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Abstract

This paper provides a framework for an empirical analysis of the efficacy of merger en-

forcement rules in markets with differentiated products. The analysis is conducted using a

computable, continuous time, dynamic oligopoly model in which mergers, entry/exit, and

product repositioning are endogenous. The model is a generalization of a Rubinstein (1982)

framework and casts mergers as a multilateral dynamic bargaining process in which both

acquirer and acquiree are forward looking. Solutions to this model can explain and predict

merger waves and post-merger product portfolio management; thus, they allow computation

of a long-run welfare impact of counterfactual merger enforcement rules. I apply the model to

compute long-run response to the change of ownership rules in the U.S. radio industry. I find

that deregulation of this industry imposed by the 1996 Telecom Act generated substantial

cost efficiencies and resulted in a negligible amount of extra market power, and I demonstrate

that one of the reasons for the limited market power is post-merger product repositioning.

Moreover, I show that both myopic and naively forward-looking regulators would over-block

mergers. For example, I evaluate the policy that uses consumer welfare criteria coupled with

looser ownership caps. I find such policies raise total welfare; however, I also find companies

can circumvent static welfare antitrust criteria by strategically proposing mergers that are

likely to be accepted, and by repositioning after the merger. In such situations, a static

consumer surplus criterion would fail to prevent long-run losses to consumer surplus.

∗Haas School of Business, UC Berkeley
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1 Introduction

A broad goal of merger enforcement is to prevent mergers that significantly reduce competition

and lead to a decrease in consumer or total welfare. Most of the economic literature that studies

this problem focuses on regulator’s decision about a particular merger that came under review (see

Williamson (1968), Farrell and Shapiro (1990) for theoretical analysis, and Nevo (2000), Benkard,

Bodoh-Creed, and Lazarev (2008) for empirical analysis). However, in reality, proposed mergers are

not one-time events and are endogenous as a function of the pre-announced enforcement rules (see

U.S. Department of Justice Horizontal Merger Guidelines, European Commission Guidelines on

The Assessment of Horizontal Mergers, or U.S. Telecommunication Act of 1996). In particular, the

changes in these enforcement rules incentivise companies to alter the set of proposed mergers and

affect the dynamics of the industry after the merger (see Lyons (2002) and Nocke and Whinston

(2010)). Therefore, a myopic antitrust agency might misestimate the impact of the change in

merger policy on consumer and producer surplus. This paper proposes a dynamic model that

endogenizes firms’ short- and long-run responses to changes in regulation in a way that is robust

to the aforementioned issues. The model allows for endogenous mergers, product repositioning, and

entry/exit, by which it can explain and predict merger waves and post-merger product portfolio

readjustments in the markets with differentiated products. The framework is designed with an

empirical analysis in mind, so it has a low estimation burden and is fully computable. Thereby,

it can be relatively easily applied to empirically evaluate hypothetical enforcement rules. The

paper estimates the model using the data on the 1996-2006 merger wave in the U.S. radio industry

and simulates response to retrospective and hypothetical changes in Federal Telecommunication

Commission ownership caps and welfare criteria used by the Department of Justice.

To conduct empirical analysis of merger enforcement rules, one needs a tractable dynamic

model in which mergers are endogenous. However, because past models of endogenous mergers are

rather complex (see Gowrisankaran (1999), Stahl (2011), and Jeziorski (2013)), their estimation

and computation proves difficult. These difficulties reflect the fact that mergers are complex

decisions involving multilateral dynamic bargaining among heterogeneous agents and generating

a multitude of possible industry configurations. This paper proposes a simple but empirically

relevant continuous time model of endogenous mergers (for other applications of continuous time to
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dynamic oligopoly, see Kryukov (2008), Doraszelski and Judd (2012), Arcidiacono, Bayer, Blevins,

and Ellickson (2010)). The key advantage of modeling the problem using continuous time is that

the probability of two companies taking action at the same time is negligible. The low probability

of simultaneous actions is particularly important in a merger model because it allows abstracting

from situations in which two companies simultaneously bid to acquire the same firm. Moreover, it

allows for simplification of the decision tree to one merger at a time, while generating a positive

likelihood of multiple mergers in any time interval, which is important for empirical applications.

I apply the proposed model to analyze retrospective and hypothetical antitrust policy changes in

the U.S. radio industry. The industry has undergone an unprecedented regulation change known as

the 1996 Telecom Act, which doubled local ownership caps and abolished strict national ownership

restrictions. This deregulation enabled entry of large corporations into this previously fragmented

industry and spurred a large merger wave that amounted to more than 6,000 acquisitions over the

10-year period. Specifically, the Telecom Act resulted in the following two qualitative develop-

ments: (i) the possibility and execution of mergers that were infeasible before 1996, (ii) entry of

large conglomerate companies with possibly very different cost structures compared to the incum-

bents. These dramatic changes in the operating rules of the industry act as a quasi-experimental

shock that identifies supply and demand incentives to merge. As a result, I can estimate determi-

nants of timeliness, likelihood, and the size of mergers and product repositioning in this industry,

which I use to conduct policy counterfactuals.

According to the anecdotal evidence, the 1996 deregulation was partly motivated by potential

efficiency gains of operating larger radio station portfolios. Indeed, I find the consolidation of the

ownership generated substantial fixed and marginal cost savings. Namely, operating multiple radio

stations jointly is more efficient, particularly for stations providing a similar type of programming.

For example, jointly operating two pop-music stations jointly is 14% cheaper than operating them

separately. However, conversely, Jeziorski (2012) finds that both mergers and substantial repo-

sitioning generated extra market power, which makes the consequences of the Telecom Act less

straightforward. Moreover, maybe more importantly, the coexistence of cost synergies and market

power complicates assessments of what kind of further deregulation (if any) would be beneficial. I

tackle these questions using a series of counterfactual experiments.

First, I evaluate the consequences of the Telecom Act by recomputing the equilibrium in the
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counterfactual world in which the deregulation did not take place. Using a new equilibrium strate-

gies, I simulate industry paths that involve hypothetical entry of corporations, mergers, station

repositioning, and advertising prices. I find that, in the long run, the counterfactual world with

pre-1996 local ownership caps has 10.1% lower producer surplus, 0.07% lower listener surplus, and

at the same time has only 1.7% higher advertiser surplus. All in all, reversing the deregulation

leads to overall decrease in total surplus.

Next, I investigate the consequences of further deregulation, by exploring the possibility of

raising a local cap to from three to five stations (depending on the market size) to a uniform cap of

seven FM stations. I find this change would lead to additional 4% increase in producer surplus, a

0.01% increase in listener surplus and about a 1% decrease in advertiser surplus. I note this policy

raises total surplus; however, the gains are smaller than those brought by the Telecom Act. Thus,

a consumer-centered agency might consider additional regulation on top of raising the cap. One

candidate is a static merger simulation (see Nevo (2000), and Ivaldi and Verboven (2005)) in which

the agency recomputes post-merger advertising prices and rejects the merger if it lowers listener or

advertiser surplus. Raising the cap to seven FM stations coupled with the static merger simulation

based on listener surplus leads to a long-run 2.24% increase in producer surplus, a 0.08% increase

in listener surplus, and a 0.66% decrease in advertisers surplus. Thus, it does a fairly good job

in selecting mergers that would benefit listeners. On the other hand, the myopic policy based

on advertiser surplus works only in the short run. Indeed, in the first five years, the companies

propose mergers that lead to a 0.1% increase in advertiser surplus, knowing such mergers are

likely to be accepted. However, in the longer run, the mergers are followed by repositioning that

ultimately hurts advertisers. In particular, in 10 to 20 years, the advertiser-centered policy leads

to a 0.79% decrease in advertiser surplus and hurts advertisers more than listener-centered policy

would. This somewhat counterintuitive result is a direct consequence of the agency using a myopic

policy that results in a looser merger criterion than initially intended. This result provides a direct

empirical evidence that dynamics is important and should be incorporated into antitrust policy.

These numbers are also consistent with the fact that, according to judicial documents, a version

of advertiser-centered policy was sporadically used during the 1996-2000 merger wave and did not

prevent losses to advertiser surplus, as documented by Jeziorski (2012).

The closest theoretical paper to this work is Nocke and Whinston (2010), who study the opti-
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mality of myopic merger enforcement in the dynamic model with homogeneous product Cournot

competition. In their model, the mergers are endogenous, and similarly to the model in this pa-

per, merger opportunities appear randomly. Their main result is that under the assumption that

the mergers are disjoint a version of myopic merger policy is optimal. In this paper, I relax this

assumption and additionally allow for product differentiation, product repositioning and cost ef-

ficiencies from mergers. This paper shares some similarities with Armstrong and Vickers (2010),

who study a static principal and agent problem. In their case, the principal does not observe

full characteristics of unproposed projects and commits to the acceptance policy ex-ante. Nocke

and Whinston (2013) extend these results to merger review, allowing for bargaining among firms

and multiple agents. This paper also extends arguments of Lyons (2002), who highlights that the

regulator cannot choose which mergers to execute, but rather it can approve or reject mergers

from the set chosen by strategic players. Following that logic, Lyons gives examples in which the

regulator should announce a consumer surplus criterion instead of a total surplus criterion even if

the goal is to maximize the total surplus.

The proposed framework is also compatible with a vast literature on mergers in general. For

example, similarly to Kamien and Zang (1990), Rodrigues (2001), and Gowrisankaran and Holmes

(2004), it assumes both sellers and buyers are fully forward looking. Therefore, it can generate

and identify hold outs that arise in a merger process, because the seller has to be paid his dynamic

opportunity cost of non-merging which is usually greater than seller’s static profits. The paper is

also related to the literature studying merger waves (see Harford (2005) and Qiu and Zhou (2007))

by allowing the mergers to be strategic compliments. Another related paper is Mazzeo, Seim,

and Varela (2012), who show numerically using a static model that post-merger repositioning can

significantly alter the welfare assessment of the merger. In this paper, I empirically demonstrate

a similar phenomenon using a dynamic model.

The paper is organized as follows. In the next section, I present the dynamic model in the

example of the radio industry. In the third section, I demonstrate the impact of dynamics on the

optimality of merger enforcement using a few numerical examples. The forth section contains a

description of the data. In the fifth section, I describe the estimation algorithm. The sixth section

contains results. The seventh section presents counterfactual. I conclude in the eighth section.
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2 Model

Consider a market over an infinite continuous time horizon. The market consists of maximum K

active radio owners and N possible broadcast frequencies. Each frequency has an assigned owner

and can host one radio station. This technical restriction effectively caps the number of active

stations to N . I assume the radio station can be fully characterized by a type coming from a finite

type space F = {1, . . . , F}.

The market is modeled as a dynamic game between radio-station owners. The portfolio of the

radio-station owner k is characterized by a vector ωtk = (ωtk1, . . . , ω
t
kF ), where ωtkf is the number

of radio stations of format f owned by a player k. The state of player k is given by the vector

J t
k = (ωtk, z

t
k), where ztk are the remaining payoff-relevant variables. For convenience, I denote the

total number of stations owned by player k as ntk. The instantaneous variable profits and fixed

cost for firm k are given by πk(J t) and Fk(J t), respectively.

2.1 Actions

The firms’ actions are either mergers or repositioning with entry and exit as special cases of

thereof. Opportunities to acquire and reposition arrive randomly according to a collection of

Poisson processes. In particular, an opportunity for a company k to acquire other players arrives

as a Poisson process with an arrival rate λAk (J t). Similarly, an opportunity to reposition has

an arrival rate of λRk (J t). To avoid a curse of dimensionality, I assume these Poisson processes

are independent (across firms and event types) conditional on J t. Doraszelski and Judd (2012)

demonstrated that those assumptions parallel the independent state transitions frequently used in

the discrete-time games.

Conditional on the arrival of an opportunity to merge, a player can choose one company to

acquire. 1 During the acquisition, the acquirer makes one take-it-or-leave-it offer P to the chosen

acquiree. The acquiree accepts or rejects the offer, taking into account his dynamic opportunity

1Because the model is written in continuous time, it can still generate an arbitrary number of mergers within

any fixed time period. Moreover, these multiple merger events are going to be correlated in an endogenous way. By

contrast, an equivalent assumption in a discrete-time model has more restrictive consequences. It would effectively

cap the number of acquisitions by a potential firm to one per period.
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cost. The cost of executing a merger2 with k′ is given by ζA,t(J t, k′), which contains legal and

procedural expenses associated with executing a merger bid. If the offer is accepted, the regulator

blocks the merger of k and k′ with a probability G(J t, k, k′). Conditional on the arrival of an

opportunity to reposition, a player can take a repositioning action r = (f, f ′), which changes a

format of an owned station from f to f ′. Such repositioning involves paying a repositioning cost

ζR,t(J t, r). Both mergers and acquisitions are implemented instantaneously, resulting in a new

industry state J t+. In this application, I keep ztk constant over time; however, changes to ztk might

arrive as a Poisson process as well (see Arcidiacono, Bayer, Blevins, and Ellickson (2010)).

Because the number of active broadcast frequencies is limited, entry is possible only through

acquisition of other active firms. Similarly, exit is modeled as selling off all owned stations. Poten-

tial entrants are firms that hold empty portfolios of stations; that is, ωtk =
−→
0 . 3 Note that such

modeling of entry and exit endogenizes entry cost and scrap value, which are usually assumed to

be primitives (see Ericson and Pakes (1995)). Specifically, in my model, acquisition involves paying

an endogenous acquisition price, which acts as an endogenous sunk entry cost for the acquirer and

an endogenous scrap value for the acquiree. As a result of this endogenous sunk cost and the fact

that large players operate in multiple markets simultaneously, potential entrants frequently delay

entering into a particular local market, and wait for favorable market conditions. Consequently,

the usual assumption that potential entrants are short lived needs to be modified. Instead, I allow

the potential entrants to be long lived, which allows for postponing entry as well as re-entry.

Action-specific payoff shocks are assumed to consist of persistent and idiosyncratic parts. In

particular, I set the cost of making an offer to k′ to be

ζA,tk (J t, k′) = µAk (J t, k′) + σAk (J t, k′)εA,tk (k′). (2.1)

Similarly, the repositioning payoff shock is given by

ζR,tk (J t, r) = µRk (J t, r) + σRk (J t, r)εR,tk (r). (2.2)

2I cannot separately identify the cost of making a merger bid from the cost of executing the merger. This fact

is not consequential for estimation and counterfactuals because all bids are accepted in the equilibrium, so these

costs coincide on the equilibrium path.
3One way to allow the possibility of more traditional entry is to endow the type space F with an inactive

state. This extension is possible but is not implemented because the model without an inactive state captures the

first-order dynamics in my data.
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Values of εAk for all k′ are revealed to player k immediately after the arrival of an opportunity

to merge. Similarly, repositioning payoff shocks, εRk (r) for all r, are revealed upon the arrival of

the opportunity to reposition. The payoff shocks ζ are realized only if the action is taken. In

other words, ζ is equal to zero if the player decides not to acquire or reposition upon the arrival

of the opportunity to do so. The idiosyncratic parts εA,tk and εR,tk are private information and are

independent across time and players. On the other hard, µA and µR are time persistent and public

information. The reason for having both µ and ε is that µ picks up time-persistent action patterns

from the data, and ε picks up remaining local fluctuations in actions.

