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Abstract

Through repeated interactions, firms today refine their understanding of individual
users’ preferences adaptively for personalization. In this paper, we use a continuous-
time multi-agent bandit model to analyze firms that supply content to consumers, a
representative setting for strategic learning of consumer preferences to maximize life-
time value. In both monopoly and duopoly settings, we compare a forward-looking
recommendation algorithm that balances exploration and exploitation to a myopic al-
gorithm that only maximizes the quality of the next recommendation. Our analysis
shows that firms that compete for users’ attention focuses more on exploitation than
exploration than a monopoly would. When users are impatient, competition decreases
firms’ incentives to develop forward-looking algorithms. On the other hand, develop-
ment of the optimal forward-looking algorithm may hurt users under monopoly but
always benefits users under competition. We are among the first to examine this
multi-agent bandit problem under different competitive scenarios, and our results pro-
vide implications for AI adoption as well as for policy makers on the effect of market
power on innovation and consumer welfare.
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1 Introduction

Two inter-related trends have radically transformed the marketing landscape in the past two

decades. First, the advent of e-commerce, social media, and mobile marketing has made

firm-consumer interactions increasingly frequent and digitized (Godes and Mayzlin 2004;

Fader and Winer 2012; Kannan and Li 2017). These interactions produce fine-grained digi-

tal consumer footprint which provide valuable information to firms. Second, the past decade

has also witnessed exponential growth in leveraging data and computing power in the busi-

ness world. The rapid development in cloud computing, big data, machine learning, and

AI has provided powerful tools to assist in large-scale automated decision making, which

have greatly increased firms’ ability to understand and fulfill customers’ needs on a real-time

basis (Chintagunta, Hanssens, and Hauser 2016; Huang and Rust, 2018; Ma and Sun, 2020).

Driven by these trends, firms now routinely analyze historical interactions with consumers

to infer their preferences and generate customized offerings, often in real time. Prominent

examples abound. Personalized product recommendation systems are now indispensable at

e-commerce websites such as Amazon and Taobao. Digital advertisements are increasingly

targeted at a personal level based on a user’s past behaviors. Even more prevalent, popular

social media and content platforms such as Facebook, Youtube, Spotify, Tiktok, and many

news media sites, customize content feeds to individual users based on their historical in-

teractions with the platform. Such personalized real-time customization is being conducted

through increasingly sophisticated AI algorithms, which have become a major source of

competitive advantage for many firms. This trend has also propelled a number of enterprise

service sub-industries that provide technological and analytical services.

While the scale and scope may be new, the practice of learning about consumers and

making customized recommendations dates back to the early days of marketing (Wedel and

Kannan, 2016). Conceptually, three paradigms exist for firms’ recommendations. First,

using historical data of various types, a firm can learn about consumer preferences at the

group or individual level in a static fashion, and make customized recommendations based

on the inferred segmentation. A rich body of literature developed over several decades, e.g.

dynamic choice models, incorporates consumer heterogeneity in a increasingly sophisticated

manner, enabling effective segmentation and personalization (Kamakura and Russell, 1989;

Rossi, McCulloch, and Allenby 1996). These methods are now commonly used in industry

to enhance sales, profit, customer satisfaction, and loyalty. Since such models are typically

estimated only periodically using datasets containing large batches of historical observations,

and decisions are updated infrequently (often non-machine assisted human decisions), we call

this paradigm the non-adaptive recommendation algorithm, which, given its prevalence, can

be considered as the baseline.
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In the second paradigm, going one step further from the baseline, a firm can refine its

learning adaptively using new information, potentially on a real-time basis (Zhang and Kr-

ishnamurthi 2004; Steckel et al. 2005; Sun, Li, and Zhou 2006). In this paradigm, as time

passes and new data become available, the firm would continuously update its understanding

of consumer preferences based on new information. At any point in time, the firm would

make targeted offerings based on its best understanding of a consumer’s preferences at that

point. Many statistical techniques exist and machine learning algorithms are developed to

help firms perform such adaptive learning and recommendations. For example, today’s rec-

ommendation systems use methods such as content-based filtering and collaborative filtering

to generate candidates to recommend, then use a predictive model to rank them by objec-

tives such as click rate or session watch time (Google Developers 2020). These automated

algorithms are increasingly common to help firms effectively adapt to and act on a constant

stream of incoming data in real time. Accordingly, we call this second paradigm the myopic

recommendation algorithm. The word “myopic” highlights that these algorithms only aim to

offer the “best” recommendation at the moment, without considering the long-term benefit

of acquiring knowledge and improving personalized targeting.

Going one more step further from the adaptive but myopic algorithm, a third and more

powerful recommendation paradigm is emerging. A firm not only learns adaptively from

historical information, but also takes a forward-looking perspective in its recommendations

to proactively gather new information in a guided manner. For example, while based on the

current understanding, a consumer is most likely to enjoy a specific type of content, the firm

may instead find it useful to recommend something different. This may lead to a reduction of

service quality and a lower profit in the short term, but it speeds up the learning of consumer

preferences, which can then improve future recommendations and enhance consumer reten-

tion. Central to this paradigm is the exploitation-exploration trade-off, where the firm has

to balance the conflict between maximizing the current payoff and acquiring new knowledge.

The adoption of this third paradigm is partly driven by the recent success of reinforcement

learning, which allows computers to better approximate human decision making (Sutton and

Barto 2018). Major social media and content platforms, such as YouTube, are also devel-

oping reinforcement learning algorithms to maximize each user’s long-term satisfaction with

the system (Chen et al. 2019). We call this third paradigm the forward-looking recommenda-

tion algorithm. Optimizing in a forward-looking framework, this recommendation paradigm

is expected to outperform adaptive myopic recommendations.

The proliferation of consumer data has understandably attracted considerable attention

from scholars in multiple fields. Research in computer science and machine learning has

developed a vast and powerful tool set to administer large volumes of data and to extract
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information from the data. Empirical research in marketing has consistently confirmed

the value of consumers’ digital footprint on understanding their preferences and decisions

(Winer and Neslin 2014). Noticeably left out in both streams of research, however, is the

theoretical implications of firms’ continuous personalization, especially under competition.

Developing the capability to learn and recommend in real time requires considerable invest-

ment. Adopting a forward-looking solution framework such as reinforcement learning is an

even more demanding initiative. To optimize investment decisions, it is crucial for firms to

understand the source of value in different competitive situations.

In this paper, we address three questions: first, how does the presence of competition

affects the optimal trade-off between exploration and exploitation? What characteristics of

the users affect this trade-off? Second, how much value does a forward-looking algorithm

provide to the firm over a myopic algorithm? How does competition affect the firms’ in-

centives to invest and upgrade to a forward-looking algorithm? Third, how does upgrading

from a myopic algorithm to a forward-looking algorithm affect consumer welfare with or

without competition? These questions has theoretical and managerial implications on tech-

nology adoption as well as regulation. In light of rising concerns expressed by regulators over

major tech firms’ market power, our research contributes to the discussion by investigating

the effect of market power on firms’ incentives to develop advanced AI algorithms and their

subsequent effects on consumer welfare.

We consider an online content consumption scenario, such as that of Youtube, which

is a representative setting where firms offers adaptive personalization to its users. Users

differ in their preferences for different types of content. Using a user’s responses to past

recommendations on the platform as noisy signals, a firm gradually updates its belief about

the user’s preferences and adjusts the recommendations adaptively. We formulate firms’

decisions as a continuous-time multi-armed bandit problem. This framework incorporates

key factors such as firms’ continuous learning of users’ preferences, adaptive responses to

real-time information, and forward-looking optimization in a parsimonious manner.

We compare the myopic recommendation algorithm that only focuses on exploitation

to the optimal forward-looking algorithm that balances exploitation and exploration. We

analyze two situations: (1) when a firm acts as a monopoly, and (2) when two firms compete

as a duopoly. In the competitive scenario, two firms compete for the attention of each user.

The user chooses which firm to visit at each moment. This constitutes a 3-player bandit

problem, where two firms and a user each faces a bandit problem, and the outcome of a

decision depends on the decisions made by the other two players. Our study is among the

first to study such multi-agent bandit problem arising from competition.

We derive closed-form solutions to the simultaneous dynamic optimization problem, and
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the results reveal several important insights. Surprisingly, a monopoly that uses the myopic

algorithm, which focus solely on exploitation, may not perform better than a monopoly that

uses a non-adaptive algorithm. This shows that without competition, the value of adaptive

personalization may be concentrated on the exploration aspect. The additional value from

developing the forward-looking algorithm is also found to be non-monotonic in firms’ prior

knowledge about a user’s preferences. To expedite exploration of consumer preferences, the

forward-looking algorithm induces the firm to serve more niche content, i.e., to customize

more, than the myopic algorithm does. The exploration-exploitation trade-off also means

that the forward-looking algorithm would lead to a reduced profit in the near term, although

the profit will increase later to more than compensate for the near-term loss.

The situation changes substantially, however, when a firm faces competition. The pres-

ence of competition pushes the forward-looking algorithm to shift towards exploitation by

recommending less niche content compared to the monopoly case, due to less room for strate-

gic experimentation. More importantly, in the case of competition, the user’ discount rate

becomes a crucial factor, depending on which the competitive forward-looking algorithm

spans a continuous spectrum between the myopic algorithm and the monopoly’s optimal

forward-looking algorithm. As users become more impatient, the forward-looking algorithm

moves closer to the myopic algorithm and recommends less niche content. When users are

fully myopic, the firm will be forced to adopt the myopic algorithm. Furthermore, in contrast

to the monopoly case, the myopic algorithm perform better than the non-adaptive baseline

under competition, as even myopic recommendations help a firm to retain its users from

switching.

We also contribute by analyzing firms’ incentives to adopt machine learning and AI tech-

nologies and the value of learning while taking into account firms’ strategic behaviors. First,

our analysis suggests that firms under competitive pressure may have lower incentives to in-

vest in technologies such as reinforcement learning that enable forward-looking algorithms,

and instead could be content with myopic algorithms. In contrast, a monopolist, under less

competition, has more room to invest in forward-looking algorithms that bring long-term

benefits at the cost of near-term profits.

On the flip side, there is also a trade-off between innovation incentives and consumer

welfare. A monopoly may have a higher incentive to develop the forward-looking algorithm,

but such technological advancement may hurt users due to overly aggressive customization.

With competition, the development of forward-looking algorithms are always beneficial to

users, but firms may have less incentives to do so when users are impatient or not forward-

looking in their content consumption behaviors.

While we focus our analysis on advertising-supported content recommendations, key

4



intuitions and findings from this paper can potentially be generalized to other similar settings,

such as product recommendations on e-commerce websites or targeted advertising.

The rest of the paper is organized as follows. After reviewing the relevant literature in

Section 2, we set up and analyze the monopoly model in Section 3. We then study the

duopoly scenario in Section 4. In Section 5 we explore some extensions in which firms are

asymmetric. Section 6 discusses managerial implications. Concluding remarks are in Section

7.

2 Literature Review

Dynamic Programming and Reinforcement Learning

The core idea of reinforcement learning (RL) is deriving solutions to stochastic dynamic

programming problems under demand uncertainty in which the firm needs to learn about

consumer preferences and trade off instantaneous cost with future payoff with the goal of

maximizing long-term profit contribution. Facing the inter-temporal trade-off between ex-

ploration and exploitation, an agent solves a statistical decision model and learns about the

payoff of different options over time through experimentation. There exist a stream of mar-

keting research that derives and studies the properties of this problem in various applications

of marketing decision support system. With application to catalogers, Gonul and Shi (1998)

show that the optimal mailing policy resulting from a dynamic programming model signif-

icantly outperforms its single-period counterpart. Applying a dynamic-programming-based

approach to newspaper subscriber data, Lewis (2005) computes price paths that maximizes

profit over the long-term relationship with customers. Li, Sun, and Montgomery (2006) de-

rive an optimal multi-step, multi-segment, and multi-channel cross-selling campaign process

that tells firms when to target whom with what product using which channel. Sun and

Li (2005) formulate firms’ service allocation decisions as solutions to a dynamic program-

ming problem and explicitly discuss how the experimental nature of interactive learning

and acting on customer information improve customer experience and firm profit. Sun, Li,

and Zhou (2006) present a conceptual framework of customer-centric marketing-mix decision

making as a solution to dynamic programming problems with a two-step interactive proce-

dure (adaptive learning and proactive marketing decisions). Lin, Zhang, and Hauser (2015)

consider a dynamic experiential learning problem in which consumers learn brand quality

over time while facing random utility shocks. They show empirically that a index-based

heuristic solution can perform nearly optimal and significantly better than myopic learning.

