentiation: Demand for carbonated

soft drinks,” Marketing Science, Vol. 23, No. 1, pp. 66–81.

Ellickson, Paul B and Sanjog Misra (2011) “Structural workshop paper—Estimating discrete games,”

Marketing Science, Vol. 30, No. 6, pp. 997–1010.

Farrell, Max, Tengyuan Liang, and Sanjog Misra (2019) “Deep Neural Networks for Estimation and

Inference,” Available at arxiv.org/abs/1809.09953.

44

Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin (2004)“Bayesian Data Analysis.”

Geweke, John and Michael Keane (2001)“Computationally intensive methods for integration in econo-

metrics,” in Handbook of econometrics, Vol. 5: Elsevier, pp. 3463–3568.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016) “NIPS 2016 tutorial: Generative adver-

sarial networks,” arXiv preprint arXiv:1701.00160.

Gourieroux, Christian, Alain Monfort, and Eric Renault (1993)“Indirect inference,” Journal of applied

econometrics, Vol. 8, No. S1, pp. S85–S118.

Hardle, W. and A. Tsybakov (1997) “Local polynomial estimators of the volatility function in non-

parametric autoregression,” Journal of Econometrics, Vol. 81.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989) “Multilayer feedforward networks are

universal approximators,” Neural networks, Vol. 2, No. 5, pp. 359–366.

Horowitz, Joel L (1992) “A smoothed maximum score estimator for the binary response model,”

Econometrica: journal of the Econometric Society, pp. 505–531.

Kaji, Tetsuya, Elena Manresa, and Guillaume Pouliot (2020) “An adversarial approach to structural

estimation,” arXiv preprint arXiv:2007.06169.

Kim, Jae Young (2002) “Limited information likelihood and Bayesian analysis,” Journal of Economet-

rics, Vol. 107.

Kleinberg, Jon, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan (2017)

“Human Decisions and Machine Predictions,” Quarterly Journal of Economics, Vol. 133, No. 1.

Lewis, Greg and Vasilis Syrgkanis (2018)“Adversarial generalized method of moments,” arXiv preprint

arXiv:1803.07164.

Liu, Xiao, Dokyun Lee, and Kannan Srinivasan (2019)“Large-scale cross-category analysis of consumer

review content on sales conversion leveraging deep learning,” Journal of Marketing Research, Vol.

56, No. 6, pp. 918–943.

Pakes, Ariel, Michael Ostrovsky, and Steven Berry (2007) “Simple estimators for the parameters of

discrete dynamic games (with entry/exit examples),” the RAND Journal of Economics, Vol. 38,

No. 2, pp. 373–399.

Seim, Katja (2006) “An empirical model of firm entry with endogenous product-type choices,” The

RAND Journal of Economics, Vol. 37, No. 3, pp. 619–640.

45

Su, Che-Lin and Kenneth L Judd (2012) “Constrained optimization approaches to estimation of struc-

tural models,” Econometrica, Vol. 80, No. 5, pp. 2213–2230.

Tamer, Elie (2010) “Partial Identification in Econometrics,” Annual Review in Economics, Vol. 2, No.

1.

Timoshenko, Artem and John R Hauser (2019) “Identifying customer needs from user-generated con-

tent,” Marketing Science, Vol. 38, No. 1, pp. 1–20.

Wager, Stefan and Susan Athey (2018) “Estimation and inference of heterogeneous treatment effects

using random forests,” Journal of the American Statistical Association, Vol. 113, No. 523, pp.

1228–1242.

White, Halbert (1982) “Maximum likelihood estimation of misspecified models,” Econometrica: Jour-

nal of the Econometric Society, pp. 1–25.

(1989) “Learning in Artificial Neural Networks: A Statistical Perspective,” Neural Computa-

tion, Vol. 1.

(1990) “Connectionist Nonparametric Regression: Multilayer Feedforward Networks Can

Learn Arbitrary Mappings,” Neural Networks, Vol. 3.

Yoganarasimhan, Hema (2020) “Search Personalization using Machine Learning,” Management Sci-

ence, Vol. 66, No. 3.

Zhang, Shunyuan, Nitin Mehta, Param Vir Singh, and Kannan Srinivasan (2019) “Can Lower-quality

Images Lead to Greater Demand on Airbnb?” Working Paper.

Zhu, Yuting, Duncan Simester, Jonathan A Parker, and Antoinette Schoar (2020)“Dynamic Marketing

Policies: Constructing Markov States for Reinforcement Learning,” Available at SSRN 3633870.

46