A crucial advantage of a continuous time model is that the way to resolve merger conflicts does

not have to be specified. Consider a possibility of conflicting merger attempts ak, ak′ (e.g., when

two companies bid to acquire the same firm), and let CONk,k′ be the probability that the deal k

would be executed. Over a short period of time ∆, the probability of an execution of an attempt

ak is equal to

λAk (J t)∆(1− λAk′(J t)∆)) + CONk,k′λ
A
k (J t)∆λAk′(J t)∆ +O(∆2) = λAk (J t)∆ +O(∆2)

Doraszelski and Judd (2012) show that only the linear terms of the arrival rates matter for optimal-

ity; therefore, in the equilibrium, the conflicting events would not play any role. By contrast, when

using discrete time, one usually has to model conflicting mergers explicitly. Because such events

are rarely observed in the data, identifying this part of the model is usually hard. In practice, it

would force the modeler to assume them away, for example, by putting a structure on a sequence

of moves (see Gowrisankaran (1999), Gowrisankaran and Holmes (2004) and Jeziorski (2013)).

2.2 Timing

The model has the following sequence of events:

(1) All players observe the state variables J t.

(2) Players collect the pay off πk(J t)− Fk(J t) until a merger/repositioning opportunity arises.

(3a) If a merger opportunity arrives for player k, then

(i) Player k observes a vector of costs ζAk of merging with any of the active competitors.
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(ii) Player k chooses whether he wants to make a merger bid. If he chooses to make a bid,

he puts forward a single take-it-or-leave-it acquisition offer to the chosen acquisition

target.

(iii) The acquisition target accepts or rejects the bid. If the bid is accepted, the payoff shock

ζAk (k′) is internalized and the merger goes under antitrust review. If the bid is rejected,

both companies continue as separate entities and the game moves to (1); that is, the

buyer cannot make additional offers at this time.

(iv) The antitrust decision to approve or reject the merger is revealed instantaneously. If

the merger is approved, the companies merge instantaneously, and the merger bid is

transferred to the seller. The game then moves to stage (1). If the merger is rejected,

the game simply moves to stage (1).

(3b) If a repositioning opportunity for player k arises, he observes payoff shocks ζRk for the repo-

sitioning of any owned station to a different format. Then he immediately makes a decision

to reposition one station or not to reposition at all. Relevant switching costs are paid, the

state space is updated, and the flow goes back to point (1).

2.3 Strategies and equilibrium

A strategy consists of four components: a merger strategy, a pricing strategy, a bid accept/reject

strategy, and a repositioning strategy. A merger strategy has the following form: ak(J t, ζA,t) ∈

{0, . . . , K}. It specifies which merger bid (if any) is proposed, conditional on the arrival of a

merger opportunity. The set of feasible acquisitions ΓAk (J t) is the set of active competitors and

action 0, which represents no merger bid. Upon deciding to make a merger bid k′, the buyer

makes a take-it-or-leave-it offer to seller k′, given by the pricing strategy Pk(J t, ζA,t, k′) ∈ R+.

Temporarily suppose all merger bids are accepted, so that accept/reject function is a constant

for all players and can be omitted. I relax the assumption later in the paper. The repositioning

strategy rk(J t, ζR,t) ∈ (F ×F )∪{0} prescribes which station would be repositioned. The feasible

repositioning actions ΓRk (J ) allow for staying idle or repositioning any currently owned station to

any possible format.

Let gk = (ak,Pk, rk) be a strategy of player k. For every initial state J 0, a strategy profile
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(gk,g−k) and regulator’s enforcement rule G prescribe a continuous time jump Markov process on

states J t, actions (atk, P
t
k, r

t
k), decisions of the regulator Gt

k ∈ {0, 1}, and private shocks (ζA,t, ζR,t).

The jumps in the process occur if a move opportunity arrives for any of the players, and a non-

empty action is implemented.

Let τ
A,(l)
k , τ

R,(m)
k be stopping times that represent respectively arrivals of l-th merger, m-th

repositioning opportunity for player k. With some abuse of notation denote new private infor-

mation shocks revealed at τ
A,(l)
k and τ

R,(m)
k by ζ

A,(l)
k and ζ

R,(m)
k respectively. Similarly, denote the

prescribed actions by a
(l)
k , P

(l)
k , G

(l)
k , and r

(m)
k . Because the moves are implemented immediately,

the resulting Markov process on J t would have right-continuous paths. However, note the actions

are prescribed by the strategies evaluated at the left-side limit of the state space process; for exam-

ple, a
(l)
k = ak(J τ

A,(l)
k −, ζ

A,(l)
k ). The value function for company k is given by the following equation

(for now I ignore the events by which company k is acquired):

Vk(J 0; gk,g−k,G) = Eg

{∫ ∞
0

e−ρt
[
πk(J t)− Fk(J t)

]
dt+

∞∑
l=1

e−ρτ
A,(l)
k

[
ζ
A,(l)
k

(
a

(l)
k

)
−G(l)

k P
(l)
k

]
+
∞∑
m=1

e−ρτ
R,(m)
k ζ

R,(m)
k

(
r

(m)
k

)}
.

(2.3)

The equilibrium of the game is defined as follows.

Definition 2.1 (Markov Perfect Equilibrium). A strategy profile g∗ is a Markov perfect equilibrium

(for a given enforcement rule G) if

(i) Strategies maximize a stream of discounted profits at any state,

g∗k(J , ζk) ∈ arg maxgk
Vk(J ; gk,g

∗
−k,G); ∀k,J , ζk. (2.4)

(ii) Acquisition price covers acquiree’s long-run discounted profits; that is, for any k′ > 0,

P∗k(J , ζAk , k′) ≥ Vk′(J ; g∗,G); ∀k,J , ζAk . (2.5)

The first equation means each player best responds to the opponents’ strategies and a pre-

announced enforcement rule. The second condition specifies equilibrium acquisition prices. An

acquiree has to be compensated for an option value of rejecting the merger bid and continuing as
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a separate company until a new merger bid arrives, which endogenizes the bargaining position of

a seller in a dynamic way.

In this paper, I look only at equilibria in which the acquisition price is exactly equal to the

acquiree’s value function, thus it can be ignored in the acquiree’s Bellman equation. This restriction

is without much loss of generality for two reasons: (i) acquirees do not have private information

at the moment of receiving a merger bid, and (ii) acquirees receive only one merger offer at a

time (almost surely). Note the reservation value of rejecting the offer is equal to the acquiree’s

continuation value, which is exactly known to the acquirer. In such a case, the acquirer can propose

the acquisition price exactly equal to the reservation value of the acquiree. Moreover, if we assume

offers that would be rejected for sure are not made (one way to ensure rejected offers are not made

would be to presume any non-zero cost of making an offer), then all merger bids are accepted in

the equilibrium. Such formulation endogenizes the bargaining power of the acquiree and acquirer

in a way similar to Rubinstein (1982) model. In particular, the possibility of making or receiving a

better offer in the future, as well as a possibility of repositioning, influence the bargaining power.

2.4 Existence

To apply an existence result from Doraszelski and Judd (2012), the game needs to be recast as

one with continuous actions, which can be done by noting that choosing actions after observing

payoff shocks ζA,tk or ζB,tk is mathematically equivalent to choosing conditional choice probabilities

(CCP) of actions (see Magesan and Aguirregabiria (2013)).

Let CCPA
k (a|J ) be an ex-ante probability of company k acquiring a company k′ conditional on

the arrival of a merger opportunity. Similarly, define CCPR
k (r|J ) to be an ex-ante probability of

repositioning from f to f ′. After a small adjustment to continuous time, the results contained in

the proof of Theorem 1 from Hotz and Miller (1993) apply for this model. Following the notation

in that paper, consider the expectation of ζA,tk , when the optimal action conditional on arrival on

the right to merge at state J t is

WA
a (CCPA

k ,J t) = E[ζA,tk |J
t, atk = a].

A similar expression can be written for the repositioning action:

WR
r (CCPR

k ,J t) = E[ζR,tk |J
t, rtk = r].
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The above expressions are equal to 0 if no action is chosen. The key fact is that these expectations

depend only on the relevant CCPs in a way that does not depend on value functions. Hotz and

Miller (1993) established the result for single-agent discrete-time models, and their proof can be

repeated with minor adjustments for the continuous-time game studied in this paper. Subsequently,

maximizing the value function with discrete choices is equivalent to solving the following Bellman

equation with continuous actions:

ρVk(J ) = max
CCPAk ,CCPRk

{
πk(J )− Fk(J )−

(
λAk (J ) +

K∑
k=1

λRk (J )

)
Vk(J )−

λAk (J )

 ∑
a∈ΓAk (J )

CCPA
k (a)

(
Vk(J ′(k, a))− Va(J ) +WA

a (CCPA
k ,J )

)+

λRk (J )

 ∑
r∈ΓRk (J )

CCPR
k (r)

(
Vk(J ′(k, r))− Va′(J ) +WR

r (CCPR
k ,J )

)+

∑
k′ 6=k

λAk′(J )
∑

a∈ΓA
k′ (J )

CCPA
k′(a)Vk(J ′(k′, a))+

∑
k′ 6=k

λRk′(J )
∑

r∈ΓR
k′ (J )

CCPR
k′(r)Vk(J ′(k′, r))

}
,

(2.6)

where J ′(k, k′) is the future industry state after k, k′ merger and J ′(k, r) is the future industry

state after company k takes a repositioning action r. Using this formulation, one can directly

apply the existence result in Doraszelski and Judd (2012).

2.5 Computational strategy

Equation 2.6 can be used to compute an equilibrium of the game, and the algorithm has relatively

low computational requirements. Suppose the idiosyncratic parts of the payoff shocks, as defined

in equations (2.1) and (2.2), have the following structure: εA,tk (a) = ε̃A,tk (a)− ε̃A,tk (0) and εR,tk (r) =

ε̃R,tk (r) − ε̃R,tk (0), where ε̃s have IID type-1 extreme value distributions (recall that if no action

occurs, εA,tk (0) = 0 and εR,tk (0) = 0). Then the optimal merger CCPs is given by a closed-form

formula,

CCPA
k (a|J ) =

exp
{
σAk (J , a)−1

[
Vk(J ′(k, a))− Va(J ) + µAk (J , a)

]}∑
a′∈ΓAk (J ) exp {σAk (J , a′)−1 [Vk(J ′(k, a′))− Va′(J ) + µAk (J , a′)]}

, (2.7)
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where Va is the value function of the acquiree (equilibrium acquisition price) and µAk is the persistent

part of the acquisition payoff shock defined in (2.1). Repositioning CCPs are given by the following

formula:

CCPR
k (r|J ) =

exp
{
σRk (J , r)−1

[
Vk(J ′(k, r)) + µRk (J , r)

]}∑
r′∈ΓRk (J ) exp {σRk (J , r′)−1 [Vk(J ′(k, r′)) + µRk (J , r′)]}

. (2.8)

The computational algorithm involves iterating on the value function using a Bellman equation

(2.6) and equations (2.7) and (2.8). The procedure can be summarized as follows:

Init: Initialize the value function V (0).

(1) For every state J ,

(i) use V (j) to compute CCPs of all players at J , given by equations (2.7) and (2.8),

(ii) use the CCPs from (i) to obtain a new value function V (j+1)(J ) by iterating a Bellman

equation (2.6).

(2) Stop if ‖V (j) − V (j+1)‖ < tolerance; otherwise, go to (1).

Several features of this algorithm facilitate the computation of large games. Primarily, iteration

steps (i) are (ii) are relatively cheap because the integration in the Bellman equation is done

player by player, instead of jointly (see discussion in Doraszelski and Judd (2012)). Therefore,

its complexity does not grow exponentially but only linearly, as the number of active players

increases. Additionally, best response CCPs depend on strategies of other players only through

the value functions. In such case one does not need to remember a full set of CCPs at every

state. Note that storing all CCPs in a reasonable amount of memory might be infeasible if the

action space has large support (large enough support is frequently needed to match the data).

Also, because only one player changes state at each instant, the state transitions J ′(k, a) and

J ′(k, r) are relatively simple. Therefore, state encoding and decoding routines (which can take

up to 60%-70% of the execution time depending on the problem) can be replaced with look-up

tables. Lastly, a closed-form of conditional expectations WA
a (CCPA

k ,J t) and WR
r (CCPR

k ,J t) for

more than two feasible actions is unknown. Instead, these expectations have to be simulated (see

section 5 for details).

13



3 Numerical examples

In this section, I use numerical examples to show how various long-run processes can affect the

dynamics of merger bids and the efficacy of a merger enforcement process. The first two examples

demonstrate that myopic regulation could be suboptimal. Specifically, I identify cases for which a

myopic antitrust agency over-blocks (Example 1) and under-blocks (Example 2) mergers relative

to a dynamic optimum. In addition, I show the efficacy of predicting merger waves using a myopic

model might be limited (Example 3).

I conduct the numerical analysis on the example of the radio market using an over-simplified

single-sided model of competition. The advantage of such a model in the context of numerical

experiments is that the results do not depend on the features specific to the radio markets, such

as two-sidedness, making the extrapolation of the numerical findings to other industries more

straightforward. I lift these restrictions during the empirical implementation.

Suppose the market is composed of radio stations that hold some degree of market power within

their formats. I assume there are C types of consumers and the utility of a consumer i of type c

of listening to station j of type f is given by

uij = αcf − βpj + εij,

where pj is the price of listening to the station j and εij is an idiosyncratic taste shock that is

distributed extreme value. The price of listening to the station could be a direct subscription fee or

a dollar value of avoiding broadcasted advertising. Additionally, consumers can choose an outside

option with zero mean utility.

Conditional on prices p and industry state ω, the market share of station j is given by

sj(p, ω) =
C∑
c=1

P(c)
exp(αcf(j) − βpj)

1 +
∑n

j′=1 exp(αcf(j′) − βpj′)
,

where n is the number of active radio stations and f(j) is a format of station j, both prescribed

by ω. P(c) is a proportion of the consumers of type c.

For simplicity, in the remainder of this section, I assume C = F = 2. I also assume each

consumer type has a favorite format; that is, αcc = γ1 and αfc = γ2 if c 6= f , where γ1 > γ2. The

difference between γ1 and γ2 measures a consumers’ willingness to switch to a format different

from their favorite, and determines the degree of within-format market power.

14



In the reminder of this section, I divide active firms into corporations and local firms. A cor-

poration can hold multiple radio stations, whereas a local firm can hold only one radio station.

Both types of firms can reposition radio stations, and in particular, a corporation can reposition

individual stations within its portfolio. Importantly, corporations can acquire local firms, whereas

local firms cannot acquire corporations. Both types of firms are fully forward looking when repo-

sitioning and bargaining over the acquisition price. In the first example, I show that a myopic

regulator can behave sub optimally and over-block mergers.

Example 1: Post-merger repositioning (entry). Mergers usually result in an increase of

market power and markups, which benefits the merged entity but can also spill over to competitors

(see Salant, Switzer, and Reynolds (1983) for an analysis of the Cournot model). These spillovers

encourage post-merger entry and repositioning, which could mitigate the negative effects of the

merger (see section 9 of Horizontal Merger Guidelines). A myopic regulator, who does not account

for entry, would over-estimate the negative effect of the merger, which could result in over-blocking.