Recently, machine learning approaches are adopted to solve the DP problems and RL

are applied to marketing problems by computer and data scientists with the same ideas
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of continuously following consumers and predicting the next purchasing decisions of the

target consumers and deliver the right message to the right consumer at the right time

using the right channel. For example, formulating personalized news recommendations as a

bandit problem, Li et al. (2010) propose an algorithm that generates a sequence of articles

based on historical activities of a user and the article recommendation policy adapts based

on the user’s real-time feedback with the goal of maximizing total user clicks in the long

run. Theocharous, Thomas, and Ghavamzadeh (2015) formulate a personalized advertising

recommendation system as a RL problem to maximize lifetime value (LTV) and show the

improvement over a myopic solution with supervised learning. Hybrid and concurrent RL

are proposed by Li et al. (2015) and Silver et al. (2013) to better incorporate lifetime

value of customers and customer interactions. Other researchers have used the multi-armed

bandit framework to improve adaptive online advertising (e.g., Urban et al. 2014; Schwartz,

Bradlow, and Fader 2017), web content optimization (e.g., Agarwal, Chen, and Elango

2008; Hauser, Liberali, and Urban 2014), and pricing (e.g., Misra, Schwartz, and Abernethy

2019). Schwartz, Bradlow, and Fader (2017) propose the Thompson sampling algorithm

(which assigns a treatment with a probability equal to the probability that the treatment

is optimal) for optimal allocation of advertisement. Misra, Schwartz, and Abernethy (2019)

propose a dynamic price experimentation policy in online retailing by adaptively assigning

users to the treatment with the highest potential. These studies show that by adaptively

learning and adjusting participant assignment, reinforcement learning improves over the

static approach because successful treatments are rewarded by assigning more users to these

treatments (Athey and Imbens 2019; Sutton and Barto 2018).

Existing research based on dynamic programming and RL approaches are mostly empir-

ical and provide specific applications to demonstrate that learning and acting on customer

responses enable a firm to make more proactive and customized marketing decisions that

reduce costs, increase consumer demand, and/or improve customer retention, and hence

improve firms’ long-term profit. The booming empirical research and/or algorithm develop-

ment call for analytical studies to systematically investigate the properties of firms’ real-time

learning and acting, and the resulting inter-temporal trade-off between exploitation and ex-

ploration in algorithm-based, real-time decision making.

Analytical Modelling

From a modelling perspective, our research is related to the literature in economics that

model learning and experimentation as multi-armed bandit (MAB) problems (Rothchild

1974, Weitzman 1979, Keller and Rady 1999). Bolton and Harris (1999) and Keller, Rady,

and Cripps (2005) study experimentation in teams, and show that members of a team under-
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experiment as they try to free-ride on information from others’ experiments. In the contexts

of experience goods and labor market, respectively, Bergemann and Välimäki (1996) and

Felli and Harris (1996) study the case where an agent pays for experiments that are owned

by separate sellers who compete with each other on price. However, these papers do not

consider the case where multiple agents face MAB problems while competing with each other

for experiments, which is studied in this paper.

This problem of competition and MAB is also receiving attention in computer science.

The papers closest to ours are Aridor et al. (2020) and Mansour, Slivkins, and Wu (2018).

Both papers also study two multi-armed bandit algorithms that compete for users over

time, and observe that competition pushes firms towards exploitation and disincentivizes

firms from adopting better algorithms. However, there are a few key differences between

our models. Most importantly, users in Aridor et al. (2020) and Mansour, Slivkins, and

Wu (2018) are short-lived and cannot observe other users’ experience. In contrast, firms in

our model face a population of long-lived users who are also solving MAB problems when

choosing which firm to visit over time. Such differences allow us to investigate how firms’

equilibrium strategies depend on users’ long-term behaviors, which is absent in Aridor et

al. (2020) and Mansour, Slivkins, and Wu (2018). Differences in our models also lead to

very different conclusions. Aridor et al. (2020) and Mansour, Slivkins, and Wu (2018)

find that when facing utility-maximizing consumers, both firms adopt a myopic algorithm

in equilibrium. In contrast, the equilibrium algorithm in the current paper is still forward-

looking, although it involves less exploration than the optimal algorithm of a monopoly. The

impact of competition on consumer welfare also differs as a result.

A recent literature in economics and marketing builds theoretical models to study the

general microeconomic impact of AI technology. Agrawal, Gans, and Goldfarb (2018a)

argue that the current wave of AI technology can be thought of as an improved ability to

predict future states. Agrawal, Gans, and Goldfarb (2019) split the decision-making process

between machine prediction of states and human judgment of utility, and shows that human

judgment can either complement or substitute machine prediction. Agrawal, Gans, and

Goldfarb (2018b) consider subscription pricing of such prediction technology. Miklos-Thal

and Tucker (2019) and Hansen, Misra, and Pai (2020) consider collusion between algorithms.

Dogan, Jacquillat, and Yildirim (2019) and Athey, Bryan, and Gans (2020) study the effect

of AI on delegation of decision authority in the presence of principal-agent problem. Berman

and Katona (2020) investigate when curation algorithms do and do not create polarization

in social networks. Liu, Yildirim, and Zhang (2019) consider price discrimination when

consumers purchase from AI-enabled home devices. Xu and Dukes (2020) study personal

pricing when data analytics enable firms to have more information on consumer preferences
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than consumers themselves. These papers focus on documenting the general impact of

machine-aided decision-making without investigating the inter-temporal trade-off between

exploitation and exploration.

Methodologically, we use a continuous-time model with sequential arrival of information.

Such a model approximates the nature of real-time learning and acting on customer infor-

mation. There is a related literature on the continuous acquisition of information before an

agent undertakes an irreversible action such as purchase or investment (e.g., Branco, Sun,

and Villas-Boas 2012, Ke, Shen, and Villas-Boas 2016, Fudenberg, Strack, and Strzalecki

2018). Ke and Villas-Boas (2019) consider continuous learning of multiple alternatives be-

fore committing to a choice. These papers capture the continuous nature of learning and

solve the optimal solution to the single decision-maker problem. Ning (2021) expands the

single-agent problem into a continuous-time game by adding dynamic pricing while a buyer

and the seller continuously receive information on their match value. Villas-boas and Yao

(2020) model a firm’s optimal advertising retargeting policy to a consumer who continuously

searches for product information. Deb, Öry, and Williams (2018) study a continuous-time

crowdfunding game between a long-lived donor and short-lived buyers as information on to-

tal donation arrives over time. In contrast to the previous papers, the current paper features

competition between two firms, each deciding its own experimentation strategy and receiving

private information, while factoring in competitive responses by the other firm.

Our model also relates to the literature on personalization based on past behaviors. The

literature on behavior-based price discrimination (e.g., Villas-Boas 1999, 2004, Fudenberg

and Tirole 2000, Acquisti and Varian 2005, Pazgal and Soberman 2008) shows that per-

sonalized pricing based on past purchase behaviors generally hurts firms by intensify price

competition. Zhang (2011) expands the literature to allow for endogenous product designs

which influence the information that firms collect. The current paper do not consider pricing.

Instead, we focus our attention on personalized product offerings. We allow for rich dynam-

ics where each firm makes personalized offerings over infinite number of periods, where each

decision affects both immediate profit and firms’ future information about the customer.

Our paper also relates to the extensive literature on targeting, with the crucial difference

that personalization allows firms to actively compete for every consumer.

The paper also relates to the literature on the relationship between competition and

innovation. Past theoretical literature is ambiguous on the relationship between the number

of firms and innovation incentives. For example, Dasgupta and Stiglitz (1980) and Spence

(1984) argue that increasing the number of firms in the industry decreases firms’ incentives to

invest in cost reduction, whereas Aghion et al. (2005) and Vives (2008) show that increasing

the number of firms can foster innovation when the level of competition is low. While the
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aforementioned papers model innovation as a reduction in marginal cost or an increase in

labor productivity, this papers consider a very different type of innovation. We consider the

technological upgrade from myopic algorithms to forward-looking algorithms, and show that

competition decreases the return from such upgrade when consumers are impatient.

3 Monopoly Model

Consider a market in which users consume content over time. A monopolistic firm provides

personalized content to each user. For example, platforms like Youtube, Tiktok, Spotify, and

Google News recommend personalized content to users based on their historical behaviors

on the site. The main objective of their content recommendation algorithms is to increase

user engagement with the content on the site, which boosts monetization, such as advertising

revenue, through increased views over a user’s lifetime.1 In this paper we abstract away from

the advertising and pricing decisions, and focus solely on the recommendation decisions.

In this section, we first propose a dynamic model of content recommendations that cap-

tures the essential exploration vs. exploitation trade-off. For a given user, the firm can choose

to recommend mass-market content (M) or niche-market content (N). For simplicity, we

assume that there are two types of niche-market content, denoted as N1 and N2.

Different types of content differ both in their intended audience as well as heterogeneity

among users. All users enjoy mass-market content equally, but for niche-market content,

they have different preferences. Some users enjoy N1 more often than N2, and vice versa.

Let T ∈ {N1, N2} denote the focal user’s preferred type of niche-market content. This is

drawn by Nature and is unknown to the firm.

Let St ∈ {M,N1, N2} denote the type of content that the firm recommends to the focal

user at time t. At a given time period t, each user has a unit demand for content. If a

user is recommended niche-market content, she likes the content with probability α > 0.5

if the content matches the user’s preferred content type, and with probability 1 − α if it is

a mismatch. The parameter α captures the consistency of the user’s preferences for niche-

market content. An α close to 1 implies that the user always likes the same content type,

whereas an α close to 0.5 implies that the user’s preferences for content types are nearly

random.

If the user is recommended mass-market content, she likes the content with probability

1There are various ways to display ads and generate revenue (pay per click / pay per impression), which
all share the common characteristic that revenue is proportional to user engagement, which is captured in
our model. Note that we do not study the customization of advertising in this paper, only customization of
content.
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c. For the interesting case, we assume that 1
2
< c < α, otherwise the firm either never serves

mass-market content or always serve mass-market content. Note that a user is more likely

to engage with mass-market content than a randomly selected niche-market content. This

reflects the general popularity of mass-market content.

So the probability that the user likes the content recommended at time t, denoted as

y(T, St), can be written as:

y(T, St) =


α if St = T

c if St = M

1− α otherwise

(1)

If the user likes the recommended content, the firm earns an advertising profit of size

p and the user gets a utility of u, both of which can be normalized to 1 WLOG.2 So the

expected flow profit generated from recommending content type St given that the user’s

preferred content type is T is simply:

πt = p ∗ y(T, St) = y(T, St)

Let Nt be an indicator function that equals 1 if the firm recommends niche-market content

to the user at time t. Let Yt denote the firm’s cumulative profit from the user after t periods.

We then have:

E[Yt] =
t∑

s=1

y(T, Ss) and V ar(Yt) = α(1− α)
t∑
0

Nt + c(1− c)
t∑
0

(1−Nt) (2)

The noise is independent across time, and by the central limit theorem, the distribution of

Yt can be approximated by the Gaussian distribution N (E[Yt], V ar(Yt)) for large t.