A simple setting in which I can show over-blocking is with a single corporation and four lo-

cal firms. Consider a state J 0 in which a corporation owns one station in format 1, and ad-

ditionally one local firm is format 1, and three local firms are in format 2. Formally, J 0 =

[(1,0), (1, 0), (0, 1), (0, 1), (0, 1)]. Now consider the corporation’s acquisition of company 2. The

industry moves into a state J 1 = [(2,0), (0, 1), (0, 1), (0, 1)]. If a static welfare of J 0 is greater

than J 1, because of the monopolization of format 1, then a myopic regulator rejects the merger.

However, in the long run, higher rents in format 1 could invite repositioning from format 2 lead-

ing to J 2 = [(2,0), (1, 0), (0, 1), (0, 1)]. Note that format 1 is no longer monopolized, so enough

economies of scale would make J 2 preferable over J 0. Thus the merger should be approved pro-

vided the repositioning is timely, likely, and sufficient (see Horizontal Merger Guidelines, section

9).

I analyze the aforementioned situation numerically in the context of both total-surplus criterion

and consumer-surplus criterion. Table 1 presents the results of computational experiments for an

industry with fixed cost synergies and a regulator using a total-surplus criterion. The static dead-

weight loss varies between 0.6% (of the total surplus) and 4.2%, for high and low levels of fixed

cost synergies, respectively. Thus the myopic total-surplus maximizer would reject this merger.

However, depending on the repositioning cost and the size of cost synergies, a forward-looking
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regulator might want to approve the merger. For the highest level of fixed cost synergies, the

merger should be approved even for large values of repositioning cost, bringing between a 0.7%

and 2.2% increase in total welfare. Note that if the cost synergies are smaller, the regulator should

approve the merger only if the entry is likely and timely, that is, when the repositioning cost is

low. Thus, to make a correct decision, the regulator should have estimates of both cost synergies

and repositioning cost.

In Table 2, I present a similar analysis for the industry with marginal cost efficiencies and for

the regulator who enforces a consumer-surplus criterion. I consider the situation in which the

corporation has lower marginal cost than the local firm. The top of the table contains a case in

which marginal cost efficiencies from the merger are large enough to counteract a static increase in

market power. Consequently, both myopic and forward-looking regulator take the same decision

and approve the merger. However, if the cost synergies are smaller, the static impact of the merger

on consumer surplus is negative and a myopic regular rejects the merger. At the same time, the

dynamic regulator approves the merger if the repositioning cost is low enough.

Example 2: Predatory mergers. Consider a situation in which a merger results in substantial

marginal cost synergies. Such cost synergy would benefit the conglomerate but might hurt the

smaller competitors and prompt exit. Following this logic, I call a merger predatory if it is aimed

at driving competitors out of the market by using substantial marginal cost advantages. This

example illustrates how myopic regulators can act sub optimally by approving predatory mergers

they should reject.

A modification of Example 1 provides a simple setting for analyzing this kind of dynamics.

The industry starts in state J 0 = [(1,0), (1, 0), (1, 0), (0, 1), (0, 1)]. The corporation proposes

an acquisition of the second firm, which leads to J 1 = [(2,0), (1, 0), (0, 1), (0, 1)]. A myopic

regulator approves the merger because it calculates that the drop in consumer surplus would not be

significant. However, the local firm repositions to format 2, leading to a suboptimal configuration

J 2 = [(2,0), (0, 1), (0, 1), (0, 1)].

Table 2 presents the results of multiple computational experiments exploring this dynamics.

A corporation with two products has a marginal cost of 0.75, whereas a corporation with one

product and any other company has a marginal cost of 1. The tables contain percentage changes

in consumer surplus caused by the merger and the probability that at least one firm exits the
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first format during a unit interval following the merger. I demonstrate that the myopic regulator

consistently underestimates the impact of mergers on consumer surplus and in many cases would

under-block the mergers. In the most notable case, the myopic regulator would actually predict

a 1.3% increase in consumer surplus, but in reality, the merger would result in more than a 3.6%

drop in consumer surplus.

Example 3: Merger waves and hold-out. This example demonstrates the difference be-

tween a myopic and dynamic model concerning merger waves. Consider an industry with one

format, no repositioning, one active corporation owning one station, and three local firms avail-

able for acquisition. The utility of the product is equal to 2, and the price coefficient is equal to

−1. Jointly operating two and three firms results in 50% and 66% efficiency gains in marginal

cost, respectively. The regulator always forbids a merger to monopoly, thus only four-to-three and

three-to-two mergers are feasible. I consider two levels of player sophistication: a myopic case in

which both a buyer and a seller maximize static profits, and a forward-looking case in which they

maximize a discounted stream of profits.

Table 4 presents equilibrium probabilities of mergers for different primitives and levels of player

sophistication. Intuitively, the likelihood of the merger is a decreasing function of a merger exe-

cution cost and an increasing function of marginal cost (because of the marginal cost efficiencies).

First, I note that a probability of a merger in a myopic model is usually higher than in a dynamic

model. To explain the higher probability, looking at the three-to-two merger first is useful. In

this case, no further mergers are possible, so the marginal market power of merging in a myopic

world is equal to the marginal market power of merging in a forward-looking world. However, the

same is not true for acquisition prices and the difference between the myopic and forward-looking

acquisition prices is depicted in Figure 1. In particular, I find the acquisition price is substantially

higher in the forward-looking case resulting in a hold out. The reason is that a merger increases

the markups of competitors that are not acquired, so a forward-looking acquiree has an incentive

to reject a static merger bid and internalize these spillovers. Note these incentives disappear once

the economies of scale increase and competing with a conglomerate becomes harder.

The case of a four-to-three merger is more complicated. Figure 2 depicts the difference in

acquisition price between myopic and forward-looking cases. For small marginal cost synergies,

the results for a four-to-three case are similar to those of a three-to-two case. However, for large
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values of the marginal cost the acquisition price in the myopic model is greater than in the forward-

looking model. To understand that, consider the firm’s incentives to reject a four-to-three merger

bid. In the case of a high marginal cost, the potential acquiree recognizes that rejecting the bid

would likely lead to competing against a highly efficient conglomerate. As a result, the acquirer

might credibly threaten the acquiree to make a bid to a competitor and subsequently come back

with a lower offer leveraging on its size. Thus, in the extreme case, the acquiree agrees to a haircut,

that is, selling out below current static profits. Such a haircut explains why a four-to-three merger

is more probable than a three-to-two merger (see the last rows of Table 4).

4 Data

The data used to estimate a dynamic model consists of (i) a complete set of radio station acquisition

transactions between 1996 and 2006 with monthly time stamps, and (ii) formats of every radio

station in the United States with half-year time stamps. Additionally, the paper uses a pre-

estimated static mapping, πk(Jt), between market structure and station revenues. The mapping is

estimated for a subset of 88 non-overlapping markets, using a panel data set on listenership shares,

advertising quantities, advertising prices and revenues. Appendix B contains the details on this

data set and static estimation. The reminder of this section concerns the data used to estimate

the dynamic model.

During the estimation, I introduce several data simplifications that reflect the main features

of the radio industry. Primarily, I divide the set of players into three groups: national owners,

local owners, and fringe. National owners include such companies as Clear Channel, Cumulus, or

Univision that own a complicated network of stations nationwide. I allow these companies to own

multiple stations in local markets as well as acquire new stations. I also allow national owners to

reposition stations within their portfolios. The second group of companies are local owners. They

are not allowed to own multiple stations; however, they are allowed to reposition. Both national

and local owners are forward looking about repositioning and bargaining about the acquisition

prices. The remainder of companies compose the fringe. Companies in the fringe are myopic and

cannot reposition or be acquired but still play in the static game.

In each market, I label three companies with the largest national revenue share in 2006 (last
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year of the data) as national owners. I label as local owners the next 22 stations with the highest

market share, including those that were ever owned by a national owner are labeled as local owners.

One exception to the above rule is that I put all AM stations in the fringe in the bigger markets.

In such markets, FM stations generate a dominant part of total revenues. In rural markets, AM

stations become important, so I allow both AM and FM stations to be outside of the fringe. In

practice, the fringe stations are small and usually have less than a 0.5% market share.

Dividing owners into the aforementioned groups has some important consequences. The upside

is that it captures the important features of the radio market and reduces the complexity of the

estimation. In particular, it enables estimating acquisition price, that is, a value function the

acquiree, without tracking the possibility that the acquiree can make merger offers himself. This

procedure enables me to use a simple two-step estimator to recover the parameters of the dynamic

model. I note that dividing players into groups is not a limitation of the model per se and can

be relaxed if the application requires it. I can also relax it when computing counterfactuals and

if using a nested-fixed-point estimator, but given my data, these extensions would require further

assumptions and are not implemented.4

Modeling national owners, local owners, and the fringe is a minimum necessary compromise

chosen to capture first-order dynamics of the radio industry. For example, putting all local owners

in the fringe would be a strong assumption. First, as shown in examples 1 and 2 in section 3,

the regulator must track product repositioning of smaller players in response to the merger. Also,

as shown in example 3 in section 3, the acquirees should be forward looking. However, at the

same time, the smallest stations rarely change formats and are almost never acquired by larger

owners in the data. Thus, in practice, modeling forward-looking decisions of every small owner

has little benefit, while increasing the complexity of the estimation. Nevertheless, dropping the

smallest owners altogether is unrealistic because they collectively affect markups in the pricing

game. Thus, fully tracking only large and medium, and only partially tracking small local owners

is a realistic compromise.

One artifact of not allowing smaller players to make merger bids is prohibiting spin offs. I do

observe spin offs in the data, but they are mostly a consequence of lumpy cross-market mergers

4I did not use a nested-fixed-point algorithm for two reasons: (i) it requires strong assumptions on equilibrium

selection, and (ii) it would require further and unrealistic simplifications to the model.
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that can violate the local ownership caps. Consequently, the owners spin off certain stations to

stay within the regulatory rules. According to the anecdotal evidence, the candidates for spin offs

are determined in advance and are unlikely to be fully integrated in the new owner’s portfolio in

the first place. Thus, counting them in the new owner’s portfolio would most likely overestimate

the market power of the merged entity. I use this convenient fact and ignore acquisition of stations

that were spun off later.

The data contains information about more than 100 possible formats. I aggregate these formats

into three meta formats: (i) “Adult Music,” containing such formats as Adult Contemporary,

Jazz, Rock, and Country, (ii) “Hits Music,” containing such formats as Contemporary Hit Radio,

Urban, and Alternative, and (iii) “Non-music,” containing such formats as Talk, News, Ethnic and

Religious formats. Such choice is dictated by taking into account substitution patterns described

by Jeziorski (2012). The “Adult Music” caters to a more mature population of listeners, while

the “Hits Music” attracts mostly younger crowd. The details on the substitution patterns can be

found in section 6.1. The aggregation is a way to trade off a static realism for a dynamic realism.

Namely, I sacrifice some accuracy in capturing within-period behavior by dropping second order

format designations. However, such aggregation allows me to describe cross-period behavior in

more detail. At the same time, I note that the inaccuracy in describing within-period behavior

can translate into inaccurate cross-period predictions. Keeping this caveat in mind, I proceed to

estimate the model and come back to this issue when discussing the results.

5 Estimation

The estimator used in this paper belongs to the class of two-step methods pioneered by Hotz

and Miller (1993). These methods enable estimation of large dynamic systems without re-solving

for an equilibrium at each parameter value. Hotz and Miller (1993) developed the estimator for

discrete-time single-agent problems, and many paper have extended their method to discrete-

time dynamic games (see Pakes, Ostrovsky, and Berry (2007), Bajari, Benkard, and Levin (2007),

Aguirregabiria and Mira (2007) and Arcidiacono and Miller (2011)). This paper adapts the method

of Aguirregabiria and Mira (2007) to the case of continuous time games, and for the data that

comes in discrete intervals. The method developed in this paper is similar to the CCP inversion
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method developed by Arcidiacono, Bayer, Blevins, and Ellickson (2010), but does not rely on the

existence of the terminal state with a normalized terminal value, and relaxes the functional form

of payoff shock distribution. 5

The section is divided into three parts. The first describes the pre-estimation of a one-shot

profit function; the second describes the estimation of acquisition and repositioning strategies; and

the third describes simulated pseudo-likelihood estimation of structural parameters.

5.1 Estimation of one-shot profits

The single-period profit function is identical to one used in Jeziorski (2012) with the exception

that I use three meta-formats instead of eight. Below I describe the parametrization in order keep

to the paper self-contained; however, the discussion is rather brief to avoid duplications.

Firms receive a continuous stream of advertising variable profits from the station portfolio they

own. The infinitesimal variable profit flow is summarized by a function πk(J t). These profits are

a result of a static competition, and account for marginal cost with a possibility of post-merger

synergies. Variable profits of the firm in the radio market have the following general form:

πk(J t) =
∑

j owned by k
in market m

(
pj(q̄

t
j|J t)rj(q̄

t|J t)−MCj(J t)

)
q̄tj. (5.1)

pj(·) is price per listener (advertising inverse demand) of one ad slot, rj(·) is a listenership market

share (demand for programming), and q̄tj is the equilibrium number of advertising slots at station

j. MCj is marginal cost of selling advertising at station j. Dependence of the marginal cost on

the state J t signifies a possibility of marginal cost synergies from joint ownership.

I compute the station’s market share using a logit model with random coefficients, following

Berry, Levinsohn, and Pakes (1995). Let ιj = (0, . . . , 1, . . . , 0), where 1 is placed in a position that

indicates the format of station j. Denote the amount of broadcasted advertising minutes in station

j as qj. For a given consumer i, the utility from listening to a station j is given by

uij = θL1iιj − θL2iqj + θL3 FMj + ξj + εji, (5.2)

5In the case of mergers, a terminal state occurs when the player is acquired. The terminal value, which is an

acquisition price, cannot be normalized because it is endogenous; that is, it depends on the option value of rejecting

the merger bid.
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where θL1i is a set of format fixed effects, θ2i is a disutility of advertising, and θL3 is an AM/FM

fixed effect. I assume the random coefficients can be decomposed as

θL1i = θL1 + ΠDi + ν1i, Di ∼ Fm(Di|d), ν1i ∼ N(0,Σ1)

and

θL2i = θL2 + ν2i, ν2i ∼ N(0,Σ2),

where Σ1 is a diagonal matrix, Fm(Di|d) is an empirical distribution of demographic character-

istics, νi is an unobserved taste shock, and Π is the matrix representing the correlation between

demographic characteristics and format preferences. I assume draws for νi are uncorrelated across

time and markets. The term ξj represents the unobserved quality of station j. The assumptions on

ξj are the same as in Berry, Levinsohn, and Pakes (1995).6 The model allows for an outside option

of not listening to radio ui0, which is normalized to zero in the years 1996 and 1997. For subsequent

years, ui0 contains time dummies to control for the influx on new broadcasting technologies such

as satellite radio and internet.

The market share of the station j is given by

rj(q|J t) = Prob
(
{(νi, Di, εij) : uij ≥ uij′ , for j′ = 1, . . . , J}

∣∣q,J t
)
. (5.3)

The radio-station owners are likely to have market power over advertisers. Moreover, because

of heavy ad targeting, the stations with different formats are not perfect substitutes, which might

be a result of multihoming of advertisers, as well as advertising congestion. The simplest reduced-

form model that captures these features, and is an approximation of the industry, is a linear inverse

demand for advertising, such as

pj = θA1

(
1− θA2

∑
f ′∈F

wmff ′qf ′

)
, (5.4)

where f is the format of station j, θA1 is a scaling factor for the value of advertising, θA2 is a market-

power indicator, and wff ′ ∈ Ω are weights indicating competition closeness between formats f and

f ′.