To capture the idea that these interactions are happening at a high frequency and the firm

can monitor a user’s behavior continuously, we use a continuous-time approximation of the

cumulative profit, while maintaining the same expected value and variance from equation

(2). The unique continuous-time process with independent noise in increments and that

satisfies Yt ∼ N (E[Yt], V ar(Yt)), where

E[Yt] =

∫ t

0

y(T, Ss)ds and V ar(Yt) = α(1− α)

∫ t

0

Nsds+ c(1− c)
∫ t

0

(1−Ns)ds (3)

2In the Online Appendix, we study a case where the firm can control the degree of monetization that
affects both the flow profit as well as the speed of learning. We find that the monopoly monetizes the content
less under the forward-looking algorithm than under the myopic algorithm. The firm should also increase
monetization as its knowledge about individual users’ preferences improve.
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is

dYt = y(T, St)dt+ σtdWt, (4)

where y(T, St) as defined in equation (1) is the expected profit flow, σt =√
α(1− α)Nt + c(1− c)(1−Nt) represents the instantaneous standard deviation in profit,

and the process Wt is a standard Wiener process.

3.1 Information and Learning Process

At t = 0, the firm receives a binary signal on the user’s type with accuracy λ0 > 0.5. That

is, the firm observes the correct user type with probability λ0, and observes the incorrect

type with probability 1−λ0. Thus the firm either has a prior belief that the user prefers N1

with probability λ0, or has a prior belief that the user prefers N2 with probability λ0. This

represents the prior knowledge the firm has about this user. We can always relabel the two

content types without loss of generality, so we can simply assume that the firm has a prior

belief that the user prefers N1 with probability λ0.

Let λt denote the firm’s posterior belief that the user prefers N1 over N2. The history

of realized profit from the user serves as the information source. We have

λt = Pr(T = N1|Ft)

where Ft is the filtration generated by the past observations of profit from the user.

The Exploration vs. Exploitation Trade-off

Note that the firm only gains information about the user’s preferences when it recommends

niche-market content. Consider a scenario where λt is close to 0.5. There is enough un-

certainty about the user’s preferences so that the user is more likely to like a mass-market

content than any niche-market content. Thus, to maximize the immediate profit, the firm

should recommend mass-market content. However, the firm may still want to offer niche-

market content, because the user’s response to it reveals information about her preferences,

which allows the firm to make better recommendations in the future. Thus, in this model, the

firm’s choice between niche-market and mass-market content captures the trade-off between

exploration and exploitation in a simple way.
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Updating of Posterior Belief

From the firm’s perspective, with a belief of λt, the expected profit flow from recommending

content type St to the user at time t can be written as:

y(λt, St) = E[y(T, St)|Ft] =


λtα + (1− λt)(1− α) if St = N1

(1− λt)α + λt(1− α) if St = N2

c if St = M

(5)

Because the firm gains no information when it recommends mass-market content, the pos-

terior belief, λt, is only updated when the firm recommends niche-market content. From

Liptser and Shiryaev (1977), the updating process of λt, when the firm serves niche-market

content, follows the process

dλt = [α− (1− α)]
λt(1− λt)

σ2
t

[y(T, St)− y(λt, St)]dt+ [α− (1− α)]
λt(1− λt)

σt
dWt (6)

where the term [y(T, St)− y(λt, St)] represents the new information, which is the difference

between expected flow profit under the current belief and the true expected flow profit. The

speed of updating is weighted by the difference in outcome between the right and the wrong

action, which is captured by α− (1−α) = 2α− 1. The term σt is the standard deviation of

flow profit from equation (4).

Because the expected value of [y(T, St) − y(λt, St)] is zero, the change to the posterior

belief, λt, has zero drift.

We denote σ(λt) as the instantaneous standard deviation of λt, i.e.,

σ(λt) ≡
λt(1− λt)(2α− 1)

σt
=
λt(1− λt)(2α− 1)√

α(1− α)

We can then simplify equation (6) to

dλt =
σ(λt)

σ2
t

[y(T, St)− y(λt, St)]dt+ σ(λt)dWt (7)

Note from the above equation that the instantaneous standard deviation of λt, σ(λt),

increases in α (α is assumed to be > 0.5). So the posterior belief is more responsive to user

behaviors when α increases. When α is larger, different types of users have more varied

tastes. As a result, they exhibit more varied responses to niche-market content. Thus,

information inferred from their behavior is more precise. The belief λt is updated faster,

so the instantaneous volatility of λt is higher. The firm updates its belief about the user’s

preferred content type as it serves the user over time and observes the user’s response to the
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content. Notice that as λt goes to either 0 or 1, the standard deviation will go to zero. In

the limit as time goes to infinity, the user’s preferences will be fully revealed. But for any

finite time, there will be some amount of uncertainty regarding the user’s preferences.

3.2 Firm’s Decisions

The firm is risk neutral and maximize the present value of discounted expected profits with

a discount rate of r by choosing recommendations St as a function of λt, which is the belief

at time t that the user prefers type N1 over N2. The firm can only recommend one unit of

content to a user at a time.

The lifetime value of the user given a path of St is

Vt({St}, λ0) = E

∫ ∞
0

e−rty(λt, St)dt

where y(λt, St) is the expected flow profit defined in equation (5).

The firm’s problem is to find an optimal algorithm St = S(λt) that maximizes the user’s

lifetime value. We can then rewrite the lifetime value of the user with a prior λ0 as

V (λ0) ≡ max
S(λt)

V ({S(λt)}, λ0),

In the Appendix, we derive and solve the Hamilton-Jacobi-Bellman equation. Under the

optimal algorithm, the firm’s value function must satisfy

V (λt) =
y(λt, St)

r
+ bλ

−(γ−1)/2
t (1− λt)(γ+1)/2, where γ =

√
1 +

8rα(1− α)

(2α− 1)2
(8)

for some coefficient b.

Consider the three types of algorithms discussed in the introduction. Here we describe

them separately.

Non-adaptive Recommendation Algorithm

Assume that the firm does not have the capacity to track users’ behaviors. The optimal

strategy is to recommend based on the initial information about the user. The firm then

never adjusts this recommendation. This is personalization based on static information used

for segmentation, such as demographics. This is akin to empirical models in which decisions

are made based on insights found in past data at a specific time, but with no real-time data

tracking and updating of decisions, hence not adaptive.
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The firm should recommend content type N1 over type M if lifetime expected profit

from type N1, λ0α+(1−λ0)(1−α)
r

, if greater than lifetime expected profit from type M , c
r
. Let

λ∗ = c−(1−α)
2α−1 denote the break-even point.

The optimal non-adaptive algorithm is the following: the firm recommends content type

N1 if λ0 > λ∗, type N2 if λ0 < 1− λ∗, and type M if λ0 ∈ [1− λ∗, λ∗].

Myopic Recommendation Algorithm

Now consider a firm that can track users’ behaviors and update beliefs about their preferences

in real time. The firm employs a myopic recommendation algorithm, which only aims to

maximize the probability that a user likes the next recommendation. This resembles a firm

with a supervised learning algorithm that continuously predicts the likelihood a user enjoys

each piece of content, and simply recommends the one with the highest ranking.

The firm recommends the content type that maximizes the instantaneous payoff y(λt, St)

from equation (5). The optimal myopic algorithm is the following: the firm recommends

content type N1 if λt > λ∗ = c−(1−α)
2α−1 , type N2 if λt < 1−λ∗, and type M if λt ∈ [1−λ∗, λ∗].

Note that the threshold λ∗ is the same threshold from the non-adaptive algorithm. The

myopic algorithm is different from the non-adaptive algorithm because the firm will adjust its

recommendations over time based on a user’ evolving history. As λt crosses the threshold λ∗,

the firm’s recommendation changes. However, because the myopic algorithm only seeks to

maximize instantaneous profit, it focuses entirely on exploitation while ignoring exploration

in the trade-off.

Forward-Looking Recommendation Algorithm

Now we solve the optimal forward-looking algorithm. It needs to balance the exploration

vs. exploitation trade-off. Due to symmetry, we only need to focus on the case of λt > 0.5.

In this case, if the firm serves niche-market content, it must serve type N1. Also as noticed

earlier, once the firm serves mass-market content to the user, it stops learning, so it will

always serve mass-market content in the future. Thus the firm’s value function when it

recommends mass-market content must be c/r. So to obtain the optimal forward-looking

algorithm, we only need to know at what point the firm switches from recommending niche-

market content to recommending mass-market content. Let λ̂ denote the cutoff such that

the firm begins serving mass-market content to the user if λt ≤ λ̂. This is equivalent to an

optimal stopping problem, where serving mass-market content is equivalent to a stopping

option that gives a payoff of c/r. The optimal stopping threshold λ̂ must satisfy the value-
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matching and the smooth-pasting conditions (see, e.g., Dixit 1993) for the value function:

rV (λ̂) = c, V ′(λ̂) = 0

Plugging these boundary conditions back into the solution of the HJB equation (8) produces

the solution for λ̂ and b2.

We describe the optimal threshold and the firm’s value function under the optimal thresh-

old below:

Proposition 1 Define

λ̂ =
[c− (1− α)](γ − 1)

(2α− 1)(γ − 1) + 2(α− c)
, where γ =

√
1 +

8rα(1− α)

(2α− 1)2

1. If λ̂ > 0.5, then the optimal forward-looking algorithm recommends content type N1 if

λt > λ̂, type N2 if λt < 1− λ̂, and type M if λt ∈ [1− λ̂, λ̂].

The firm’s value function is symmetric around 0.5. For λit > λ̂

V (λt) =
λtα + (1− λt)(1− α)

r
+

2(α− c)
r(γ − 1)

(
λ̂

1− λ̂

)(γ+1)/2

λ
−(γ−1)/2
t (1− λt)(γ+1)/2

and V (λt) = c
r

for 0.5 ≤ λt < λ̂.

2. If λ̂ ≤ 0.5, then the optimal forward-looking algorithm recommends N1 if λt > 0.5 and

N2 if λt < 0.5.

The firm’s value function is symmetric around 0.5 where for λt > 0.5,

V (λt) =
λtα + (1− λt)(1− α)

r
+

2α− 1

rγ

(
λ̂

1− λ̂

)(γ+1)/2

λ
−(γ−1)/2
t (1− λit)(γ+1)/2

Corollary 1.1 The optimal threshold for the forward-looking algorithm, λ̂, is strictly lower

than the threshold in the myopic and non-adaptive algorithms, λ∗ = c−(1−α)
2α−1 .

The implication of λ̂ < λ∗ is that the firm serves more niche-market content under the

forward-looking algorithm than under the myopic algorithm. Consider λt ∈ (λ̂, λ∗). The

forward-looking algorithm recommends content type N1, which is expected to generate less

immediate profit than type M , in order to gather more information about user i’s preference.

Figure 1 compares the decision under the forward-looking and the myopic algorithm.
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Figure 1: Recommendations under forward-looking vs. myopic algorithms

In Figures 2a and 2b, we plot λ̂ as a function of r and α, respectively. Notice that λ̂ is

an increasing function of γ, while γ is an increasing function of r and a decreasing function

of α. Thus, λ̂ increases with r and decreases with α. Intuitively, when r is smaller, future

profit becomes more important and thus it becomes more important for the firm to learn and

adapt. Consequently, the firm is less likely to recommend mass-market content to a user.

When α is lower, it means that the user’s preferences are less consistent and less correlated

over time. It is more difficult to predict what a user likes at a given moment. Additionally,

the firm also receives less precise information from the user’s past behaviors. As a result,

the firm recommends less niche-market content.

Corollary 1.2 The optimal threshold λ̂ increases with discount rate, r, and decreases with

preference consistency, α.

3.3 Value from Advanced Algorithms

Different recommendation algorithms require different levels of technology. An upgrade

from the non-adaptive algorithm to the myopic algorithm requires learning and acting on

users’ behaviors over time. For example, a supervised-learning-based algorithm that predicts

a user’s likelihood to engage with different content and recommends the highest ranked

content in real-time is a myopic algorithm, but it ignores the effect of the current decision on

future information. An upgrade from the myopic algorithm to the forward-looking algorithm

requires balancing the value from exploration and exploitation through techniques such as

reinforcement learning. In this section, we examine the value of these technological upgrades.
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Figure 2: The optimal threshold

(a) as a function of the discount rate

for α = 0.8, c = 0.7

(b) as a function of preference consistency

for c = 0.7 and r = 0.6

This then can be interpreted as the monopoly’s incentive to invest in such upgrades if they

are costly. We denote the firm’s ex-ante expected profits under the non-adaptive, the myopic,

and the forward-looking algorithms as V NA(λt), V
MY (λt), and V FL(λt), respectively.

The Additional Value from the Myopic Algorithm

First, consider the value of upgrading from the non-adaptive algorithm to the myopic algo-

rithm. Under the non-adaptive algorithm, the firm always serves niche-market content if the

initial belief, λ0, is not in (1 − λ∗, λ∗), where λ∗ = c−(1−α)
2α−1 . The expected lifetime value for

a given λ0 is

V NA(λ0) =


λ0α+(1−λ0)(1−α)

r
for λ0 > λ∗

c
r

for λ0 ∈ (1− λ∗, λ∗)
λ0(1−α)+(1−λ0)α

r
for λ0 < 1− λ∗

(9)

Under the myopic algorithm, the firm switches from niche-market content to mass-market

content when λt drops below λ∗, and makes a flow profit of c in perpetuity when serving

mass-market content. To find the value function for λt > λ∗, we solve equation (8) with the

boundary condition rV (λ∗) = c, from which we get b2 = 0. Thus, the firm’s expected profit

at t = 0 is also

V MY (λ0) =


λ0α+(1−λ0)(1−α)

r
for λ0 > λ∗

c
r

for λ0 ∈ (1− λ∗, λ∗)
λ0(1−α)+(1−λ0)α

r
for λ0 < 1− λ∗

(10)

We call V MY (λ0)− V NA(λ0) the additional value from the myopic algorithm.
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Corollary 1.3 The additional value from the myopic algorithm, V MY (λ0) − V NA(λ0), is

zero for all λ0.

The strong result of Corollary 1.3 is due to the fact that the expected profit flow from

recommending niche-market content, y(λt, St), is linear in posterior belief λt (see equation 5).

This linearity means that the net present value of recommending N1 forever is a martingale

in λt. When λt > λ∗, the myopic algorithm and the non-adaptive algorithm make the same

recommendation. They begin the diverge exactly at the moment when λt drops to the myopic

threshold, λ∗. However, at the myopic threshold, the net present value of always recommend

N1 equates to the net present value of always recommending M. Thus this implies that the

value functions under the myopic algorithm and the non-adaptive algorithm are the same

under all priors.3

This analysis shows that, for a monopoly, simply recommending the “best” content at

the moment could make the effort to learn the user’s preferences fruitless. Exploitation

of historical information alone may not provide value. Many recommender systems have

supervised learning algorithms that can predict the likelihood that a user enjoys each content.

This result highlights the inadequacy of recommending myopically based on this ranking.

However, it is important to note that Corollary 1.3 is only for a monopoly, which does not

need to worry about losing users to a competitor.

The Additional Value from the Forward-Looking Algorithm

Next, we consider the value of upgrading from the myopic algorithm to the forward-looking

algorithm that balances the trade-off between exploration and exploitation. The value func-

tion V FL(λit) is given in Proposition 1, from which we can get, for λ0 ≥ λ∗,

V FL(λ0)− V MY (λ0) =
2(α− c)
r(γ − 1)

(
λ̂

1− λ̂

)(γ+1)/2

λ
−(γ−1)/2
0 (1− λ0)(γ+1)/2

3If, instead, the expected profit flow from recommending N1 is concave in λt, then the net present value
of always recommending N1 becomes a super-martingale in λt, which implies that at λ∗, recommending M
forever is better than recommending N1 forever. So the additional value from the myopic algorithm becomes
positive. Section 5.1 provides an example where the existence of an outside mass-market content provider
causes the additional value from the myopic algorithm to be positive. On the other hand, if the expected
profit flow from recommending N1 is convex in λt, then the net present value of always recommending
N1 becomes a submartingale in λt, which implies that the additional value from the myopic algorithm is
negative. For example, if besides customizing content, the firm also has to choose between two types of
advertisements, one targeted to users who prefer N1 and the other targeted to users who prefer N2, then the
flow payoff can be made to be convex in λt.
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and for λ0 ∈ (λ̂, λ∗),

V FL(λ0)−V MY (λ0) =
λitα + (1− λit)(1− α)− c

r
+

2(α− c)
r(γ − 1)

(
λ̂

1− λ̂

)(γ+1)/2

λ
−(γ−1)/2
it (1−λit)(γ+1)/2

We call V FL(λ0)− V MY (λ0) the additional value from the forward-looking algorithm.

Corollary 1.4 The additional value from the forward-looking algorithm, V FL(λ0) −
V MY (λ0), is strictly positive for λ0 /∈ [1 − λ̂, λ̂], and is highest at λ0 = λ∗. It increases

in λ0 for λ0 < 1 − λ∗ and 0.5 < λ0 < λ∗ but decreases in λ0 for 1 − λ∗ < λ0 < 0.5 and

λ0 > λ∗. The value decreases with r and increases with α.

In Figure 3, we plot the additional value from the forward-looking algorithm as a function

of λ0. The forward-looking algorithm creates positive value when λt ∈ (λ̂, λ∗), even though

the algorithm recommends niche-market content which is less likely to match user preferences

than mass-market content. As λ increases, there are two effects. On the one hand, there will

be less uncertainty, which decreases the additional value from the algorithm. On the other

hand, the firm will suffer fewer losses in earlier periods which increases the value for λ < λ∗.

The additional value from the forward-looking algorithm peaks at λ = λ∗. Intuitively,

the forward-looking algorithm and the myopic algorithm begin to diverge at λ∗. Under the

myopic algorithm, users with λt = λ∗ are served mass-market content. Under the forward-

looking algorithm, the firm can trade off short-term losses for more information on a user’s

preferences. This result has implications for when firms should prioritize investing in forward-

looking algorithms. Conventional wisdom may suggest that firms should prioritize learning

when there is higher uncertainty, but this is not always true. Corollary 1.4 shows that the

benefit of the optimal algorithm is non-monotonic in the firm’s knowledge about users.

3.4 Evolution of Recommendations and Profit

As the firm learns about its users over time, how do the firm’s beliefs evolve? What propor-

tion of users are recommended mass-market versus niche-market content? In the Appendix,

we solve for the population density of the firm’s beliefs to characterize learning-induced user

heterogeneity in the population and describe the evolution of the firm’s recommendations

under the myopic and the forward-looking algorithms. We briefly describe our results here.

Proposition 2 Assume λ0 /∈ [1 − λ̂, λ̂]. As t approaches infinity, the firm recommends

niche-market content to λ0−λ̂
1−λ̂ fraction of users under the forward-looking algorithm, and
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Figure 3: Additional value from the forward-looking algorithm

for α = 0.8, c = 0.7 and r = 0.6

λ0−λ∗
1−λ∗ fraction of users under the myopic algorithm. Both fractions decrease with r and

increase with α. As t → ∞, all users who are recommended niche-market content receive

the content types that they prefer.

We illustrate the evolution of the fraction of users who are recommended niche-market

content in Figure 4. Notice that under both the forward-looking and the myopic algo-

rithms, the fraction of users recommended niche-market content decreases and converges

to a constant in the long-term steady state. This fraction decreases with discount rate r

and increases with preference consistency α. Intuitively, with a bigger α, the firm cares

more about learning users’ preferences, and with a smaller r, the firm cares more about

the long-term profit, so the steady-state amount of niche-market content increases. A more

forward-looking algorithm serves more niche-market content both in the short-term and in

the long-term, potentially with an increasing gap over time.

In the Appendix, we also track the evolution of expected flow profit and expected cumula-

tive profit over time under different algorithms. We show that compared to the non-adaptive

algorithm or the myopic algorithm, the forward-looking algorithm may create lower profit

in early periods. The flow profit under the forward-looking algorithm increases over time,

which makes it more profitable than the non-adaptive algorithm or the myopic algorithm

in the long run. In such a case, it is important to know the evolution of profits for the

firm for two reasons. First, the firm can know the approximate duration of financial losses

before the implementation of such an algorithm is profitable. Second, the firm can identify
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Figure 4: Fraction of Niche-Market Content Recommended

for λ0 = 0.88, α = 0.8, c = 0.7 and r = 0.6

the maximum loss to make financial plans accordingly. In Figures 5a, we plot the expected

flow profit under different algorithms. In Figure 5b, we plot the the difference in expected

cumulative profit between the forward-looking and the myopic algorithms.

4 Duopoly Model

In this section, we study firm’s optimal recommendation algorithms under competition. We

explore how competition affects the exploration vs. exploitation trade-off, firms’ incentives

to develop forward-looking algorithms, and the impact of algorithms on welfare.

We expand the monopoly model to allow for two firms. There are two firms, firm 1 and

firm 2, that provide content to users. At t = 0, both firms simultaneously choose their

recommendation algorithms, which are functions mapping information sets to content types.

After firms choose their recommendation algorithms, at each t, the user chooses to visit one

of the two firms. Both firms observe the user’s platform choice, but cannot observe a user’s

experience with the competitor. Thus if the user does not visit firm j at time t, then firm j

does not earn profit nor receive information about the user’s preferences.

As in the monopoly model, each firm can recommend among three types of content:

mass-market content and two types of niche-market content. Niche-market content from the

two firms are different, so that there are a total of four types of niche-market content. Let
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Figure 5: Evolution of profit

(a) Expected profit flow (b) Difference in expected cumulative profit

for λ0 = 0.88, α = 0.8, c = 0.7 and r = 0.6

N1
1 and N1

2 denote two types of niche-market content on firm 1’s platform, and let N2
1 and

N2
2 denote the two types of niche-market content on firm 2’s platform. For simplicity, and

to capture the fact that different platforms carry different content, we assume the user’s

preferences for niche-market content types are independent between the two platforms.

The user’s expected flow utility from seeing content Sjt ∈ {M,N j
1 , N

j
2}, which represents

the content type recommended by firm j at time t, is

u(T j, Sjt ) =


α if Sjt = T j

c if Sjt = M

1− α otherwise

(11)

where T j ∈ {N j
1 , N

j
2} represents the user’s preferred niche-market content type on firm j’s

platform.

As in the monopoly model, firm j’s expected flow profit from serving content Sjt to the

user at time t (conditional on the user visiting firm j), denoted as yj(T j, Sjt ), can be written

as:

yj(T j, Sjt ) =


α if Sjt = T j

c if Sjt = M

1− α otherwise

(12)

The user has a discount rate of ru, and both firms have a discount rate of rf . We focus

on the case of ru ≥ rf , so that users are less patient than the firms.4

4This is motivated by the observation that online users often exhibit short attention spans and would
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Information and Learning

As in the monopoly model, at t = 0, firm j receives a binary signal on the user’s preferred

content type on its own platform with accuracy λj0 > 0.5. That is, firm j observes the correct

user type with probability λj0, and observes the incorrect type with probability 1−λj0. We can

always relabel the content types without loss of generality, so we can simply assume that firm

j has a prior belief that the user prefers N j
1 with probability λj0. Note that we allow λ10 6= λ20,

so that firms can start with different amount of information on the user’s preferences. Each

firm then updates its posterior belief λjt in the same way as in the monopoly model.

With competition, we need to model how the user learns, which then determines her

platform choices. Comparing to the monopoly model, we need to make one additional

assumption. We assume that the user only observes whether she likes the recommended

content, or her utility from the recommended content, but cannot directly observe content

type. This assumption is needed to avoid unravelling of information. Consider the following

case described in discrete time. The user visits firm 1 at time 0. If the user observes that firm

1 recommends the right niche-content type, then the user returns in the next period. Then

firm 1 knows that the recommended content type is correct. If the user observes that firm 1

recommends the wrong niche-content type, then the user visits the competitor in the next

period. Then firm 1 knows that the recommended content type is wrong. Either way, the

user’s preferred content type is immediately revealed to firm 1, so there is no more learning.5

Assumption 1 The user does not observe content type.