6The assumptions on ξ are a simplification compared to the specification used by Jeziorski (2013) and Sweet-

ing (2013), who both assume ξj follows an AR(1) process. This decision was made to keep the dynamic model

computable.
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To capture potential marginal cost synergies, a marginal cost of station j is allowed to depend

on the portfolio of stations ωtk of its owner. In particular, I set

Cjmt(θ
A, θC) = θAm1 [θCmt + θCm1 + θCm2 ξjt + θCm3 SYNjt + εCjt]qjt, (5.5)

which allows for station-level unobserved heterogeneity captured by εCjt. The term θCmt represents

time dummies capturing aggregate shocks to marginal cost. Unobserved market-level heterogeneity

is captured by the fact that θAm1 is allowed to be different for each market, and θCm is allowed

to differ between subsets of markets depending on their size. The parameter θCm3 measures the

extent of marginal cost synergies between stations of the same format owned by the same owner,

and is interacted with a dummy variable SYNjt that is equal to 1 if the current owner owns more

than one station in the format. Cost synergies are likely to occur because of scale economies in

producing and selling advertising for multiple stations with similar target groups.

Given the advertising quantity choices of competing owners, each radio-station owner k chooses

qtj for all owned stations to maximize its variable profits. The market is assumed to be in a quantity-

setting Nash equilibrium.

The profit function varies across markets because of market-specific parameters and because the

demographic composition of listeners is heterogeneous. Note that the static model is non-stationary

because it contains time dummies in the demand in the demand and supply equation, and because

the distribution of listeners’ demographics varies from year to year. Consequently, I estimate it as

a non-stationary model to obtain more robust measures of listener and advertiser price elasticity.

However, after the estimation, I detrend the static profits to fit it into the dynamic model presented

in section 2. Specifically, I remove the trends in supply and demand by using an average value of

the time dummies and draw listeners from a joint 1996-2006 market-specific empirical distribution

instead of year-by-year distributions. In the case of radio, most of the possible non-stationarity

would result is underestimation of cost synergies, because of overestimation of the gains from

mergers. For example, a possible long-run downward trend in listenership should make mergers

less profitable in the absolute sense. In such a case, my model would likely overestimate the long-

run returns from the merger and underestimate the cost synergies. Another example is possible

changes in technology that make running bigger companies more efficient, and would also bias my

cost estimates downwards. I return to these points when discussing the results and counterfactuals.
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Additionally, I simplify the state space to make the dynamics manageable. I use average sta-

tion quality and tower power computed for each market-format combination, and separately for

the fringe to control for size differences. Such procedure further standardizes the profit function

in a way to be consistent with the model laid out in section 2; in particular, this standardiza-

tion makes stations homogenous with an exception of the meta-format and fringe designation.

Note this assumption is stronger than the one in Jeziorski (2013), who allows for persistent but

exogenous heterogeneity. If the radio stations are indeed heterogeneous in more dimensions and

such heterogeneity creates a large amount of extra market power, this procedure could pollute the

estimates of cost synergies as well as counterfactuals. To alleviate some of the concerns, I compare

cost synergy estimates to those in Jeziorski (2013); however, all results in the paper should be

interpreted keeping the standardization in mind.

5.2 Estimation of acquisition and repositioning strategies

The data I use to estimate the dynamic model is summarized by two sets. The first set describes

merger decisions

XA = {amhi ⊂ K ×K : 1 ≤ i ≤ 6, h ∈ H,m ∈M},

amhi is an observed set of mergers, m is a local market, h is a half-year period, and i is the month in

which the mergers took place. Several instances of multiple mergers exist in the same half-year, as

well as multiple mergers in the same month. I can observe the sequence of mergers across months;

however, I do not observe the sequence of mergers within the month. Therefore, for the periods

that have multiple mergers in the same month, the state space at the time of taking an action is

only partially observed.

The second set describes repositioning decisions:

XR = {bmh ⊂ J × F × F : h ∈ H,m ∈M},

bmhd the observed set of repositioning events during half-year h. The formats are observed once

every half a year, as opposed to mergers that are observed on a monthly basis. Multiple merger

and repositioning actions during the same data period create complications. For example, if the

station was acquired and repositioned in the same half-year, I do not see which player took the

repositioning action. Furthermore, I do not know how many active players were present when the
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repositioning action was taken. For these reasons, the state, set of players, and players’ actions

are only partially observed which has to be taken into account during the estimation.

One can integrate out the aforementioned unobservables in several ways. One option is to use

simulations and perform either maximum likelihood or generalized method of moments. Unfor-

tunately, both methods are impractical for my application. The former would require too many

simulations to obtain a reasonably precise likelihood; the latter would lead to substantial loss in

efficiency. Another option is to obtain partially analytical likelihood using Chapman-Kolmogorov

equations describing state transitions, as suggested by Arcidiacono, Bayer, Blevins, and Ellickson

(2010). However, this method also cannot be directly applied, because the full intensity matrix for

my largest markets can contain up to 4 million by 4 million entries. The matrix would be quite

sparse; however, one still would not be able to store it in the memory, or recompute it “on the

fly.” Instead, I develop a method based on partial Chapman-Kolmogorov equations. The partial

equations use the fact that only a small subset of feasible latent industry states are relevant for

the estimation. The method proceeds in steps.

First, I construct an augmented set of latent states during the half year h and denote it by

Ωh. This set contains the feasible latent states that do not contradict the observed data and a

coffin state. Denote a set of feasible states at the end of month i by Ωhi ⊂ Ωh. States in Ωhi

incorporate all mergers that happened prior to and including month i, that is, {ahd : d ≤ i},

as well as any possible subset of repositioning events bh that occurred during half-year h. The

special cases are: Ωh0, which contains only the fully observed starting state at the beginning of

a half-year h, and Ωh6, which contains only the fully observed state at the end of half-year h. A

full set of feasible states Ωh is a union of: (i) all sets Ωhi, (ii) all feasible transitory states between

from Ωhi to Ωhi+1, and (iii) a coffin state ω̄. The coffin state encompasses all infeasible states. In

practice, constructing the set of feasible states Ωh might be computationally expensive. In this

paper, I employ a backward induction recursion that constructs and examines all feasible paths of

the industry between Ωh0 and Ωh6. For example, a computation of feasible paths for seven mergers

and three repositioning events within one half-year period can take up to a week and require up to

40GB of memory to store the temporary data (Matlab code on 2GHz AMD Opteron CPU). The

exercise in this paper is feasible because the process was parallelized. Despite a long preparation

time, this computation has to be done only once for each data set. The final augmented state
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space is a thousands times smaller than the full state, which dramatically reduces the size of the

intensity matrix.

Upon arrival of the merger and repositioning actions at time t, the equilibrium strategies induce

transitions according to instantaneous conditional choice probabilities of acquisition CCPA(J t) or

repositioning CCPR(J t). Together with action arrival rates λA and λR, these CCPs generate an

intensity matrix Qh on the augmented state space Ωh. The overall goal is to use the Markov

process on Ωh to compute the conditional likelihood of the data, that is, L(Ωh6, . . . ,Ωh1|Ωh0). The

exact states from Ωhi (expect for the beginning and the end of the half-year) as well as transitory

states between Ωhis are unobserved to the econometrician and have to be integrated out.

Denote the time that passed since the beginning of h by s ∈ [0, 6]. Let ιh(s) be a stochastic

process of the latent state of the system conditional on {Ωhi : i < s}. Conditioning prevents the

ιh(s) from contradicting the data by killing the infeasible paths. Note that ιh(0) is a degenerate

distribution at Ωh0. First, I compute the distribution after the first month, ιh(1), by numerically

solving a Chapman-Kolmogorov system of differential equations

dιh(s)

ds
= ιh(s)Qh, (5.6)

subject to the initial condition of ιh(0) being degenerate at Ωh0. Knowing ιh(1), I can ob-

tain L(Ωh1|Ωh0) by taking the mass of states that belong to Ωh1. The next step is obtaining

L(Ωh2|Ωh1,Ωh0).7 For this purpose, I compute ιh(2) by solving equation (5.6) with ιh(1) condi-

tioned on Ωh1 used as an initial condition. The likelihood is the mass of the set Ωh2 obtained

according to ιh(2). By repeating the procedure, we can obtain any of L(Ωhi|Ωhi−1, . . . ,Ωh1,Ωh0),

and as a result, I get the joint likelihood L(Ωh6, . . . ,Ωh1|Ωh0) by using Bayes rule.

The above procedure can be repeated to obtain a conditional likelihood for every market m

and half-year h as a function of CCPs. In my model, equilibrium CCPs are given by equations 2.7

and 2.8, and depend on the state through unknown value functions, which have to be estimated

semi-parametrically. In particular, the acquisition CCPs are given by

ĈCP
A

(k′|k,J , θA) =
exp

{
ΥA(k, k′,J )

}∑
k′′ exp {ΥA(k, k′′,J )}

,

7Note that L(Ωh2|Ωh1,Ωh0) 6= L(Ωh2|Ωh1) even though the latent state ωhi is Markovian, because Ωh1 is a set,

and the value of Ωh0 is informative about the distribution of the latent states in Ωh1.
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where ΥA(k, k′J ) are unknown functions of the state J .

Denote the fraction of the total number of active non-fringe stations in format f and owned

by player k as ηf,k. Formally,

ηtf,k =
ωtfk
J
.

Additionally, I denote a set of national owners as KN and a set of local owners as KL. These

sets must meet an adding-up constraint given by K = #
(
KN ∪KL

)
,where # denotes the number

of elements in the set. The above notation is useful for expressing statistics from the state that

determine acquisitions and repositioning. For example, a fraction of stations that are locally owned

and have format f is given by
∑
k∈KL

ηk,f .

After introducing the above notation, I define the approximations of ΥA and ΥR by polynomials

of η. The coefficients of these polynomials satisfy a certain set of restrictions imposed by the

availability of the data, namely: (i) symmetric equilibrium and (ii) no mergers across the national

owners. With more data, I could potentially relax the first restriction by estimating ΥA and

ΥR separately for each player. Similarly, if I observed many mergers of national owners, I could

potentially estimate ΥA separately for those types of actions. In practice, despite the fact that

the merger data is rich, relaxing either of these restrictions is infeasible. Imposing the above

restrictions, I approximate the above indexes with polynomials

ΥA(k, k′,J ) ≈ P(θAf(k′), η),

where P is a polynomial of the statistics η, and θAf(k′) are coefficients that are specific to the format

f(k′) of the only radio station owned by a local owner k′. Similarly, the repositioning policy index

function could be written as

ΥR(k, f, f ′,J ) ≈ P(θRf,f ′ , η).

The unknown functions ΥA and ΥR are estimated using a sieve minimum distance estimator (see

Ai and Chen (2003)). In a finite sample, I simply choose the polynomial coefficients that maximize

a pseudo-likelihood of the data.

I do not observe the events in which the players decide not to take an action, so I can only

identify the product of a move arrival rate λ and CCPs in the first stage. However, as long the

move arrival rate is not too large, I can estimate the first stage by choosing a reference value of λ
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set to 1. Relevant CCPs for a desired value of an arrival rate could be obtained by dividing the

estimates by λ.

5.3 Estimation of structural parameters

This subsection contains a description of the simulated pseudo-likelihood estimator that is used to

recover the structural parameters of the game. The estimator is based on simulated instantaneous

value functions, that is, conditional on the arrival of the right to move. The simulations are based

on the arrival rates of executed actions recovered in the previous stage. The simulated value

functions are subsequently used to form new CCPs, which are used as inputs to generate the

new pseudo-likelihood using the sequential procedure based on Chapman-Kolmogorov equations

described in the previous section. Some unknown primitives of the structural model are further

parametrized, and I describe these parametrizations in the reminder of this section.

Fixed cost. The fixed cost of player k of owning a station j in format f is parametrized as

follows:

Fm
kj (J t|θF ) = F̄m

f × F S(ωtkf , zk|θF )× FE(ntk, zk|θE). (5.7)

The cost is composed of three terms: (i) term F̄m
f is a fixed cost of owning a single station of

format f in market m, without owning additional stations in this or any other market; (ii) the

function F S represents a fixed cost discount caused by synergies of operating multiple stations

in the same format and the same local market; and (iii) the function FE represents a fixed cost

discount caused by within- and cross-market economies of scale. Note that for local owners, FE

and F S are equal to 1.

The market-level fixed cost of owning one station F̄m
f is assumed to be proportional to average

variable profits (before fixed cost) in the market, calculated separately for each format. I compute

this average by simulating an industry path for each observed data point and averaging over time.

The simulation is done using the first-stage estimates.

I postulate that for national owners:

F S(ωtkf , zk = N |θF ) =

(
ωtkf
)θF

ωtkf
.
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Parameter θF captures the synergy and is expected to lie between 0 and 1. I allow for economies

of scale by setting FE in the following way8

FE(ntk, zk = N |θE) = θFN
(ntk)

θE

ntk
,

where θFN is a discount for being a national owner and θE is a parameter that captures local

economies of scale.

Acquisition cost. The acquisition cost has a persistent part µAk (J t, k′|θA) and an idiosyncratic

part with volatility σAk (J t, k′|θA). The persistent part is parametrized in the following way:

µA,mk (J t, k′|θA) = θA,m + θAπ πk(J t).

The acquisition cost might depend on the company’s size, because integrating into a bigger com-

pany can be more costly, which is captured by the dependence of µAk depends on the variable

profits as a proxy for size. I postulate a similar relationship for the idiosyncratic volatility:

σA,mk (J t, k′|θA) = θA,mσ + θAσ,ππk(J t).

Because acquisition cost is likely heterogeneous across markets, I allow the intercepts θA,m and θA,mσ

to vary across four market categories. The first category consist of markets in which a single station

has average variable profits greater than $150,000, the second category has variable profits in the

range $150,000-$60,000, the third in the $60,000-$20,000, range and the fourth less than $20,000.

Additionally, θA,m might vary across formats, because layoff costs as well as other integration

costs (human and physical resources reallocation) might vary with the type of programming. I try

this specification and find the differences are economically small (less than 5%) and statistically

(1%-size test) insignificant.

Repositioning cost. Similarly to the acquisition cost, the repositioning cost has a persistent

part µRk (J t, k′|θR) and an idiosyncratic part with volatility σRk (J t, k′|θR). It is reasonable to

expect that national owners face different repositioning costs than local owners. For example,

voice-tracking technology can allow the national owners to temporarily bring announcers from

other markets to streamline format switching. However, local owners might have better access to

8I also try other specifications, such as fixed effects for discounts when ntk is greater than 3 or 4, and arrive at

similar results.

29



local labor markets and a more flexible workforce. These differences might additionally vary by

format. One example is the Hits Music format, which requires a large tower and costly marketing

to gain enough listenership. For this reason, switching to the Hits format is likely to require more

capital investments and access to specialized production factors. Thus I expect national owners

to have lower switching cost into this format. To accommodate that expectation, I postulate the

following parametrizations:

µR,mk (J t, f, f ′|θR) = θR,m
[
1(zk = L)θRL,f ′,f + 1(zk = N)θRN,f ′,f

]
+ θRπ πk(J t)

and

σR,mk (J t, f, f ′|θA) = θRσ,m + θRσ,ππk(J t).

The intercepts of repositioning costs are allowed to be from/to format specific and company-type

specific. I find that allowing for this flexible specification is critical to fitting the model to the data.

Specifically, I estimate separate θRσ,m for national and local owners, and allow for mean differences

and heteroscedasticity by size, which is captured by parameters θRπ and θRσ,π, respectively. To

control for differences in switching costs across markets, I allow for market-category multiplicative

fixed effects in the persistent part θR,m, and the idiosyncratic part θRσ,m.

The above specification is used to simulate the value function

Vk(J t|θ) =

∫ ∞
s=t

e−ρsπk(J s)ds−
∫ ∞
s=t

e−ρsFk(J s|θ)ds+
∞∑
l=1

e−ρτ
A,(l)
k P (a

(l)
k ,J

τ
A,(l)
k |θ)+

∞∑
l=1

e−ρτ
A,(l)
k WA

a
(l)
k

(CCPA
k ,J τ

A,(l)
k |θ) +

∞∑
m=1

e−ρτ
R,(m)
k WR

r
(m)
k

(CCPR
k ,J τ

R,(m)
k |θ).

(5.8)

The acquisition prices P
(l)
k (value functions of the local firms) are simulated using a nested routine.

The routine is triggered upon the arrival of a merger action at time τ
A,(l)
k , and it simulates the

continuation value of the local owner conditional on rejecting the merger bid. This value includes

future mergers between rivals, as well as potential repositioning of the firm and its rivals. One can

show by backward induction (on the number of active rivals) that the option value of the local firm

must be equal to the value of rejecting all subsequent merger bids. The nested-simulation routine

simulates this value using the following formula:

Vk(J t|θ) =

∫ ∞
s=t

e−ρsπk(J s)ds−
∫ ∞
s=t

e−ρsFk(J s|θ)ds+
∞∑
m=1

e−ρτ
R,(m)
k WR

r
(m)
k

(CCPR
k ,J τ

R,(m)
k |θ).
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The closed-form solution for the conditional expected value of shocks W is unknown for the

number of alternatives that is larger than 1 (not including empty action), which is a consequence of

the fact that idiosyncratic shocks are not type-1 extreme value. Instead, I simulate the idiosyncratic

part of W on the grid of CCPs and fit the 4th-degree complete Chebyshev polynomial. I fit a

separate polynomial for each number of feasible alternatives. Such interpolation provides a good

approximation along the equilibrium path, with a maximum error of about 1% and lower.

To obtain a second-stage pseudo-likelihood by repeating a sequential Chapman-Kolmogorov

procedure described in section 5.2 using updated CCPs given by equations (2.7) and (2.8). Note

the value function has to be simulated for every potentially feasible state in Ωh as well as any state

that can be reached by one action. For example, in the case of Los Angeles, 46 feasible latent

states exist overall, which generate 1, 208 potentially accessible states. Overall, 88 markets contain

106, 304 accessible states, and the value function needs to be separately simulated for each. Each

simulation is composed of 1, 000 draws, so the procedure involves obtaining 106, 304, 000 industry

paths (the industry path is assumed to evolve for 40 years and is kept constant thereafter). For

this reason the simulation procedure must be efficient. Two features facilitate this efficiency: (i)

Using my functional-form specification, one can simulate the industry path once and compute the

value function for different candidate values of structural parameters θ by using a set of sufficient

statistics (details in an Appendix C). In such case the computation of the pseudo-likelihood takes

about the same amount of time as the first-stage likelihood. (ii) Continuous time enables simulating

the arrival rate of the next change in the industry structure (executed move) instead of drawing

move probabilities every period. This feature is important if the moves are rare (such as mergers

and product repositioning). Note that I am not drawing opportunities to move, but rather execute

moves directly. In an extreme case, when the draw of the waiting time for the first executed move

exceeds 40 years, the draw of the value function collapses to perpetual static profits.

Several components of the model need to be identified, namely, (i) repositioning cost θR, (ii)

merger cost θA, (iii) cost efficiencies from mergers (θF , θE), (iv) level of the fixed cost F̄m
j , and

(v) arrival rate λ. Repositioning cost is identified as the residual from endogenizing format repo-

sitioning in a way similar to Sweeting (2013) and Jeziorski (2013) – I omit the details for brevity.

Merger cost is a residual from entry decisions and is identified in a similar way as entry cost.

Because entrants are long lived, they can decide not to enter now, to wait, and to enter in the
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future, which identifies the volatility of the merger cost. Cost efficiencies are identified as residuals

from endogenizing mergers (see Jeziorski (2013) for details). Lastly, the level of the fixed cost (or

the fixed cost of owning one station) is bounded from above by the fact that the entry is profitable

in all markets, and from below by the level of cost discount required to justify the mergers.

Identifying rate λ separately from other structural parameters is hard without observing move

opportunities that were not executed. The identification might still be possible with an exclusion

restriction that shifts the continuation value but does not affect current payoffs. One candidate

for such exclusion is ownership caps. If the owner is below the cap, the cap does not affect current

profits from a merger; however, it shifts future profits through the ability to execute mergers. I

tried this approach and found it infeasible, because the variation in the ownership caps in my data

is not sufficient. Note the difficulty of identifying λ is not specific to continuous time and is present,

but not prominently exposed, in discrete-time games. Specifically, an arrival rate in a continuous-

time game is an analog of a period length in a discrete-time game. Identifying such period length is

similar to identifying a discount factor, which is know to be hard (see Rust (1994)). For this reason,

the length of the period is usually not estimated but fixed, for example, to one action per year. I

make a similar simplification and set the arrival rate to once per month; however, I estimated the

model with an arrival rate of once per year and obtained qualitatively and quantitatively similar

results.

6 Results

In this section, I report the estimates of the structural parameters of the model. I start by

describing the estimates of the static pricing game. Then I discuss first- and second-stage estimates

of the dynamic model.

6.1 Static model

This subsection contains a brief description of the static profit function estimates. The model of a

profit function is a simplified version of Jeziorski (2012) and to minimize the duplication I provide

only a brief description of the parameters.

Table 5 presents the estimates of listenership demand. The first and second column contain the
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mean and the standard deviation of the random coefficients. The numbers match the intuition.

Namely, I find that advertising has a negative effect on listenership, and this effect is fairly homoge-

nous among listeners. I also find that listeners prefer FM to AM stations, and greater power of the

tower translates to higher listenership. Format dummies are negative; however, by construction,

they capture preferences of a specific demographic group, that is, male, uneducated, low income,

white, non-Hispanic teenagers. To obtain preferences of other demographic groups, one has to

add appropriate demographic interactions, which are presented in Table 6. These numbers match

the intuition as well. The first-meta format, which delivers adult-oriented music, such as, classic

rock, country, or jazz, is the most popular among middle-aged listeners, with a slight majority of

women. The second meta-format, which delivers contemporary pop and alternative music, appeals

to younger people. It contains popular pop and urban formats, as well as hip-hop, which explains

the large and highly significant African-American fixed effect. The last meta-format, which con-

tains talk radio and ethnic or religious stations, is popular among older listeners, who are mostly

higher-educated females with relatively large incomes. A positive Hispanic dummy is related to

Hispanic and religious stations in this meta-format.

Table 7 describes the national trends in radio listenership. The values represent the residual

trend in radio listenership that is beyond the changes in the demographic composition. In general,

I find the trend in the utility of the outside option is non-monotonic. I use these numbers to

detrend the profit function in the dynamic estimation.

Table 8 presents the coefficients of the inverse demand for advertising. The inverse demand

curve is downward sloping, which is evidence of the direct market power of radio stations over

advertisers. The slope is bigger in smaller markets.

Tables 9 and 10 contain the marginal cost estimates. The marginal cost is larger in smaller

markets, and I find evidence of marginal cost synergies in small and large markets, but not in

medium markets.

6.2 Dynamic model: First stage

The merger and repositioning strategies are estimated as one joint maximum likelihood run de-

scribed in section 5.2. I grouped the results into multiple tables to facilitate the exposition. Tables

11, 12, 13, and 14 contain the estimates of the acquisition strategy. Tables 15, 16, 17, and 18
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present the estimates of the repositioning strategy of national owners. Finally, Tables 19, 20, and

21 contain the coefficients of the repositioning strategy of the local owners. As mentioned in sec-

tion 5.2, I parametrized the industry state using fractions of the total number of active non-fringe

stations in each format f owned by each national owner k, which is denoted as ηf,k.

6.2.1 Acquisition strategy

Table 11 contains the estimates of format-acquisition dummies and interactions between format

acquisition and demographic composition of the local market. Format-acquisition dummies, con-

tained in the first row of the table, are large and negative, which reflects the fact that mergers are

relatively rare events. The values of these dummies are similar across formats, which suggests that

observable characteristics can explain most of the variation in format acquisition. I find the inter-

actions between the demographic composition and acquisition propensity represent the preferences

for formats described in Table 6, which serves as a sanity check for the first-stage specification.

For example, the Adult Music format has a positive (however statistically insignificant) interac-

tion with age, Hits Music has a positive interaction with Black, and Non-music has a positive

interaction with Hispanic.

Tables 12 and 13 present the coefficients describing the relationship between the industry state

and a propensity to acquire a particular format f . Specifically, Table 12 contains coefficients on

the state variables corresponding to the format f of a potential acquiree. The term ηf,k represents

the coefficient on the number of owned stations in the format of the acquiree. The positive number

suggests firms acquire in the formats they already own, which could be the result of demand- or

supply-side complementarities. By contrast, Sweeting (2013) and Jeziorski (2013) find that owners

avoid acquiring stations similar to their current portfolios. The explanation for this difference is a

broader definition of the format in this paper. For example, the owner that owns a Rock station

might not acquire another Rock station. However, he might acquire another station in the Adult

music format, such as Country or Adult Contemporary. The coefficient on the square of ηf,k is

negative, which could mean the synergies from mergers have decreasing returns.

The third column of Table 12 contains a coefficient capturing national competitors in the same

format as a potential acquiree. I find that a larger number of national competitors in a particular

format is correlated with a higher propensity to acquire; however, the result is not significant. The
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fourth column reports a coefficient on ownership concentration (similar to the Herfindahl index)

of stations in format f . In general, the less concentrated the ownership, the bigger the propensity

to acquire. The last two numbers describe the impact of the portfolio of the local owners on

competitors. I find that, opposite to the number of national competitors, the number of local

competitors is negatively correlated with an acquisition.

Table 13 contains more state covariates explaining the acquisition decision. I find that a larger

number of owned stations is positively correlated with higher likelihood of acquisition. Also, the

more stations competing national owners own, the less probable the acquisition. The last two

numbers in the table contain higher-order terms that represent concentration of ownership across

competitors and distribution of nationally owned stations across formats.

Table 14 contains dummies reflecting being close to the ownership cap. Everything else equal,

if the acquisition results in being closer to the cap, it is less probable, which means owners close

to the cap become choosier in order keep an option value.

6.2.2 Format-switching strategy

Table 15 contains from-to format-switching dummies, as well as interactions between demographics

and the target format. As with acquisition strategy, I find format switching largely reflects listeners’

tastes. Tables 16 and 17 describe the impact of the industry state on format switching. In general,

the number of stations owned in the format positively correlates with switching to that format,

and the opposite is true for the number of stations owned by competitors.

Table 18 contains an impact of closeness to the cap on format switching. Note that the closer

the owners are to the ownership cap, the more probable the format switching. Namely, the format

switching acts as a substitute for acquisition. For example, if the owner is at the cap and wants

to respond to competitors’ actions, the only choice is to reposition. If he is not at the cap, he can

also acquire.

Tables 19, 20, and 21 present the covariates of format switching by local owners. The numbers

are similar to those of national owners, so I omit the discussion.
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6.3 Dynamic model: Second stage

In this subsection, I present the estimates of the structural parameters, including fixed cost, as

well as persistent and variable components of acquisition cost and repositioning cost.

According to equation (5.7), the fixed cost of operating a portfolio of stations is composed of

three parts: a market-level fixed-cost multiplier F̄m
f , a multiplier representing cost synergies of

owning multiple stations in the same format F S(J t
kf |θF ), and a multiplier representing economies

of scale of owning multiple stations of any format FE(ntk|θE).

Table 22 presents the fixed cost estimates of owning a single station, averaged across formats.

The level of the fixed cost varies across markets and is roughly proportional to the population.

Table 24 contains the estimates of the within-market economies of scale. I find operating two

stations together is 14% cheaper than operating them separately, regardless of their formats. The

last column contains the estimate of the cost advantage of being a national owner, which captures

cross-market cost synergies. I find national owners have a 4% lower fixed cost than local owners,

but the result is not statistically significant. I also document further cost synergies of operating

stations of the same format. According to Table 23, operate stations of the same format it is an

additional 14% cheaper, and the discount is applied on top of the economies of scale from Table

24.

Table 25 presents the estimates of the merger cost. I find the mean acquisition cost varies by

market type and company size. Moreover, I find the cost has relatively high volatility, which is

homoscedastic. Note that firms obtain a new draw from the idiosyncratic component every month,

and mergers are tail events; thus, the combination of a large mean and a high volatility usually

leads to a low cost for realized mergers.

Repositioning cost estimates are contained in Tables 26,27, 28, and 29. I allow the repositioning

costs to depend on the market category, source-target formats, and the ownership structure of the

firm. I operationalize the estimation by using multiplicative market category, source-target, and

national owner fixed effects. I find the repositioning cost varies considerably across the market

categories. In particular I find higher switching cost in more profitable markets. Similar to the

merger actions, switching is a tail event, and the estimates reveal high average switching costs

with fairly high volatility over time. Additionally, the costs are statistically different depending

on the source and target format, suggesting that switching is cheaper between some formats than
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others. These differences in switching cost are driven by the patters in the raw data. For example,

Hits stations are quite profitable, but I do not observe much switching into this format, which

can be rationalized by high switching costs. One can similarly explain the other switching-cost

estimates.

7 Counterfactuals

Using the estimates of the structural parameters of the model, I perform several counterfactuals

that study alternative merger enforcement policies.

7.1 Impact of the 1996 Telecom Act

The first set of experiments is aimed at investigating the impact of the 1996 Telecom Act on

producer, listener, and advertiser surplus. Table 30 presents counterfactuals evaluating the impact

of looser post-1996 local ownership caps. In particular, I recomputed the equilibrium merger and

repositioning strategies with old ownership caps, and computed the relevant surpluses for 5, 10, and

20 years into the future. I use static measures of producer and consumer surplus for the following

reasons: (i) the results are easily comparable with static analysis, and (ii) the static measures do

not contain payoff shocks ζ, whose variance was hard to identify from the move arrival rate λ. I

find radio-station owners benefit from the deregulation because, under the old caps, the producer

surplus is 10% lower. Roughly 6% of this decrease comes from losing some market power and 4%

comes from losing cost efficiencies. Moreover, the deregulation leads to less advertising supplied

and higher per-listener prices. As a consequence, reverting to the old caps lowers listener surplus

by 0.07% and increases advertiser surplus by 1.7%.

The above exercise addresses the changes in the local cap without imposing a national cap

(post-1996 situation). A second exercise is aimed at partially addressing changes in the national

cap by nullifying the cross-market cost benefits. In general, lack of national synergies leads to fewer

mergers, which can lower the impact of the deregulation. On the other hand, each merger without

the deregulation is less efficient, thereby generating smaller gains to producer surplus. The net

effect is presented in the bottom three rows of Table 30. Because of fewer mergers, the negative

effect of deregulation on advertiser surplus is smaller. However, at the same time, no cross-market
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synergies exist, so the producer surplus is smaller.