Under this assumption, the user has to update her belief on how well each firm’s next rec-

ommendation will be based on past consumption experiences. Intuitively, if a users enjoyed

recent videos recommended by YouTube, then her expectation for the next recommendation

from YouTube increases. However, if YouTube recommended multiple videos that she did not

enjoy, then she would have a lower expectation on the quality of the next recommendation,

and may switch to Tiktok instead.

Given her knowledge of the game, the user has a prior belief of λj0 that firm j receives

the correct signal on the user’s preferences for niche-market content at time 0. Given that

quickly abandon sites or content that do not interest them, especially on mobile devices. A study by Google
and Akamai finds that on e-commerce sites, a 100-millisecond delay in page load time decreases the conversion
rate by 7% (Akamai 2017). A Facebook study finds that on average, mobile users spend 1.7 seconds on each
content, versus 2.5 seconds for desktop users (Facebook IQ 2016). Our model focuses on the case where
users are less patient than firms, and examine how the two discount rates separately affect the equilibrium
outcome.

5Such unravelling doesn’t happen in reality for a few reasons. First, there are more than two types of
content. Second, users may not know how much they like each type of content ex-ante. They also need to
learn about their own preferences over time as they consume various types of content.
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Figure 6: A Multi-agent Bandit Problem

when the user consumes content from firm j, both the user and firm j receive the same

information, the value of the user’s posterior belief that firm j’s inference is correct is also

the value of firm j’s posterior belief, λjt .

Multi-Agent Bandit Problem

This duopoly model is a multi-agent bandit problem, in which three agents have to decide

which “arm” to pull, while taking into consideration the other two agents’ strategies. Each

firm has to decide what content to recommend, and users decide which firm to visit. While

their decisions have to balance the trade-off between exploration and exploitation, they also

have to factor in decisions made by the other agents. For example, a firm’s decision to

“explore” with niche-market content does not yield any information if a user chooses to visit

the other firm, and the user’s choice set also depends on what types of content the user

expects each firm to recommend. Figure 6 gives an intuitive illustration of the setup.

A solution to the problem has to simultaneously solve all three players’ bandit problem.

To solve the problem, we first characterize the user’s optimal choice rule when presented a

menu of content created by the two firms’ recommendation algorithms. Then taking user

behavior as given, we look for Nash equilibrium of the time 0 game in which the two firms

simultaneously choose recommendation algorithms. Finally, we confirm that the user’s choice

rule is optimal under the equilibrium recommendation strategies. Then we can confirm that

the equilibrium we characterize indeed solves all three agents’ dynamic optimization problem

simultaneously.
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User’s Behaviors

The user optimally chooses which firm to visit taking each firm’s recommendation algo-

rithm as given. When making choices, the user correctly anticipates whether she will be

recommended niche-market or mass-market content upon visiting a firm.

First, consider the user’s preferences when she can only choose between niche-market

content from firm j and mass-market content from the other firm. Her continuation value

from consuming niche-market content from firm j can be derived similar to the monopoly’s

value function from equation (21):

U(λjt) =
u(λjt , S

j
t )

ru
+

(λjt)
2(1− λjt)2(2α− 1)2

2ruα(1− α)
U ′′(λjt) (13)

This is a bandit problem with a stopping option (mass-market content). Solving for the

user’s optimal choice of between niche-market content and mass-market content is similar

to solving for a monopoly’s optimal recommendation. Using our results from Proposition 1,

we can infer that the user’s optimal content choice between niche-market content from firm

j and mass-market content is marked by the threshold

λ̂u =
[c− (1− α)](γu − 1)

(2α− 1)(γu − 1) + 2(α− c)
where γu =

√
1 +

8ruα(1− α)

(2α− 1)2
(14)

She prefers niche-market content from firm j for λjt > λ̂u or λjt < 1 − λ̂u, and prefers

mass-market content for λjt ∈ [1− λ̂u, λ̂u].

Next, consider the user’s preferences when she can only choose between niche-market

content from two different firms. This is a two-armed bandit problem without a stopping

option. The user’s optimal policy is to consume from the firm with a higher Gittins index.

See Bank and Küchler (2007) for a derivation of Gittins index theorem in continuous time.

The Gittins index for niche-market content from firm j at a given λjt , G(λjt), is equivalent

to a fixed flow payoff such that if the user can only choose between niche-market content

from firm j and this fixed flow payoff, she switches to this fixed flow payoff exactly at λjt .

We can thus use equation (14) to solve for G(λjt), by replacing c with G(λjt). We then have

the following implicit equation:

λjt =
[G(λjt)− (1− α)](γu − 1)

(2αj − 1)(γu − 1) + 2[α−G(λjt)]
where γu =

√
1 +

8ruα(1− α)

(2α− 1)2
(15)

Note that the right-hand side of equation (15) increases in G(λjt); thus G(λjt) is an

increasing function of λjt .

25



Finally, the user must be indifferent between mass-market content from the two firms.

In this case, we assume that she randomly visits one of the two platforms.

Firms’ Problem

Now we consider the firms’ equilibrium recommendation algorithms at time 0, given the user

behaves as discussed above.

For simpler notation, we let Sjt = M denote firm j recommending mass-market content

to the user at time t, and let Sjt = N denote firm j recommending niche-market content to

the user at time t.6 Let Dj
t (λ

1
t , λ

2
t |S1

t , S
2
t ) ∈ {0, 12 , 1} denote the user’s demand for firm j at

time t. We can summarize D1
t as:
D1
t (λ

1
t , λ

2
t |N,N) = I{G(λ1t ) ≥ G(λ2t )}

D1
t (λ

1
t , λ

2
t |N,M) = I{λ1t > λ̂u}

D1
t (λ

1
t , λ

2
t |M,N) = 1− I{λ2t > λ̂u}

D1
t (λ

1
t , λ

2
t |M,M) = 1

2

(16)

whereas the user’s demand for firm 2 at time t is D2
t = 1−D1

t .

Given the demand function, we can write firm j’s expected flow profit from the user as:

πjt = yj(λjt , S
j
t )D

j
tdt

For a given pair of recommendation path, ({S1
t }, {S2

t }), the expected lifetime value of

the user for firm 1 is

V 1({S1
t } | λ10, λ20, {S2

t }) = E

∫ ∞
0

e−rty1(λ1t , S
1
t )D

1
t dt

The firm’s problem is to find an optimal path of content Sjt to maximize the user’s expected

lifetime value. The expected lifetime value of the user to firm 1 with prior λ10 is

V 1(λ10) ≡ max
{S1
t }
V 1({S1

t } | λ10, λ20, {S2
t }),

Firm j’s information set at time t can be written as Ijt = {Sjs , Y j
s , D

j
s}s<t, where Sjs

is firm j’s recommendation at time s < t, Y j
s is firm j’s cumulative profit at time s < t,

and Dj
s is an indicator function for whether the user visits firm j at time s < t. Firm j’s

recommendation algorithm is a function mapping each information set to a content type,

denoted as Sj(Ijt ) ∈ {N
j
1 , N

j
2 ,M}.

6Because it is apparent which type of niche-market content firm j would choose given any λjt , we drop
the notation on the type of the niche-market content.
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In the monopoly model, the firm’s optimal algorithm is characterized by a stationary

function S(λt). To facilitate direct comparisons with the monopoly model, we look for equi-

librium in which firm j’s recommendation algorithm is similarly characterized by a stationary

function Sj(Ijt ) = Sj(λjt). Note that for such an equilibrium, if it exists, we do not need

to calculate firm j’s belief of the user’s state on the competitor’s platform, which can only

updated from firm j’s partial observation of the user’s past behavior on its own platform.

In such an equilibrium, no matter what firm j’s belief of the user’s state on the competitor’s

platform is, there is a weakly dominant action to take.

We do not put assumption on the priors λj0, and look for equilibrium strategy profiles

that are robust to all possible priors.7 Such an equilibrium exists and is unique. We describe

the equilibrium strategy profile in the following Proposition. We then confirm that the

equilibrium outcome maximizes the user’s utility, hence a solution to the multi-agent bandit

problem. The proof is presented in the Appendix.

Proposition 3 In a duopoly, firm j serves niche-market content if and only if λjt /∈
[1 − λ̂u, λ̂u]. This is the unique stationary algorithm, characterized by Sjt = Sj(λjt), that

constitutes Nash equilibrium for all priors λ10 and λ20. Firms’ equilibrium recommendations

maximize the user’s utility.

Note that the equilibrium content choices maximize the user’s welfare. Consider an

alternative problem where all three types of content (mass-market content, niche-market

content from firm 1, and niche-market content from firm 2) are always available to the user.

This is a classic multi-armed bandit problem for the user. Assuming both λ1t > 0.5 and λ2t >

0.5 WLOG, then by Gittins index theorem, the user’s optimal content choice is niche-market

from firm 1 if G(λ1t ) > sup{G(λ2t ), c}, niche-market from firm 2 if G(λ2t ) > sup{G(λ1t ), c},
and mass-market content if c ≥ sup{G(λ1t ), G(λ2t )}. Note that this is exactly the user’s

content choice in equilibrium. In equilibrium, firm j offers niche-market content only when

λjt > λ̂u which is equivalent to G(λjt) > c by equations (14) and (15). Thus the user’s most

preferred content type is always available to her.

Given that, in equilibrium, both players (the two firms) also maximize their utility con-

ditional on the user’s and the competitor’s actions, we can conclude that Proposition 3 is

7Note that the set of equilibria could depend on the initial positions λ10 and λ20. There can be multiple
equilibria that differ only on off-path nodes which have no impact on the equilibrium outcome. For example,
suppose in equilibrium, both λj0 are low so both firms offer mass-market content immediately. Then one can

construct an alternative equilibrium strategy that only differs for some higher value of λjt . Because firms
offer mass-market content so no learning occurs, we never reach such a state in equilibrium. We eliminate
this trivial multiplicity by searching for equilibrium strategy Sj(λjt ) that is invariant to λj0’s. That is, S1(λ1t )
and S2(λ2t ) constitute equilibrium regardless of what λ10 and λ20 are.
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Figure 7: The optimal threshold as a function of the user’s discount rate

for rf = 1, c = 0.7, and α = 0.8

a solution to the multi-agent bandit problem, where each agent optimally solves its bandit

problem conditional on the other two agents’ strategies.

Figure 7 shows firms’ equilibrium threshold as a function of the user’s discount rate

ru, and compare them to the the myopic threshold and monopoly’s forward-looking thresh-

old derived from Section 3. Firms’ optimal recommendation algorithms fall between the

monopoly’s forward-looking algorithm and the myopic algorithm. The forward-looking al-

gorithm under competition recommends less niche-market content than under monopoly be-

cause λ̂u is higher than monopoly’s threshold when ru > rf . Competition pushes firms away

from exploration and towards exploitation. Also λ̂u is increasing in ru but does not depend

on rf . Thus, firms are forced to be less forward-looking and recommend less niche-market

content to prevent impatient users from switching.

From equation (14), we can see that, as ru → ∞, λ̂u approaches the myopic threshold,

λ∗. As ru → r+f , λ̂u approaches the monopoly’s forward-looking threshold, λ̂.

Corollary 3.1 In a duopoly, firms recommend less niche-market content than a monopoly

does if the user has a higher discount rate than the firms. Firms offer less niche-market

content as the user’ discount rate increases. The optimal forward-looking algorithm under

competition does not depend on firms’ own discount rate.

Intuitively, when ru is higher, users are more myopic in their content preferences. Con-
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sequently, a firm’s choice of content has to be less forward-looking to prevent users from

switching to the competitor. For example, consider a scenario where a user prefers mass-

market content to niche-market content from either firm. A monopoly may still choose to

offer niche-market content because the firm, who is more patient than the user, values the

information collected. However, if a competitor recommends mass-market content to users

visiting its platform, then the firm that recommends niche-market content will lose demand.

If the competitor is offering niche-market content, then the firm can steal demand by offering

mass-market content. This competitive pressure pushes firms to recommend content that

caters to the user’s time preferences. A monopoly can offer more niche-market content to

extract future value from exploration. However, when competing for users’ attention, the

value from exploration is muted if users are less patient and can take their demand elsewhere.