Comparing the findings from dynamic analysis with the findings obtained using a static analysis,

which assumes that mergers are exogenous, is useful. In particular, Jeziorski (2012) finds that over

the course of 1996-2006, ownership consolidation decreased advertisers’ welfare by 21%, whereas I

find the decrease to be 1.7%. The following two factors contribute to this difference: (i) a static

analysis cannot account for long-run product repositioning, which could correct the negative effect

of the mergers, and (ii) a static analysis assumes no mergers or product repositioning would occur

without the deregulation. I examine the first effect by computing the net entry of radio stations

into the format of the merger. Net entry is defined as the difference between the entry and exit

arrival rates instantaneously after the merger, which accounts for churn. Recall from section 3 that

the positive impact of the merger on net entry means the merger is likely to be self-correcting.

To investigate this possibility, I compare pre- and post-merger net entry on Figure 3. Indeed, I

find mergers lead to more entry in all 88 markets. Moreover, note the forward-looking regulator

who uses pre-merger entry rates to estimate post-merger entry rates is likely to underestimate

entry, which could lead to over-blocking. Instead, the regulator should use the correct entry rates

predicted by the model.

7.2 Alternative merger policies

Merger enforcement based on ownership cap is rarely applied in markets other than radio. Instead,

the regulator applies policies based on concentration indexes or direct measures of welfare. In the

next experiment, I increase the ownership caps to seven FM stations and impose welfare criteria

based on static merger simulations.

First, I evaluate the impact of increasing ownership caps to seven FM stations (subsequently

CAP7) and present the results in the first three rows of Table 31. I find that in the long run, the

relaxation of the caps leads to about a 4.2% increase in producer surplus. Approximately a third of

this gain comes from fixed cost efficiencies, and a remaining two-thirds comes from market power.

In the long run, the market power is exercised predominantly on advertisers that lose about 1%

of their surplus. At the same time, in the long run, the listeners gain 0.01%. Shorter-run analysis

(first 5 to 10 years) further demonstrates the tension between exercising market power on listeners

versus advertisers. Namely, in the first five years after moving to CAP7, the companies exercise
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market power, on listeners, and in 10 to 20 years, on advertisers. The reason for this reversal is that

the short-run welfare figures are driven by ownership consolidation, whereas the long-run welfare

figures are driven by consolidation and post-merger product repositioning. These findings are in

line with the previous literature on retrospective post-merger repositioning in the radio industry.

In particular, post-merger repositioning can raise variety in this industry (see Berry and Waldfogel

(1999), and Sweeting (2009)), and this extra variety can benefit listeners but hurt advertisers by

thinning competition (see Jeziorski (2012)). However, prior to this paper, whether these results

extend to hypothetical and out-of-sample policies such as CAP7 was unknown.

Next, I impose additional antitrust criteria and recompute the equilibrium of the dynamic

game. Rows 4 to 6 of Table 31 present the results of experiments in which mergers that decrease

static listener surplus are forbidden. On one hand, the policy is successful in selecting mergers that

benefit listeners, raising their surplus by 0.03% in the long run, which is three times the gain from

pure CAP7. On the other hand, the listener welfare criterion renders many mergers infeasible,

leading to a smaller increase in producer surplus. However, because the executed mergers are in

general more efficient compared to CAP7, much of the cost synergy is still realized.

Lastly, I evaluate the policy based on advertiser surplus. Contrary to the listener surplus policy,

advertiser surplus policy is unsuccessful in preventing mergers that harm advertisers in the long

run. Note that the welfare criterion does well in the short run, leading to about a 0.13% gain in

advertiser surplus. However, post-merger repositioning reverts this trend in the long run and leads

to a 0.77% loss in advertiser surplus. Moreover, contradictory to the static intuition, the static

advertiser surplus criterion delivers a worse outcome for advertisers than the static listener surplus

criterion, which demonstrates that myopic merger policy can be dynamically suboptimal and can

have somewhat counterintuitive long-run consequences.

8 Conclusions

This paper proposes a model of industry response to different merger enforcement regimes. The

regulator proposes and subsequently follows a merger enforcement policy, and companies respond

to that policy via mergers and product repositioning. The merger transfer prices are endogenous

and are an outcome of a dynamic bargaining process.
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I estimate the model using the data on 1996-2006 consolidation wave in U.S. radio. In addition

to marginal cost efficiencies identified by Jeziorski (2012), (a second station in the same format has

a 10% smaller marginal cost), I find substantial fixed cost synergies from joint ownership. Namely,

operating similar stations together within the local markets is cheaper than operating those stations

individually. Additionally, significant economies of scale of operating multiple stations exist within

markets, and statistically insignificant synergies exist across markets. Operating two stations in

the same market is up to 14% cheaper than operating them separately. Moreover, owning two

stations of the same format creates a further 14% fixed cost discount.

The cost synergies translate into significant incentives to merger and social benefits from merg-

ers. I use the developed model to quantify the economic impact of these synergies. I start by

computing a merger retrospective evaluating an impact of the 1996 Telecom Act. This retrospec-

tive compares the industry trajectory without the Act, which includes counterfactual mergers and

product repositioning, with the factual trajectory with the Act. I find the deregulation enhanced

total surplus by raising producer surplus and generating a negligible impact on listener and adver-

tiser surplus. Small impact of the Act on advertisers contrasts with the large drop in advertiser

surplus suggested by the static model and highlights the need to incorporate dynamics into the

merger analysis.

Furthermore, I evaluate the counterfactual policy of using looser caps supplemented by welfare

criteria. In general, I find that increasing an ownership cap to seven stations increases total

surplus. For example, I demonstrate that the mergers in the radio industry are largely self-

correcting because they invite a significant amount of repositioning that mitigates the market

power. However, I also demonstrate that static welfare criteria are no enough to prevent losses

to consumer surplus. Specifically, I show that the criterion that rejects mergers lowering static

advertiser surplus does not prevent long-run losses to the advertiser surplus. Such losses to the

advertisers surplus are a consequence of the fact that companies can circumvent the welfare rule by

proposing the merger that exercises market power on listeners instead of advertisers and altering

the product characteristics after the merger. Also, more generally, I show that one has be to

cautious when using a pre-merger industry trajectory to estimate the post-merger trajectory. In

particular, in the case of the radio industry, using a pre-merger trajectory would underestimate

repositioning rates and could result in over-blocking mergers.
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Appendices

A Tables and Figures

Figure 1: Percentage difference in acquisition price of the three-to-two merger, between a forward-looking

and a myopic model. The x-axis represents different levels of marginal cost that determine the importance

of marginal cost synergies. Note that a forward-looking acquisition price is greater in the forward-looking

model for all considered values of marginal cost.
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Fixed-cost synergy Myopic impact

Long-run impact

Switching cost (ρR)

18.500 17.500 12.000 7.000 4.000

One station 0.170

Two stations 0.170

Fringe 0.170

Consumer surplus -13.6% -9.0% -7.3% -4.6% -5.1% -4.6%

Total surplus -0.6% 0.7% 1.2% 2.6% 2.4% 2.2%

Prob. of entry
without the merger

- 0.001 0.002 0.045 0.241 0.231

Prob. of entry
after the merger

- 0.008 0.013 0.209 0.513 0.296

One station 0.170

Two stations 0.204

Fringe 0.170

Consumer surplus -13.6% -9.0% -7.3% -4.6% -5.1% -4.6%

Total surplus -1.5% -0.3% 0.3% 1.7% 1.5% 1.4%

Prob. of entry
without the merger

- 0.001 0.002 0.045 0.241 0.231

Prob. of entry
after the merger

- 0.008 0.013 0.209 0.512 0.296

One station 0.170

Two stations 0.255

Fringe 0.170

Consumer surplus -13.6% -9.0% -7.3% -4.6% -5.0% -4.5%

Total surplus -2.9% -1.6% -1.0% 0.3% 0.3% 0.1%

Prob. of entry
without the merger

- 0.001 0.002 0.045 0.241 0.231

Prob. of entry
after the merger

- 0.008 0.013 0.209 0.495 0.296

One station 0.170

Two stations 0.306

Fringe 0.170

Consumer surplus -13.6% -9.0% -7.3% -4.6% -4.8% -4.3%

Total surplus -4.2% -3.0% -2.4% -1.0% -1.1% -1.3%

Prob. of entry
without the merger

- 0.001 0.002 0.045 0.241 0.231

Prob. of entry
after the merger

- 0.008 0.013 0.209 0.326 0.308

Table 1: The table illustrates the difference between the myopic and long-run impact of a merger

described in Example 1a in section 3 on total and consumer surplus. Additionally, I report pre-merger

and post-merger probabilities of repositioning that increases the number of competitors in the relevant

format. The relevant events, in which a myopic regulator that enforces a total-surplus criterion would

block the merger but a forward-looking regulator would allow it, are underlined.
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Marginal cost Myopic impact

Long-run impact

Switching cost (ρR)

3.000 2.500 2.000 1.500 1.000

Large owner 1.000

Fringe 1.000

Consumer surplus -14.1% -5.1% -4.8% -4.5% -4.3% -4.3%

Total surplus -4.0% -1.0% -0.9% -1.0% -1.3% -1.3%

Prob. of entry
without the merger

- 0.649 0.636 0.573 0.547 0.617

Prob. of entry
after the merger

- 0.861 0.767 0.666 0.666 0.719

Large owner 1.000

Fringe 2.750

Consumer surplus -2.9% -0.5% -0.0% 0.4% 0.8% 1.2%

Total surplus 8.6% 8.4% 8.3% 8.1% 7.9% 7.2%

Prob. of entry
without the merger

- 0.104 0.161 0.217 0.281 0.417

Prob. of entry
after the merger

- 0.100 0.158 0.213 0.273 0.416

Large owner 1.000

Fringe 3.000

Consumer surplus -1.2% 0.3% 0.8% 1.3% 1.7% 2.2%

Total surplus 10.4% 10.0% 9.9% 9.8% 9.5% 8.6%

Prob. of entry
without the merger

- 0.075 0.125 0.182 0.251 0.393

Prob. of entry
after the merger

- 0.063 0.110 0.165 0.232 0.383

Large owner 1.000

Fringe 3.500

Consumer surplus 2.5% 2.5% 3.0% 3.5% 4.0% 4.5%

Total surplus 14.0% 13.6% 13.4% 13.2% 12.8% 11.5%

Prob. of entry
without the merger

- 0.038 0.075 0.125 0.199 0.348

Prob. of entry
after the merger

- 0.025 0.054 0.097 0.166 0.327

Table 2: The table illustrates the difference between the myopic and long-run impact of a merger

described in Example 1b in section 3 on total and consumer surplus. Additionally, I report pre-merger

and post-merger probabilities of repositioning that increases the number of competitors in the relevant

format. The relevant events, in which a myopic regulator that enforces a consumer-surplus criterion would

block the merger but a forward-looking regulator would allow it, are underlined.
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Marginal cost Myopic impact

Long-run impact

Switching cost (ρR)

3.000 2.500 2.000 1.500

One station 1.100

Two stations 0.853

Fringe 1.000

Consumer surplus 3.5% -0.5% -0.1% 0.5% 1.3%

Total surplus 7.5% 20.4% 19.3% 17.8% 15.8%

Prob. of exit
without the merger

- 0.001 0.002 0.045 0.241

Prob. of exit
after the merger

- 0.906 0.921 0.937 0.953

One station 1.100

Two stations 0.880

Fringe 1.000

Consumer surplus 2.4% -1.6% -1.2% -0.5% 0.3%

Total surplus 6.2% 17.9% 16.8% 15.3% 13.4%

Prob. of exit
without the merger

- 0.001 0.002 0.045 0.241

Prob. of exit
after the merger

- 0.877 0.898 0.920 0.940

One station 1.100

Two stations 0.907

Fringe 1.000

Consumer surplus 1.3% -2.6% -2.2% -1.5% -0.7%

Total surplus 5.0% 15.4% 14.3% 12.9% 11.0%

Prob. of exit
without the merger

- 0.001 0.002 0.045 0.241

Prob. of exit
after the merger

- 0.841 0.870 0.899 0.925

One station 1.100

Two stations 0.935

Fringe 1.000

Consumer surplus 0.2% -3.6% -3.1% -2.4% -1.6%

Total surplus 3.7% 12.8% 11.8% 10.4% 8.7%

Prob. of exit
without the merger

- 0.001 0.002 0.045 0.241

Prob. of exit
after the merger

- 0.798 0.836 0.873 0.906

Table 3: The table illustrates the difference between the myopic and long-run impact of a merger

described in Example 2 in section 3 on total and consumer surplus. Additionally, I report pre-merger

and post-merger probabilities of repositioning that decreases the number of competitors in the relevant

format. The relevant events, in which a myopic regulator that enforces a total-surplus criterion would

allow the merger but a forward-looking regulator would block it, are underlined.
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Merger Merger Player Marginal cost

execution cost type sophistication 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Low

4⇒3 merger
myopic 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

forward looking 0.044 0.386 0.904 0.987 0.998 1.000 1.000 1.000

3⇒2 merger
myopic 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

forward looking 0.280 0.627 0.836 0.926 0.965 0.982 0.990 0.994

Medium

4⇒3 merger
myopic 0.000 0.364 1.000 1.000 1.000 1.000 1.000 1.000

forward looking 0.000 0.018 0.243 0.844 0.974 0.995 0.999 1.000

3⇒2 merger
myopic 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

forward looking 0.045 0.147 0.457 0.734 0.870 0.933 0.963 0.978

High

4⇒3 merger
myopic 0.000 0.000 0.000 0.891 1.000 1.000 1.000 1.000

forward looking 0.000 0.000 0.000 0.090 0.708 0.939 0.986 0.996

3⇒2 merger
myopic 0.000 0.184 0.997 1.000 1.000 1.000 1.000 1.000

forward looking 0.000 0.009 0.048 0.217 0.546 0.758 0.865 0.920

Table 4: Probability of diffent types of mergers for myopic and forward-looking buyers and sellers for

different levels of merger execution cost and marginal cost synergies.