As Figure (7) shows, when users become more myopic, firms’ optimal forward-looking

algorithms also approach their myopic algorithms. In the limit as ru → ∞, the optimal

forward-looking threshold λ̂u converges to the myopic threshold, c−(1−α)
2α−1 . Thus, when users

are myopic, the myopic algorithm itself is optimal. This implies that, when facing myopic

users, the forward-looking algorithm provides no extra value than the myopic algorithm,

regardless of whether the competitor has the forward-looking algorithm or the myopic algo-

rithm.

Corollary 3.2 As ru → ∞, the equilibrium forward-looking algorithm under competition

converges to the the myopic algorithm, and the additional value from the forward-looking

algorithm converges to zero.

Comparing Corollary 3.2 to Corollary 1.4, we see that the presence of a competitor de-

creases the value from the forward-looking algorithm if the users’ discount rate is sufficiently

high. This also implies that competition lowers firms’ incentives to invest in the technolog-

ical upgrade from the myopic algorithm to the forward-looking algorithm when users are

sufficiently impatient.

Note that from Proposition 3, we know that the equilibrium outcome under the com-

petitive threshold, λ̂u, maximizes the user’s utility. This implies that, the impact on user

welfare of both firms upgrading technology from the myopic algorithm to the forward-looking

algorithm must be positive. However, note that the monopoly threshold, λ̂, does not depend

on the user’s time preferences. The monopoly’s forward-looking algorithm is not optimal for

the user unless ru = rf . A monopoly with the forward-looking algorithm recommends too

much niche-market content with respect to user welfare. If the user is sufficiently myopic, as

ru →∞, technological upgrade from the myopic algorithm to the forward-looking algorithm

actually decreases user welfare. Thus the development of the forward-looking algorithm may
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lower user welfare under monopoly, but always benefits the user under competition.

Our findings illustrate that competition lowers the optimal level of exploration in the

exploration vs. exploitation trade-off. In the case of sufficiently impatient or myopic users,

competition also presents a new trade-off between incentives in technological upgrade and

the effect of such upgrade on consumer welfare. We summarize our findings conceptually in

Figure 8.

Figure 8: Impact of Competition When Users are Impatient

5 Asymmetric Extensions

In Section 4, we studied competition between two firms with symmetric technology. In

this section, we consider extensions where firms have asymmetric capabilities to learn and

recommend.

5.1 Against a Mass-Market Content Provider

A focal firm that recommends content competes with a traditional content provider that

only serves mass-market content. This is also equivalent to adding an outside option to the

monopoly model. At each moment, the user chooses to visit either the recommendation firm

or the mass-market content provider.

Consider the user’s preferences between niche-market content and mass-market content.

The user’s optimal content choice is marked by the threshold λ̂u from equation 14. She

prefers niche-market content from the focal firm for λt > λ̂u or λt < 1 − λ̂u, and prefers

mass-market content from either firm for λt ∈ [1 − λ̂u, λ̂u]. If both firms offer mass-market

content, we assume she visit randomly.

Similar to our analysis from Section 4, one can show that the optimal forward-looking
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recommendation algorithm must follow the threshold λ̂u. The firm switches from niche-

market content to mass-market content as λt drops to this threshold. To see this, note that

the firm’s profit from mass-market content is 1
2
c. Given our assumption that c < 1, the

firm has no incentive to offer mass-market content as long as the demand for niche-market

content is positive. However, if λt ∈ [1 − λ̂u, λ̂u], then the user prefers to consume mass-

market content. Given the presence of a competitor who always offers mass-market content,

the firm has to recommend mass-market content in order to receive demand.

Proposition 4 When competing with a mass-market content provider, the firm recommends

niche-market content if and only if λt /∈ [1− λ̂u, λ̂u].

Note that the optimal forward-looking algorithm in this case is exactly the same as the

equilibrium algorithm in the symmetric duopoly model. Thus our results from Section 4

replicate. When competing against a mass-market content provider, the firm offers less

niche-market content than a monopoly does if users have a higher discount rate than the

firm. The firm offers less niche-market content as users’ discount rate increases. As ru →∞,

the user becomes myopic. This forces the firm to focus on exploitation. In the limit, the

additional value from the forward-looking algorithm converges to zero. Under monopoly, the

development of the optimal algorithm can lower user welfare. However, with the presence of

an outside option, developing of forward-looking algorithms is strictly beneficial to users.

In the monopoly model, the value of upgrading from the non-adaptive algorithm to the

myopic algorithm is zero. However, this is no longer true when users have an outside option.

Intuitively, with the threat from an outside option, the myopic algorithm creates value by

preventing the user from switching to the other platform. If the firm employs the non-

adaptive algorithm, then it would lose the user forever when λt drops to λ̂u. By using the

myopic algorithm, the firm is able to keep half of the user’s demand on its platform even when

λt drops to λ̂u. This also implies that the presence of an outside option may increase firms’

incentives to develop myopic algorithms even though it lowers their incentives to develop

forward-looking algorithms. We calculate the additional value from the myopic algorithm in

the Appendix and prove the following Corollary.

Corollary 4.1 When competing against a mass-market content provider, the additional

value from the myopic algorithm is strictly positive if λ0 >
c−(1−α)
2α−1 .

Figure 9 shows the additional value of the myopic algorithm.

Similar to Proposition 2, one can show that as t → ∞, λ0−λ̂u
1−λ̂u

fraction of the users

consume niche-market content from the recommendation firm. The rest of the users split
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Figure 9: Additional value from the myopic algorithm

for α = 0.8, c = 0.7, and r = 0.6

their time evenly between the recommendation firm and the mass-market content provider.

Thus, the steady-state demand for the recommendation firm is (1+λ0)/2−λ̂u
1−λ̂u

, which decreases

in ru and increases in α. The steady-state demand for the traditional content provider is
(1−λ0)/2)

1−λ̂u
, which increases in ru and decreases in α. The traditional content provider faces

stronger competition from the content recommendation firm if users are more patient and

their preferences are more consistent over time.

5.2 Different Speed of Learning

We modify the duopoly model by allowing the the user to have different values of α on the

two platforms, so the user is more consistent in her preferences for niche-market content on

one platform versus the other platform. In such a case, the platform with a higher α has

a greater ability to learn the user’s preferences, because the noise in the user’s response, σt

(from equation 4), decreases in α. Let αj denote the parameter for firm j. Without loss of

generality, we assume that α1 ≥ α2, so that firm 1 has an advantage in learning over firm 2.

The user’s expected utility from firm j’s recommendation at time t, Sjt , becomes

ujt = u(T j, Sjt ) =


αj if Sjt = T j

c if Sjt = M

1− αj otherwise

(17)
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where T j ∈ {N j
1 , N

j
2} represents the user’s preferred niche-market content type on firm j’s

platform.

Consider the user’s preferences between niche-market content from firm j and mass-

market content from the other firm. With different αj’s, equation (14) becomes

λ̂ju =
[c− (1− αj)](γju − 1)

(2αj − 1)(γju − 1) + 2(αj − c)
where γju =

√
1 +

8ruαj(1− αj)
(2αj − 1)2

(18)

which is a different threshold for each firm.

Next, consider the user’s preferences when she can only choose between niche-market

content from two different firms. Equation (15) now becomes:

λjt =
[Gj(λjt)− (1− αj)](γju − 1)

(2αj − 1)(γju − 1) + 2[αj −Gj(λjt)]
where γju =

√
1 +

8ruαj(1− αj)
(2αj − 1)2

(19)

which gives a different Gittins index function for each firm, Gj(λjt). Note that the right-hand

side of equation (19) decreases in αj; thus we have G1(λ) ≥ G2(λ), because by assumption,

we have α1 ≥ α2. The user prefers niche-market content from firm 1 over firm 2 when

λ1t = λ2t .

One can then prove that, similar to the symmetric duopoly model, there is a unique

equilibrium in which firm j’s recommendation is governed by a threshold. The different

now is that, due to different αj, the two firms follow different thresholds. This leads to the

following modification of Proposition 3.

Proposition 5 In a duopoly, firm j serves niche-market content if and only if λjt /∈ [1 −

λ̂ju, λ̂
j
u].

The fact that α1 ≥ α2 implies λ̂1u ≤ λ̂2u, so firm 1 recommends more niche-market content

than firm 2 does. Intuitively, having a higher α means that the user’s behavior is less noisy,

which facilitates faster learning. A higher α also means higher profit from serving niche-

market content. Both factors encourage firm 1 to serve more niche-market content than firm

2 even when the user dislikes previous recommendations.

Figure 10 shows both firms’ equilibrium thresholds as functions of the user’s discount

rate ru.

It then follows that the qualitative results from the symmetric duopoly model remain

robust. Competition lowers the optimal level of exploration, so the optimal forward-looking

algorithm under competition is between the myopic algorithm and the monopoly’s optimal
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Figure 10: Different optimal thresholds as functions of the users’ discount rate

for rf = 1, c = 0.7, α1 = 0.8, and α2 = 0.75

forward-looking algorithm. Competition lowers firms’ incentives to invest in the technolog-

ical upgrade from the myopic algorithm to the forward-looking algorithm when users are

sufficiently impatient. The development of the forward-looking algorithm may lower user

welfare under monopoly, but always benefits the user under competition.

6 Discussion and Managerial Implications

With companies across industries investing heavily in both hardware and software to expand

their capacity to acquire, administer, and analyze large volumes of diverse data, there is much

excitement about the potential to learn and act upon customer information. Complementing

the extant research that focuses on the technical aspects of this phenomenon, our study

analyzes the theoretical and strategic implications of such practices. Our findings have a

number of important implications for managers and policy makers.

First, when making personalized and adaptive interventions, it is important for firms to

take a forward-looking approach. Firms should recognize the value of information collected

from observing customer responses, and customize offers to expedite this learning. Our

analysis shows that in the absence of competition, the entire value of adaptive learning can

come from the forward-looking aspect. For companies that are leaders in certain markets, it

is important to understand the inadequacy of supervised learning-based myopic algorithms
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that focus solely on exploitation of existing data and ignore forward-looking exploration, and

to invest in technologies such as reinforcement learning to guide information acquisition.

However, proactive learning may imply near-term sacrifice. As our analysis shows, the

optimal forward-looking algorithm recommends more personalized and niche-market offer-

ings than a myopic algorithm does. When a company does not have much information about

a customer’s preferences, e.g., when the customer is relatively new, the company should pri-

oritize strategic experimentation to extract information from the customer’s responses and

expedite learning. However, doing so could lead to worse recommendations, lower user en-

gagement, and lower profit in the near term. As companies upgrade their infrastructure, it

is important to recognize this implication and be prepared to tolerate worse performance in

the near term. A long-term perspective is essential for the success of such initiatives.

Second, the optimal trade-off between exploration and exploitation is significantly differ-

ent for companies facing competition. Managers should realize that a customer may switch

back and forth between their platforms and their competitors’. Consequently, the customer’s

future switching behavior needs to be incorporated into the forward-looking analysis. The

need to compete for customers’ attention should shift the focus away from exploration and

toward exploitation, especially when customers have short attention spans and seek instant

gratification. Ultimately, if a customer does not like the company’s offerings and switches to

a competitor’s platform, then the company can neither gather information nor profit from

that customer. Thus, companies that do not enjoy the status of a local monopoly may have

to curtail learning and make less niche-market offerings. Companies with superior learning

capacities are more likely to derive competitive advantages in markets where consumers are

more patient.

Third, competition may not foster investment and innovation. Instead, the incentive to

invest in developing learning capacity is a complicated point. For a monopoly that does not

need to compete for users’ attention, the value of learning is concentrated on exploration.

This incentivizes the company to develop forward-looking learning capacities. However,

the value of learning is non-monotonic in the monopoly’s prior knowledge about customer

preferences. While it might be intuitive to think that learning is more important when

the company knows less about customers’ preferences, that is not always true. The less a

company knows to begin with, the longer and more costly the learning process is. Successful

exploration requires tolerating sub-par offerings in the near term which results in lower

engagement and lower profit.