Figure 2: Percentage difference in acquisition price of the three-to-two merger, between a forward-

looking and a myopic model. The x-axis represents different levels of marginal cost that determine the

importance of marginal cost synergies. On the left side of the graph, the myopic price is smaller than the

forward-looking price (hold out). On the right side of the graph the the myopic price is greater (speed-up).
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Mean Effects Random Effects

Advertising
−1.226∗

(0.727)

0.083∗

(0.043)

AM/FM
0.689∗∗∗

(0.135)
-

Power (kW)
0.113∗∗∗

(0.042)
-

AC

Rock

Country

Jazz

−3.348∗∗∗

(0.111)

0.083∗∗

(0.043)

CHR

Urban

Alternative

−1.745∗∗∗

(0.166)

−0.052

(0.150)

News/Talk

Religious

Ethnic

Others

−3.260∗∗∗

(0.108)

0.499∗∗∗

(0.034)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Estimates of the random-coefficients logit model of radio listeners’ demand. The first column

consists of the mean values of parameters in the utility function. The second row consists of the standard

deviations of a random effect ν.
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Demographics Characteritics

Age Sex Education Income Black Spanish

AC

Rock

Country

Jazz

0.001∗∗∗

(0.000)

−0.217∗∗∗

(0.004)

0.271∗∗∗

(0.001)

−0.116∗∗∗

(0.001)

−0.496∗∗∗

(0.004)

−1.278∗∗∗

(0.003)

CHR

Urban

Alternative

−1.066∗∗∗

(0.004)

0.540∗∗∗

(0.006)

1.529∗∗∗

(0.005)

−0.796∗∗∗

(0.003)

3.367∗∗∗

(0.012)

−0.612∗∗∗

(0.005)

News/Talk

Religious

Ethnic

Others

0.069∗∗∗

(0.001)

−0.411∗∗∗

(0.005)

0.674∗∗∗

(0.002)

−0.086∗∗∗

(0.001)

0.937∗∗∗

(0.005)

0.725∗∗∗

(0.009)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 6: The table presents estimates of covariances in the random-coefficients logit model of radio listeners’ demand. Each cell represents

a covariance between specific demographic characteristics and listening to the particular radio =station format.
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1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

0.907∗∗∗

(0.022)

0.766∗∗∗

(0.029)

1.194∗∗∗

(0.059)

0.903∗∗∗

(0.051)

1.081∗∗∗

(0.070)

1.324∗∗∗

(0.093)

1.005∗∗∗

(0.076)

0.946∗∗∗

(0.075)

1.474∗∗∗

(0.122)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 7: Estimates of utility (exponentiated) of not listening to radio. Value for 1996 is normalized to

1.

Population <.5 Population .5M-1.5M Population 1.5M-3.5M Population >3.5M

OLS
−0.10∗∗∗

(0.00)

−0.04∗∗∗

(0.00)

−0.05∗∗∗

(0.00)

−0.03∗∗∗

(0.00)

2SLS
−0.07∗∗∗

(0.00)

−0.03∗∗∗

(0.00)

−0.03∗∗∗

(0.00)

−0.02∗∗∗

(0.00)

Standard errors (corrected for the first stage) in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 8: The slope of advertising price per rating point (CPP). Intercept is set to 1. Units are standard

deviations of quantity supplied on a station level.
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Mean level Quality intercept

Pop. <.5 Pop. .5M-1.5M Pop. >1.5M Pop. <.5 Pop. .5M-1.5M Pop. >1.5M

OLS
2.32∗∗∗

(0.03)

2.16∗∗∗

(0.03)

1.22∗∗∗

(0.03)

0.22∗∗∗

(0.00)

0.16∗∗∗

(0.00)

0.08∗∗∗

(0.00)

2SLS
2.99∗∗∗

(0.04)

2.42∗∗∗

(0.04)

1.67∗∗∗

(0.05)

0.26∗∗∗

(0.00)

0.18∗∗∗

(0.00)

0.12∗∗∗

(0.00)

Standard errors (corrected for the first stage) in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 9: The marginal cost per minute of advertising sold. The intercept of advertising price per rating

point is set to 1. Note these numbers might be higher than 1 because the final price of advertising is CPP

times the station rating in per cent. Units for quality are standard deviations of quality in the sample.

Cost synergies

Pop. <.5 Pop. .5M-1.5M Pop. >1.5M

OLS
−0.28∗∗∗

(0.02)

−0.02

(0.01)

−0.10∗∗∗

(0.01)

2SLS
−0.21∗∗∗

(0.02)

0.01

(0.01)

−0.05∗∗∗

(0.01)

Standard errors (corrected for the first stage) in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 10: Marginal cost synergies from owning multiple stations of the same format.
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Adult Music Hits Music Non-Music

Dummy
−3.633

(1.046)

−3.609

(0.886)

−3.743

(1.747)

Age
1.963

(4.247)

0.659

(3.615)

−1.125

(3.069)

Education
0.906

(1.992)

−0.108

(1.697)

−0.539

(1.289)

Income
−0.696

(0.753)

−0.814

(0.662)

−0.623

(0.567)

Black
−0.205

(0.800)

1.475

(0.638)

0.507

(0.711)

Hispanic
−0.496

(0.786)

−0.817

(0.703)

0.608

(1.849)

Table 11: Acquisition CCP: Format dummies and format-demographics interactions; demographics

variables are 1996-2006 market-level averages; details in the appendix.

ηf,k η2
f,k

∑
k′∈KN\k

ηk′,f
∑

k′∈KN\k

η2
k′,f

 ∑
k′∈KN\k

ηk′,f

2 ∑
k′∈KL

ηk′,f

 ∑
k′∈KL

ηk′,f

2

2.447
(1.530)

−0.083
(17.924)

0.755
(9.757)

−0.513
(3.842)

−1.321
(3.524)

−0.515
(5.078)

0.076
(3.854)

Table 12: Acquisition CCP: Coefficients on the covariates related to the target acquisition format.
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∑
f ′ 6=f

ηf ′,k
∑
f ′ 6=f

η2
f ′,k

5.116

(9.876)

−1.224

(8.252)(∑
f ′ 6=f

ηf ′,k

)2 ∑
k′∈KN\k,f ′ 6=f

ηk′,f ′

−0.353

(5.247)

−0.131

(4.912) ∑
k′∈KN\k,f ′ 6=f

ηk′,f ′

2 ∑
k′∈KN\k

(∑
f ′ 6=f

ηk′,f ′

)2

−1.999

(3.845)

4.618

(0.940)

∑
f ′ 6=f

 ∑
k′∈KN\k

ηk′,f ′

2

−4.306

(2.009)

Table 13: Acquisition CCP: Coefficients on the covariates related to other-than-acquiree’s formats.

One from the cap Two from the cap

−0.497

(0.139)

0.268

(0.121)

Table 14: Acquisition CCP: Dummies for the closeness to the ownership cap.
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To: Adult Music To: Hits Music To: Non-Music

From: Adult Music - −6.130
(1.017)

−4.945
(0.756)

From: Hits Music −4.118
(0.922)

- −5.374
(0.752)

From: Non-Music −3.922
(0.972)

−6.634
(0.782)

-

Age −0.367
(3.769)

−2.420
(2.955)

−2.072
(3.127)

Education −1.207
(1.140)

0.145
(1.966)

−1.172
(1.260)

Income 0.136
(0.705)

0.574
(0.572)

0.445
(0.659)

Black −0.958
(0.489)

2.755
(0.801)

0.725
(0.545)

Hispanic −0.845
(0.697)

1.017
(0.537)

1.803
(1.195)

Table 15: National owner repositioning CCP: Format dummies and format-demographics interactions;

demographics variables are 1996-2006 market-level averages; details in the appendix.

ηf,k η2
f,k

∑
k′∈KN\k

ηk′,f
∑

k′∈KN\k

η2
k′,f

 ∑
k′∈KN\k

ηk′,f

2 ∑
k′∈KL

ηk′,f

 ∑
k′∈KL

ηk′,f

2

6.653
(1.117)

−3.300
(3.828)

−1.315
(0.987)

0.152
(9.708)

0.832
(4.574)

0.760
(2.338)

−1.276
(1.577)

Table 16: National owner repositioning CCP: Coefficients on the covariates related to the current format.

ηf,k η2
f,k

∑
k′∈KN\k

ηk′,f
∑

k′∈KN\k

η2
k′,f

 ∑
k′∈KN\k

ηk′,f

2 ∑
k′∈KL

ηk′,f

 ∑
k′∈KL

ηk′,f

2

−1.502
(4.381)

−0.281
(3.417)

−1.793
(6.854)

−0.994
(6.511)

−1.448
(4.874)

−0.807
(0.850)

−1.630
(1.596)

Table 17: National owner repositioning CCP: Coefficients on the covariates related to the target format.

At the cap One from the cap

0.593

(0.094)

0.436

(0.457)

Table 18: National owner repositioning CCP: Dummies for the closeness to the ownership cap.
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To: Adult Music To: Hits Music To: Non-Music

From: Adult Music -
−6.681

(0.446)

−4.683

(0.545)

From: Hits Music
−3.653

(0.373)
-

−4.769

(0.542)

From: Non-Music
−4.373

(0.380)

−7.554

(1.390)
-

Age
−2.754

(1.403)

1.374

(2.437)

−3.738

(1.362)

Education
1.415

(1.212)

1.175

(0.886)

1.258

(0.646)

Income
−0.333

(0.240)

0.199

(0.445)

−0.134

(0.232)

Black
−0.709

(0.513)

2.519

(0.345)

0.880

(0.406)

Hispanic
−0.865

(0.236)

0.583

(0.424)

1.685

(0.237)

Table 19: Local owner repositioning CCP: Format dummies and format-demographics interactions;

demographics variables are 1996-2006 market-level averages; details in the appendix.

∑
k′∈KN

ηk′,f
∑
k′∈KN

η2
k′,f

( ∑
k′∈KN

ηk′,f

)2 ∑
k′∈KL\k

ηk′,f

 ∑
k′∈KN\k

ηk′,f

2

0.514

(3.480)

−1.768

(3.269)

0.245

(1.866)

2.473

(0.555)

−3.786

(1.048)

Table 20: Local owner repositioning CCP: Coefficients on the covariates related to the current format.

∑
k′∈KN

ηk′,f
∑
k′∈KN

η2
k′,f

( ∑
k′∈KN

ηk′,f

)2 ∑
k′∈KL\k

ηk′,f

 ∑
k′∈KN\k

ηk′,f

2

−0.647

(0.604)

−2.380

(4.875)

−3.307

(1.997)

4.275

(1.412)

−7.163

(0.868)

Table 21: Local owner repositioning CCP: Coefficients on the covariates related to the target format.
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Name Pop. 2007 Intercept Name Pop. 2007 Intercept

Los Angeles, CA 13155.1 0.2324 (0.02413) Omaha-Council Bluffs, NE-IA 740.3 0.0255 (0.00265)

Chicago, IL 9341.4 0.1138 (0.01182) Knoxville, TN 737.4 0.0153 (0.00158)

Dallas-Ft. Worth, TX 5846.9 0.0924 (0.00959) El Paso, TX 728.2 0.0797 (0.00827)

Houston-Galveston, TX 5278.5 0.0695 (0.00721) Harrisburg-Lebanon-Carlisle, PA 649.4 0.0343 (0.00356)

Atlanta, GA 4709.7 0.0512 (0.00531) Little Rock, AR 618.7 0.0074 (0.00077)

Boston, MA 4531.8 0.0941 (0.00977) Springfield, MA 618.1 0.0098 (0.00102)

Miami-Ft. Lauderdale-Hollywood, FL 4174.2 0.1223 (0.01270) Charleston, SC 597.7 0.0071 (0.00074)

Seattle-Tacoma, WA 3775.5 0.1137 (0.01181) Columbia, SC 576.6 0.0105 (0.00109)

Phoenix, AZ 3638.1 0.0577 (0.00599) Des Moines, IA 576.5 0.0046 (0.00048)

Minneapolis-St. Paul, MN 3155 0.0692 (0.00718) Spokane, WA 569.1 0.0123 (0.00128)

St. Louis, MO 2688.5 0.0214 (0.00222) Wichita, KS 563.9 0.0144 (0.00150)

Tampa-St. Petersburg-Clearwater, FL 2649.1 0.0768 (0.00797) Madison, WI 539.5 0.0237 (0.00247)

Denver-Boulder, CO 2603.5 0.0686 (0.00712) Ft. Wayne, IN 520 0.0077 (0.00080)

Portland, OR 2352.2 0.1153 (0.01197) Boise, ID 509.9 0.0240 (0.00249)

Cleveland, OH 2133.8 0.0504 (0.00523) Lexington-Fayette, KY 509 0.0050 (0.00052)

Charlotte-Gastonia-Rock Hill, NC-SC 2126.7 0.0279 (0.00289) Augusta, GA 498.4 0.0024 (0.00025)

Sacramento, CA 2099.6 0.0415 (0.00431) Chattanooga, TN 494.5 0.0077 (0.00080)

Salt Lake City-Ogden-Provo, UT 1924.1 0.0269 (0.00279) Roanoke-Lynchburg, VA 470.7 0.0038 (0.00039)

San Antonio, TX 1900.4 0.0540 (0.00560) Jackson, MS 468.6 0.0011 (0.00011)

Kansas City, MO-KS 1870.8 0.0432 (0.00448) Reno, NV 452.7 0.0155 (0.00161)

Las Vegas, NV 1752.4 0.0710 (0.00737) Fayetteville, NC 438.9 0.0060 (0.00063)

Milwaukee-Racine, WI 1712.5 0.0217 (0.00225) Shreveport, LA 399.6 0.0018 (0.00019)

Orlando, FL 1686.1 0.0537 (0.00558) Quad Cities, IA-IL 358.8 0.0115 (0.00119)

Columbus, OH 1685 0.0119 (0.00123) Macon, GA 337.1 0.0022 (0.00023)

Indianapolis, IN 1601.6 0.0184 (0.00191) Eugene-Springfield, OR 336.4 0.0137 (0.00142)

Norfolk-Virginia Beach-Newport News, VA 1582.8 0.0173 (0.00179) Portland, ME 276.1 0.0112 (0.00116)

Austin, TX 1466.3 0.0812 (0.00842) South Bend, IN 267 0.0226 (0.00234)

Nashville, TN 1341.7 0.0488 (0.00506) Lubbock, TX 255.3 0.0271 (0.00281)

Greensboro-Winston Salem-High Point, NC 1328.9 0.0185 (0.00193) Binghamton, NY 247.9 0.0041 (0.00043)

New Orleans, LA 1293.7 0.0195 (0.00202) Odessa-Midland, TX 247.8 0.0040 (0.00042)

Memphis, TN 1278 0.0045 (0.00047) Yakima, WA 231.4 0.0099 (0.00103)

Jacksonville, FL 1270.5 0.0112 (0.00116) Duluth-Superior, MN-WI 200.3 0.0123 (0.00127)

Oklahoma City, OK 1268.3 0.0119 (0.00123) Medford-Ashland, OR 196.2 0.0076 (0.00079)

Buffalo-Niagara Falls, NY 1150 0.0401 (0.00417) St. Cloud, MN 191.2 0.0100 (0.00104)

Louisville, KY 1099.6 0.0311 (0.00322) Fargo-Moorhead, ND-MN 183.6 0.0150 (0.00155)

Richmond, VA 1066.4 0.0082 (0.00085) Abilene, TX 159.1 0.0059 (0.00061)

Birmingham, AL 1030 0.0104 (0.00108) Eau Claire, WI 156.5 0.0061 (0.00063)

Tucson, AZ 938.3 0.0317 (0.00329) Monroe, LA 149.2 0.0054 (0.00056)

Honolulu, HI 909.4 0.0311 (0.00323) Parkersburg-Marietta, WV-OH 149.2 0.0049 (0.00051)

Albany-Schenectady-Troy, NY 902 0.0323 (0.00335) Grand Junction, CO 130 0.0091 (0.00094)

Tulsa, OK 870.2 0.0137 (0.00142) Sioux City, IA 123.7 0.0119 (0.00123)

Ft. Myers-Naples-Marco Island, FL 864.1 0.0712 (0.00739) Williamsport, PA 118.3 0.0036 (0.00037)

Grand Rapids, MI 856.4 0.0124 (0.00129) San Angelo, TX 103.8 0.0057 (0.00059)

Albuquerque, NM 784.9 0.0614 (0.00638) Bismarck, ND 99.2 0.0024 (0.00025)

Omaha-Council Bluffs, NE-IA 740.3 0.0255 (0.00265) ()

Standard errors (corrected for the first stage) in parentheses

*** p¡0.01, ** p¡0.05, * p¡0.1

Table 22: Fixed cost of owning one station in each market.
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Number of stations owned

in the format in the local market
1 2 3 4 5

Fixed cost discount
1.000

(−)

0.862∗∗∗

(0.034)

0.790∗∗∗

(0.064)

0.743∗∗∗

(0.058)

0.708∗∗∗

(0.049)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1, one-tail test

Table 23: Fixed cost: Table contains estimates of discounts to fixed cost resulting from local cost

synergies from owning multiple stations in the same format.