In contrast to the monopoly case, competition makes myopic adaptive learning algorithms

valuable by retaining customers from switching. However, the incentive to invest in forward-

looking capabilities can be lower, and this incentive will disappear if customers have very
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short attention spans and only seek immediate gratification. If users do not factor in how

their current platform and consumption choices affect the future offerings, and instead only

seek to maximize their immediate satisfaction, then it would be pointless for the competing

companies to develop forward-looking learning infrastructures, as myopic adaptive learning

is the optimal strategic choice. Competition boosts companies’ incentives to develop myopic

adaptive-learning capacities, but dampens their incentives to develop forward-looking ones.

Understanding the complexity of the incentive to develop learning capabilities is important

for both managers and policy makers.

Even though our model does not directly deal with privacy, it has implications on how al-

gorithms and competition affect the way companies learn and act on the information collected

on customers’ preferences. Competing firms’ ability to learn individual preferences through

strategic customization depends on how forward-looking customers are. The more myopic

customers act, the less information firms will be able to infer from their actions. In terms of

consumer welfare, a monopoly with a myopic algorithm learns too little, while a monopoly

implementing a forward-looking algorithm learns too aggressively. When customers are very

impatient compared to the monopoly, the monopoly’s adoption of forward-looking algorithms

could hurt consumer welfare by recommending too much sub-par content in the short term in

pursuit of collecting more information on user preferences. In comparison, competition forces

firms to behave somewhere between the two, which benefits customers. Since the competitive

pressure forces companies to align their customization strategies with the time preferences of

the customers, the adoption of forward-looking learning by competing companies is always

beneficial to users.

Our discussion suggest that competition can have reverse effects on innovation and con-

sumer welfare. A firm with monopolistic power has more incentives to develop forward-

looking algorithms, but such technology may hurt users by lowering near-term service qual-

ity. In contrast, competitive pressure lowers firms’ incentives to develop forward-looking

algorithms, even though such technology is beneficial to users. Our findings add new per-

spectives to the discussion on how to regulate major tech firms. In 2020, policy makers

around the world have expressed increasing concern over monopoly power held by firms such

as Google, Facebook, Amazon, and Apple, and the effects of such market power on inno-

vation and consumer welfare. In July 2020, the CEOs of the four companies testified in

the U.S. Congress regarding market power and alleged anti-competitive behaviors (Romm

2020). Around the same time, lawmakers and regulators in Europe proposed new laws and

inquiries aimed at limiting the market power of large tech companies (Satariano 2020). In

China, regulators released a new antitrust guideline in November 2020 specifically targeting

internet giants such as Alibaba and Tencent (Liu and Ren 2020).
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In October 2020, the U.S. Congress released a report on competition in digital markets

including search, e-commerce, social media, and digital advertising. The report suggests

that the concentrated market power held by these firms lead to less innovation as well as

lower service quality by deterring entrepreneurs from entering the market (U.S. House, 2020,

pp. 46-56). Earlier in the year, Britain’s antitrust agency published a similar report on

online platforms, expressing concern that market power held by Google and Facebook in

their consumer-facing markets hampers innovation and lowers service quality (Competition

and Markets Authority, 2020, pp. 310-313). Both reports also warn against over-collection of

consumer data as a consequence of market power. Our study presents a complementary view

on the effects of market power on innovation and consumer welfare. While our study echoes

the concern that market power leads to over-learning and lower service quality, we shows

how competition could potentially discourage innovation when it comes to development and

adoption of more advanced learning algorithms.8 According to OECD, by the end of 2019, 50

countries (including the European Union) “have launched, or have plans to launch, national

AI strategies” (Berryhill et al. 2020). For policy makers in these countries, it is important to

understand how the market structure affects the development of AI capacities in a global race,

while balancing AI development with other factors such as consumer protection, privacy, and

general entrepreneurship in digital markets.

7 Conclusion

The rise of AI and machine learning has dramatically changed marketing practices. In-

teraction between firms and consumers is increasingly frequent, personalized, automated,

and more importantly guided by deliberate strategies. As marketing decisions become more

evidence-based and algorithm-aided, companies are investing heavily in the technology and

analytical expertise that enable real-time collection of customer data and performing dy-

namic interventions based on the data. However, while extensive research has focused on

data modeling and analysis techniques, noticeably less attention has been paid to the theo-

retical and strategic implications, especially under competition.

In this paper, we develop an analytical model of adaptive content recommendations under

competition. We formulate content recommendation algorithms as solutions to a stochastic

dynamic programming problem under demand uncertainty. We compare recommendation

algorithms under different learning regimes, and investigate how the value from more ad-

vanced algorithms vary across different competitive conditions. The model allows us to

8This occurs in our model with no switching cost and when consumers are myopic or sufficiently impatient.
Whether this result remains in settings other than content consumption is an important topic for future
research.
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address three questions: how competition affects the optimal exploration vs. exploitation

trade-off, how competition affects firms’ incentives to invest in more advanced algorithms,

and how such technological upgrades affect consumer welfare.

Several limitations of this paper open avenues for future research. First, we focus on

the specific context of content recommendation. Many other marketing decisions such as

pricing, coupon distribution, advertising campaign, service assignment, and product recom-

mendation are also solutions to a stochastic dynamic programming problem under demand

uncertainty, in which the firm needs to learn about consumer preferences and trade off in-

stantaneous cost with future payoff in order to maximize long-term profit. While the key

insights revealed from our analysis have general implications, these contexts also have specific

attributes that warrant more focused examination. Second, our stylized model only features

two user types and three content types. It would be interesting to see what happens under

a more general distribution of preferences and choices. Third, we only consider competition

between two firms, with independent user preferences for content from the two firms. Future

research may consider a more competitive scenario or when preferences are correlated across

platforms. Finally, learning in our model is symmetric between a user and the firm she visits

(although asymmetric between firms). Adding private information to users may significantly

complicates the problem, but is nonetheless an important direction for future research.
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Appendix

Proof of Equation 8

To derive the Hamilton-Jacobi-Bellman equation, notice that when the firm recommends

niche-market content, the firm’s value function satisfies

V (λt) = y(λt, St)dt+ (1− rdt)E[V (λt+dt)]

= y(λt, St)dt+ V (λt)− rV (λt)dt+
σ(λt)

2

2
V ′′(λt)dt (20)

which simplifies to the following ordinary differential equation:

V (λt) =
y(λt, St)

r
+
σ(λt)

2

2r
V ′′(λt) (21)

The value function has two terms which can be understood in the following ways. The first

term, y(λt, St)/r, can be viewed as the present value of the profit if the firm stops learning

information about the user. The second term corresponds to the value from learning and

adapting to user behaviors in the future. Notice that it is proportional to the instantaneous

volatility of λt and V ′′. Consequently, V must be convex in λt for the value of learning and

adapting to be positive. The value from adapting to new information is higher when λt is

more volatile.

The general solution for equation (21) is

V (λt) =
y(λt, St)

r
+ b1λ

(γ+1)/2
t (1− λt)−(γ−1)/2 + b2λ

−(γ−1)/2
t (1− λt)(γ+1)/2, (22)

with

γ =

√
1 +

8rα(1− α)

(2α− 1)2
. (23)

However, because γ > 1, as λt → 1 there will be no more uncertainty and thus the value

function should satisfy V (1) = y(1, S(1))/r. Consequently, we must have:

b1 = 0. (24)

Thus the solution simplifies to

V (λt) =
y(λt, St)

r
+ b2λ

−(γ−1)/2
t (1− λt)(γ+1)/2, (25)

44



Proof of Proposition 3

First, we prove that this is an equilibrium. We show that neither firm has an incentive to

deviate. Due to symmetry around λ = 0.5, we assume WLOG λ1t > 0.5 and λ2t > 0.5.

Suppose λ1t ≤ λ̂u, and consider firm 1’s deviation from mass-market content to niche-market

content. By equation (16), firm 1 will receive no demand for any λ2t . Given that firm 1 also

does not learn any information if the user visits the competitor, this deviation cannot be

profitable. Suppose λ1t > λ̂u, and consider firm 1’s deviation from niche-market content to

mass-market content. If λ2t > λ̂u, then firm 1 has no demand after deviating, which cannot

be profitable. If λ2t ≤ λ̂u, then firm 1 gets a flow profit of 1
2
c with no new information. Given

that 1
2
c < 0.5 < λ1t , the deviation cannot be profitable. One can show that firm 2 does not

have a profitable deviation in the same way.

Next, we prove this is the unique equilibrium that is robust to all priors λ10 and λ20. First,

consider the case of λ10 6= 0.5 and λ20 = 0.5. We must have S2(0.5) = M in equilibrium,

because firm 2 always gets no demand if it serves niche-market content when λ2t = 0.5.

Consider an alternative strategy for firm 1. Suppose there exists an equilibrium strategy

profile such that S1(λ̃) = M for some λ̃ > λ̂u. Then select λ10 = λ̃ and λ20 = 0.5. At

time 0, firm 1 can profitably deviate by switching to the strategy in Proposition 3, offering

niche-market content if and only if λjt /∈ [1− λ̂u, λ̂u]. After deviating, firm 1 gets flow payoff

of λ1t >
1
2
c until λ1t hits λ̂u, and gets flow payoff of 1

2
c after λ1t hits λ̂u. This is strictly more

profitable than getting 1
2
c at all t. Now suppose there exists an equilibrium strategy profile

with S1(λ̃) = N for some λ̃ ≤ λ̂u. Then let λ10 = λ̃ and λ20 = 0.5. Then firm 1 can profitably

deviate to offering mass-market content forever, which increases the total payoff from 0 to
c
2r

. Thus no other strategy for firm 1 can be equilibrium for all priors.

Now by symmetry we have established that S1(0.5) = M , which then can be used to prove

that there is no alternative strategy for firm 2 that can be equilibrium for all priors. The

strategy profile in Proposition 3 is the unique stationary strategy profile, where Sjt = S(λjt),

that constitutes equilibrium from possible priors.

Proof of Corollary 4.1

Note that the firm’s value function for λt > λ∗ follows the same general solution as equation

(8). However, at λt = λ∗, the user splits her time between the two providers. We have the

following boundary condition

rV MY (λ∗) =
c

2r
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Solving this gives b2 = − c
2r
λ∗

γ−1
2 (1− λ∗)− γ+1

2 . Thus for λt > λ∗, the value function is:

V MY (λt) =
λtα + (1− λt)(1− α)

r
− c

2r
(
λt
λ∗

)−
γ−1
2 (

1− λt
1− λ∗

)
γ+1
2

If the firm uses the non-adaptive algorithm, then if it recommends niche-market content, the

firm would lose users at λ∗. If the firm recommends mass-market content, it splits demand

and earns c
2

as flow profit. The value function becomes:

V NA(λt) = max{ c
2r
,
λtα + (1− λt)(1− α)

r
− c

r
(
λt
λ∗

)−
γ−1
2 (

1− λt
1− λ∗

)
γ+1
2 }

For λ0 > λ∗, we have V MY (λt) >
c
2r

, and

c

2r
(
λt
λ∗

)−
γ−1
2 (

1− λt
1− λ∗

)
γ+1
2 > 0

This implies that the additional value from the myopic algorithm, V MY − V NA, is strictly

positive for λ0 > λ∗.

Evolution of Recommendations for Monopoly

Users who are same ex-ante become heterogeneous from the firm’s view as they exhibit

different behaviors towards past recommendations. The population density starts as uni-

modular and becomes bi-modular. As time goes to infinity, the mass moves toward 1 or λ̂.

In the limit, all users who are recommended niche-market content must receive the correct

type of content.

Let Ĥ(t) denote the probability that the user hits threshold λ̂ before time t. By the

law of large numbers, Ĥ(t) is also the proportion of users in the population that hits λ̂. So

1− Ĥ(t) is the number of users being recommended content type N1 at time t.

Let

z = ln

(
λ

1− λ

)
Then we have:

λ = g(z) ≡ ez

1 + ez

h(λ, t) = p(z, t)/g′(z)

g′(z) =
ez

(1 + ez)2

here, h(λ, t) and p(z, t) are probability density function of λ and z at time t.
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For users who prefer content type N1, we have

dz =
1

2
σ2
zdt− σzdW

with σz ≡ (2α− 1)/
√
α(1− α).

The probability density of z is

p1(z, t) =
1√

2πσ2
zt

exp

(
−(z − z0 − σ2

zt/2)2

2σ2
zt

)
The probability density for λ at time t is

h1(λ, t) = p1(z, t)dz/dλ = p1(z(λ), t)/[λ(1− λ)]

And we have

λt =
(λ0/(1− λ0)) exp (σ2

zt/2− σzW (t))

1 + (λ0/(1− λ0)) exp (σ2
zt/2− σzW (t))

Moreover, there are 1 − λ0 proportion of users who prefer content type N2. For this

group of users, their posterior belief λ follows the following stochastic differential equation:

dz = −1

2
σ2
zdt− σzdW

The probability density of y is

p2(z, t) =
1√

2πσ2
zt

exp

(
−(z − z0 + σ2

zt/2)2

2σ2
zt

)
The probability density for λ at time t is

h2(λ, t) = p2(z, t)dz/dλ = p2(z(λ), t)/[λ(1− λ)]

and we have for users who prefer N2:

λt =
(λ0/(1− λ0)) exp(−σ2

zt/2− σzW (t))

1 + (λ0/(1− λ0)) exp(−σ2
zt/2− σzW (t))

The first hitting time probability density for users who prefer N1 is

h1(z0, t) = (z0 − ẑ)
1√
σ2
zt

3
n

(
z0 − ẑ + σ2

zt/2

σz
√
t

)
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The cumulative probability distribution of hitting times for this case is

H1 = Φ

(
(ẑ − z0)− σ2

zt/2

σz
√
t

)
+ exp(ẑ − z0)Φ

(
(ẑ − z0) + σ2

zt/2

σz
√
t

)

For users who prefer N2:

h2(z0, t) = (z0 − ẑ)
1√
σ2
zt

3
n

(
z0 − ẑ − σ2

zt/2

σz
√
t

)
The cumulative probability distribution of hitting times for this case is

H2 = Φ

(
(ẑ − z0) + σ2

zt/2

σz
√
t

)
+ exp(z0 − ẑ)Φ

(
(ẑ − z0)− σ2

zt/2

σz
√
t

)

The probability density is

h(z0, t) = λ0h1(z0, t) + (1− λ0)h2(z0, t)

= (λ0 + (1− λ0) exp(z0 − ẑ))(z0 − ẑ)
1√
σ2
zt

3
n

(
z0 − ẑ + σ2

zt/2

σz
√
t

)
(26)

and the total cumulative probability distribution of hitting times for the model is

H(t) = λ0H1(z0, t) + (1− λ0)H2(z0, t)

=
λ0

λ̂

[
Φ

(
(ẑ − z0)− σ2

zt/2

σz
√
t

)
+ exp(ẑ − z0)Φ

(
(ẑ − z0) + σ2

zt/2

σz
√
t

)]
(27)

where z = ln
(

λ
1−λ

)
and σz = (2α − 1)/

√
α(1− α). As t approaches infinity, Ĥ(t)

converges to a constant:

lim
t→∞

Ĥ(t) =
1− λ0
1− λ̂

Let λ̄t denote the probability that a user who prefers content type N1 conditional on that

the firm recommends content type N1 to her at time t. Since λt is a martingale for all i, we

must have

(1− Ĥ(t))λ̄t + Ĥ(t)λ̂ = λ0

and thus

λ̄t =
λ0 − Ĥ(t)λ̂

1− Ĥ(t)
(28)

and

lim
t→∞

λ̄ = 1
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Since Ĥ(t) is increasing in t, λ̄t must also increase in t. Note that λ̄ approaching 1 implies

that in the limit, only users who prefer type N1 may receive N1 content. Users who prefer

type N2, but were incorrectly recommended type N1 content initially under the prior, receive

mass-market content in the limit. This also implies that there will be 1−λ0
1−λ̂ − (1−λ0) fraction

of users who prefer type N1 but are incorrectly recommended mass-market content in the

long run.

Similarly, for the myopic algorithm, we can show that the probability that the user hits

the myopic threshold λ∗ before time t is

H∗(t) =
λ0
λ∗

[
N

(
(z∗ − z0)− σ2

zt/2

σz
√
t

)
+ exp(z∗ − z0)Φ

(
(z∗ − z0) + σ2

zt/2

σz
√
t

)]
(29)

and

lim
t→∞

H∗(t) =
1− λ0
1− λ∗

and lim
t→∞

λ̄ = 1

The above results are summarized in Proposition 2.

Evolution of Profit for Monopoly

Recall that Ĥ(t) is the fraction of users who have hit the absorbing barrier λ̂ at time t and

λ̄t denotes the population average of λt among the remaining users. The profit flow at time

t is

πt ≡ E

∫
y(λt, S(λt))

= (1− Ĥ(t))y(λ̄t, S(λ̄t)) + Ĥ(t)c

= y(λ0, S(λ0))− Ĥ(t)y(λ̂, S(λ̂)) + Ĥ(t)c

= λ0α + (1− λ0)(1− α)− Ĥ(t)[λ̂α + (1− λ̂)(1− α)− c]

(30)

Note that c > y(λ̂, S(λ̂)) and Ĥ(t), which is a cumulative density function, is an increasing

function of t. Thus, πt must be increasing in t. If λ0 ∈ (λ̂, λ∗), then π(t) is smaller than c

for small t. For πt = c, we must have

Ĥ(t) =
y(λ0, S(λ0))− c
y(λ̂, S(λ̂))− c

=
λ0(2α− 1) + (1− α)− c
λ̂(2α− 1) + (1− α)− c

The turning point for when expected profit flow is above c is given by t0 = π−1(c) =

Ĥ−1
(
y(λ0,S(λ0))−c
y(λ̂,S(λ̂))−c

)
. This means that the firms expects to suffer losses from deploying the

forward-looking algorithm until the proportion of users that receive mass-market content

reach y(λ0,S(λ0))−c
y(λ̂,S(λ̂))−c .
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We define the discounted cumulative profit function up to time t as Πt. For λ0 ∈ (λ̂, λ∗),

we plot function π(t) and Π(t) in Figures 5a and 5b, and compare to flow and cumulative

profit under myopic or non-adaptive algorithms. The expected profit flow increases over time

but remains below myopic flow profit until t0. The gap between Π(t) and the cumulative

profit under the myopic algorithm first widens over time, then begins to narrow after t > t0,

and eventually becomes positive after some later time t1. There must exist such t1, otherwise

the algorithm must not be optimal.

The results are summarized as follows:

Corollary A.1 The expected flow profit under the forward-looking algorithm increases over

time. For λ0 ∈ (λ̂, λ∗), the expected flow profit under the forward-looking algorithm is lower

than the expected flow profit under the non-adaptive or the myopic algorithms for t < t0 =

Ĥ−1
(
y(λ0,S(λ0))−c
y(λ̂,S(λ̂))−c

)
.
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Online Appendix

Endogenous Monetization Level for Monopoly

In the model model, the firm earns a fixed margin when a user engages with the content, and

each user only consumes one unit of content per “period.” The speed of learning is constant.

In this section, we consider an extension in which the firm’s margin, the quantity of content

that a user consumes, and the speed of learning are endogenous. For simplicity, we assume

that users are myopic in that they only maximize their instantaneous utility.

The firm chooses the level of monetization, which affects the quantity of content that

users consume and the firm’s speed of learning. For example, the firm may generate profit

from advertising embedded in the content. The amount of advertising can be seen as a

price levied on users. A higher level of monetization, such as by increasing the amount of

advertising, increases the margin that the firm gets per content viewed, but decreases the

amount of content that a user views on the platform. We also assume that in each period,

users have diminishing marginal utility on the quantity of content viewed this period.

At time t, the user’s marginal utility from content is du
dqt

= β1 − β2qt − pt, where qt is the

amount of content consumed by the user at time t, and pt is the level of monetization.

The process for the cumulative profit from the user is the same as in the base model, but

with respect to the cumulative amount of content viewed, Q, instead of time t:

dY (Q) = y(T, SQ)dQ+
√
α(1− α)p2QdW (Q) (31)

where the cumulative amount of content viewed follows dQt = qtdt. This implies:

dY (t) = y(T, St)qtdt+
√
qt

√
α(1− α)p2tdW̃t (32)

for some Wiener process W̃t. Because the user maximizes her instantaneous consumption

utility, we have

qt =
β1
β2
− 1

β2
pt

The expected profit flow at time t becomes:

πt = qt
[
pt[λtα + (1− λt)(1− α)]

]
The learning process becomes:

dλt =
λt(1− λt)(2α− 1)ptqt

α(1− α)p2t
[y(T )− y(λt)]dt+

λt(1− λt)(2α− 1)ptqt√
α(1− α)p2t qt

dWt

=
λt(1− λt)(2α− 1)(β1

β2
− 1

β2
pt)

α(1− α)pt
[y(T )− y(λt)]dt+

λt(1− λt)(2α− 1)
√

(β1
β2
− 1

β2
pt)√

α(1− α)
dWt
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Notice that the standard deviation of λt,
λt(1−λt)(2α−1)

√
(
β1
β2
− 1
β2
pt)√

α(1−α)
, decreases in pt. Thus,

lowering the level of monetization can increase the speed of learning by increasing the amount

of content users view, which increases the speed of data collection.

The firm’s value function, or maximized lifetime value is given by:

V (λt) = max
pt

V (pt, λ0) = V (pt, λ0) = E

∫ ∞
0

e−rtπtdt

The HJB equation gives us:

0 = 0 +
[

max
pt

qt
(
pt[λtα + (1− λt)(1− α)]

)]
− rV (λt) +

λ2t (1− λt)2(2α− 1)2p2t qt
2(α(1− α)p2t )

V ′′(λt)

For an interior solution, we take the first-order condition of the right hand side with respect

to pt. If there is no learning, the myopic strategy is to choose set the monetization level at

p∗t = M−1(0) =
β1
2

The difference between the myopic level and the forward-looking level is:

p∗t − p̂t =
λ2t (1− λt)2(2α− 1)2

4α(1− α)
V ′′(λt)

Note that in Corollary 1.3, we show that if the firm makes myopic recommendations, then

V ′′(λt) = 0, and the additional value from the myopic algorithm is zero. This means that

if the firm makes recommendation myopically, it should monetize the content at a constant

level of p∗ = β1
2

.

We can obtain the ODE for the value function (for niche-market content) by rearranging

equation (21):

V (λ) = q̂t
p̂t[λtα + (1− λt)(1− α)]

r
+ q̂t

λ2(1− λ)2(2α− 1)2

2rα(1− α)
V ′′(λ)

Because information adds value, we have V ′′(λt) > 0, which implies that the forward-looking

monetization level is always strictly lower than the myopic monetization level. Thus when

there is opportunity to learn and adapt to each user’s preference, a forward-looking firm

should reduce monetization. Less monetization, such as by limiting the amount of adver-

tising, encourages users to view more content, which increases the firm’s speed of learning.

There is no closed form solution to the ODEc but we can solve it numerically. Figure 11

shows this graphically.
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For niche-market content, when λt increases, the need for experimentation also falls. As

a result, the firm increases advertising. As λt approaches 0 or 1, the need for information

vanishes, and the forward-looking monetization level must approach the myopic level. How-

ever, if the firm is serving mass-market content, the myopic level is optimal because there is

no more information to learn. As a result, the optimal forward-looking monetization level is

non-monotonic.

Proposition A.2 With the myopic algorithm, the firm monetizes with a constant rate of
β1
2

. With the optimal forward-looking algorithm, the firm monetizes less when recommending

niche-market content. The reduction in monetization goes to zero as λt → 0 or 1, or as

t→∞.

Figure 11: The monetization level as a function of λ
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