Number of stations owned

local market
1 2 3 4 5 National

Fixed cost discount
1.000

(−)

0.863∗∗

(0.063)

0.791∗∗

(0.120)

0.744∗∗∗

(0.109)

0.709∗∗∗

(0.092)

0.963

(0.178)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1, one-tail test

Table 24: Fixed cost: Table contains estimates of within- and cross-market economies of scale. The

number reflects the per-station discount.

Mean Standard deviation

Intercept Variable profits Intercept Variable profits

Category 1 7.203∗∗∗

(1.374)

2.653∗∗∗

(0.653)

2.039∗∗∗

(0.290)

0.086
(0.091)

Category 2 3.917∗∗∗

(0.720)
1.030∗∗∗

(0.151)

Category 3 3.724∗∗∗

(0.793)
0.950∗∗∗

(0.177)

Category 4 2.061∗∗∗

(0.424)
0.510∗∗∗

(0.095)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1, two-tail test

Table 25: Estimates of the acquisition cost. The table contains an intercept of the mean and standard

deviation of the acqusition distribution. It includes market-size fixed effects (relative to the smallest

category) and a coefficient on the static variable profits of an acquistion target.
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Owner Source Mean Std. deviation

format Target format Variable Intercept Variable

Adult Music Hits Music Non-Music profit profit

National

Adult Music - 18.799∗∗∗

(1.863)
18.088∗∗∗

(1.732)

2.084
(1.842)

3.654∗∗∗

(0.330)
0.069
(0.329)

Hits Music 14.723∗∗∗

(1.419)
- 17.757∗∗∗

(1.732)

Non-Music 16.125∗∗∗

(1.568)
21.194∗∗∗

(2.099)
-

Local

Adult Music - 18.828∗∗∗

(1.819)
13.665∗∗∗

(1.306)

Hits Music 10.791∗∗∗

(1.121)
- 10.443∗∗∗

(1.104)

Non-Music 17.160∗∗∗

(1.606)
22.076∗∗∗

(2.115)
-

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1, two-tail test

Table 26: Market category 1: Estimates of the format-switching cost. The table contains to-from format

fixed effects for local and national owners.

Owner Source Mean Std. deviation

format Target format Variable Intercept Variable

Adult Music Hits Music Non-Music profit profit

National

Adult Music - 8.873∗∗∗

(0.999)
8.538∗∗∗

(0.922)

2.084
(1.842)

1.713∗∗∗

(0.180)
0.069
(0.329)

Hits Music 6.949∗∗∗

(0.773)
- 8.381∗∗∗

(0.926)

Non-Music 7.611∗∗∗

(0.858)
10.004∗∗∗

(1.145)
-

Local

Adult Music - 8.887∗∗∗

(0.963)
6.450∗∗∗

(0.701)

Hits Music 5.093∗∗∗

(0.616)
- 4.929∗∗∗

(0.593)

Non-Music 8.100∗∗∗

(0.876)
10.420∗∗∗

(1.129)
-

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1, two-tail test

Table 27: Market category 2: Estimates of the format-switching cost. The table contains to-from format

fixed effects for local and national owners.
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Owner Source Mean Std. deviation

format Target format Variable Intercept Variable

Adult Music Hits Music Non-Music profit profit

National

Adult Music - 6.531∗∗∗

(0.892)
6.284∗∗∗

(0.838)

2.084
(1.842)

1.226∗∗∗

(0.163)
0.069
(0.329)

Hits Music 5.114∗∗∗

(0.711)
- 6.169∗∗∗

(0.831)

Non-Music 5.602∗∗∗

(0.775)
7.363∗∗∗

(1.036)
-

Local

Adult Music - 6.541∗∗∗

(0.881)
4.747∗∗∗

(0.641)

Hits Music 3.749∗∗∗

(0.537)
- 3.628∗∗∗

(0.525)

Non-Music 5.961∗∗∗

(0.797)
7.669∗∗∗

(1.033)
-

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1, two-tail test

Table 28: Market category 3: Estimates of the format-switching cost. The table contains to-from format

fixed effects for local and national owners.

Owner Source Mean Std. deviation

format Target format Variable Intercept Variable

Adult Music Hits Music Non-Music profit profit

National

Adult Music - 2.354∗∗∗

(0.232)
2.265∗∗∗

(0.220)

2.084
(1.842)

0.435∗∗∗

(0.042)
0.069
(0.329)

Hits Music 1.844∗∗∗

(0.195)
- 2.224∗∗∗

(0.227)

Non-Music 2.019∗∗∗

(0.208)
2.654∗∗∗

(0.266)
-

Local

Adult Music - 2.358∗∗∗

(0.231)
1.711∗∗∗

(0.169)

Hits Music 1.351∗∗∗

(0.153)
- 1.308∗∗∗

(0.151)

Non-Music 2.149∗∗∗

(0.211)
2.764∗∗∗

(0.270)
-

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1, two-tail test

Table 29: Market category 4: Estimates of the format-switching cost. The table contains to-from format

fixed effects for local and national owners.
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Counterfactual Total producer Variable Fixed Listener Advertiser

regime surplus profits cost surplus surplus

Pre-1996 local caps 5 years -4.44 (2.30%) -2.62 (1.36%) 1.82 (0.94%) 0.00 (0.00%) -0.89 (0.21%)

Pre-1996 local caps 10 years -9.63 (4.87%) -5.67 (2.87%) 3.97 (2.00%) -0.04 (0.01%) -0.63 (0.15%)

Pre-1996 local caps 20 years -20.95 (10.13%) -12.38 (5.99%) 8.57 (4.15%) -0.21 (0.07%) 7.28 (1.73%)

Pre-1996 local caps

No cross-market ownership
5 years -4.32 (2.24%) -2.62 (1.36%) 1.70 (0.88%) -0.02 (0.01%) -0.75 (0.18%)

Pre-1996 local caps

No cross-market ownership
10 years -9.37 (4.74%) -5.62 (2.84%) 3.75 (1.89%) -0.08 (0.03%) -0.44 (0.10%)

Pre-1996 local caps

No cross-market ownership
20 years -20.41 (9.88%) -12.24 (5.92%) 8.18 (3.96%) -0.27 (0.09%) 7.37 (1.75%)

Table 30: Impact of different enforcement regimes on producer, listener, and advertiser surplus. The

table reports differences between simulated future states using the equilibrium merger and repositioning

strategies at the counterfactual regime and the observed regime. Hence, a positive number means the

counterfactual regime yields a higher value.
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Figure 3: Post- and pre-merger net entry rates by market. Markets are sorted by population, from the

smallest (Bismark) to the largest (Los Angeles).
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Counterfactual Total producer Variable Fixed Listener Advertiser

regime surplus profits cost surplus surplus

Cap of 7 5 years 2.21 (1.14%) 1.66 (0.86%) -0.55 (0.28%) -0.03 (0.01%) 0.91 (0.22%)

Cap of 7 10 years 4.44 (2.24%) 3.18 (1.61%) -1.26 (0.64%) -0.00 (0.00%) -1.20 (0.28%)

Cap of 7 20 years 8.59 (4.16%) 5.90 (2.86%) -2.69 (1.30%) 0.03 (0.01%) -3.71 (0.88%)

Cap of 7

Myopic Listener Surplus Criterion
5 years 0.59 (0.30%) 0.55 (0.28%) -0.04 (0.02%) 0.05 (0.02%) 0.42 (0.10%)

Cap of 7

Myopic Listener Surplus Criterion
10 years 1.70 (0.86%) 1.20 (0.61%) -0.50 (0.25%) 0.07 (0.02%) -0.51 (0.12%)

Cap of 7

Myopic Listener Surplus Criterion
20 years 4.65 (2.25%) 2.80 (1.36%) -1.85 (0.89%) 0.08 (0.03%) -2.58 (0.61%)

Cap of 7

Myopic Advertiser Surplus Criterion
5 years 1.72 (0.89%) 1.16 (0.60%) -0.56 (0.29%) -0.07 (0.02%) 0.53 (0.13%)

Cap of 7

Myopic Advertiser Surplus Criterion
10 years 3.58 (1.81%) 2.25 (1.14%) -1.33 (0.67%) -0.10 (0.03%) 0.44 (0.10%)

Cap of 7

Myopic Advertiser Surplus Criterion
20 years 6.76 (3.27%) 4.12 (1.99%) -2.64 (1.28%) -0.05 (0.02%) -3.25 (0.77%)

Table 31: Impact of increasing FM local ownership cap to 7 stations on producer, listener, and advertiser

surplus. The table reports differences between simulated future states using the equilibrium merger and

repositioning strategies at the counterfactual regime and the observed regime. Hence a positive number

means the counterfactual regime yields a higher value.
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B Static payoffs

This appendix section contains a discussion of the data and estimation procedure that is used to obtain static profit function π(·).

B.1 Static data

The data come from four main sources: two consulting companies, BIA Inc and SQAD, a Common Population Survey, and Radio

Today publications by Arbitron. BIA provides two comprehensive data sets on the vast majority of U.S. radio broadcasting. The first

data set covers years 1996-2001 and the second, 2002-2006. I combined the data to form a large panel for 1996-2006. SQAD provides

a data set on average prices per rating point (CPP) for each market and half of a year, grouped by demographics and time of the day.

Unfortunately, it does not provide data on station-level per-listener pricing. However, because the pricing is done on the per-listener

basis, one can still compute a station-level price of an advertising slot by multiplying the CPP by the station rating. According to

the anecdotal evidence, many advertisers follow this procedure to figure out the prices they are likely to pay. This procedure does not

account for the fact that stations might have different listenership pools and therefore CPP for different stations might vary. I alleviate

that concern by computing a proxy for a station-level CPP. I take a weighted average of prices by demographics and time of the day,

where weights are relevant ratings of the station. By doing so, I assume stations that have most of their listenership at a particular time

of the day also set a price that is closer to the average price at that time of the day. Although this estimate of station-level prices is not

perfect, it produces a considerable amount of variation within market. I subsequently use these price proxies to compute station-level

advertising quantities by dividing estimates of station revenues (provided by BIA) by a product of prices and ratings. Note that ad

quantity computed in such a way might carry some measurement error, because it is a function of two estimates. However, if this

measurement error is not endogenous within markets – for example, if it only introduces error to an overall level of advertising in each

market – it would not affect the results.

To compute the probability of listening to a particular format by different demographic groups, I use Radio Today publications.

These papers provide a demographic composition for each format. The numbers were inverted using Bayes’ rule and demographic

distributions in all markets obtained from the Census Bureau. I averaged the probability distributions for gender and age groups across

years 1999, 2000, 2001, 2003, and 2004. The Education data is available for 2003 and 2004. Ethnicity data is available only for 2004.

Given almost no variation in the national values for these numbers across years, I match these averages to data moments for 1996-2006.

Moreover, I supply the data with a share of an outside option for different markets from Arbitron Listener Trends publications.

B.2 Static estimation

The following section is a parsimonious description of the estimation procedure I use to recover the parameters of the static model (for

the full description see Jeziorski (2012)). I conduct the estimation of the model in two steps. In the first step, I estimate the demand

model that includes parameters of the consumer utility θL (see equation (5.2)). In the second step, I recover parameters of the inverse

demand for advertising θA, wjj′ (see equation (5.4)) and marginal cost parameters θC (see equation (5.5))

This stage provides the estimates of the demand for radio programming θL, which are obtained using the generalized method of

simulated moments. I use two sets of moment conditions. The first set is based on the fact that innovation to station unobserved quality

ξj has a mean of zero conditional on the instruments:

E[ξjt|Z1, θ
L] = 0, (B.1)

This moment condition follows Berry, Levinsohn, and Pakes (1995). I use instruments for advertising quantities because these quantities

are likely to be correlated with unobserved station quality. My instruments include lagged mean and second central moment of

competitors’ advertising quantity, lagged market HHIs and lagged number and cumulative market share of other stations in the same

format. These instruments are valid under the following assumptions: (i) ξt is independent across time and radio stations, and (ii)

decisions about portfolio selection are made before decisions about advertising.

A second set of moment conditions is based on demographic listenership data. Namely, I equate a national share Rfc of format

f among listeners possessing certain demographic characteristics c to it’s predicted empirical counterpart R̂fc. Formally, I use an
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unconditional moment E[R̂fc−Rfc|θL] = 0. I obtain the conditional empirical moments R̂fc by drawing listeners of characteristic c from

the conditional national empirical distribution (based on Common Population Survey) and averaging their format choice probabilities

implied by the model.

The second stage of the estimation obtains the competition matrix Ω, the parameters of demand for advertising θA, and marginal

cost θC . The elements of the matrix Ω are postulated to take the following form:

ωff ′ =
1∑

a∈A r
2
a|f

∑
a∈A

ra|f
(
ra|f rf ′|a

)
,

where rf |a is a nationally aggregated probability that the advertiser of type a chooses format f (ra|f can be obtained by Bayes’

separately for each market, knowing the market proportion of types).

The estimator is based on the following supply conditions:

rjt +
∑
j′∈skt

qj′t
∂rj′t(qt)

∂qjt
=

θCmt+θCm1 + θAm2

rjtvj +
∑
j′∈skt

(
rj′t(qt)ω

m
jj′ + vj′

∂rj′t(qt)

∂qjt

)+ θCm2 ξjt + θCm3 SYNjt + ηjt,

(B.2)

where vj =
∑
j′∈skt

ωmjj′qj′t.

Because the equation does not depend on θA1 , I can use it to estimate θA2 and θC . Two sources of heterogeneity in marginal cost

and slope coefficients exist across markets. Effective marginal cost parameters for each station in market m are given by θAm1 θCm,

and θAm1 is allowed to be different across markets. Moreover, to control for potential heterogeneity that is not captured by a level of

revenues, I allow for three different sets of values of all parameters in θCm: for small (up to 500 people), medium (between 500 and

1500), and large (more than 1500) markets. To avoid having a full set of dummies and to facilitate identification, I set time dummies

for years 1996 and 1997 to zero. Similar specification is true for the slope of the inverse demand for ads and its effective slope is given

by θAm1 θAm2 . To control for the fact that stations might have different market power in the advertising market depending on its size, I

allow for four different values for the slope of inverse demand, depending on the population of the market (up to 500 people, between

500 and 1500, between 1500 and 4500, and more than 4500). Given the estimates of θAm2 and θC , I can back out θAm1 by equating the

observed average revenue in each market with its predicted counterpart. To control for the fact that ratings depend on quantity, which

is likely to be correlated with η, I estimate the model with two-stage least squares using the following instruments: number of stations

in the same format and ad quantities of competitors. Additionally, the instruments were lagged one period to control for potential serial

correlation in η.

C Value function simulation details
The value function at J s can be decomposed into four components according to

Vk = V (π) + V (P ) + V (F ) + V (A) + V (R),

where

V
(π)
k =

∫ ∞
s=t

e−ρsπk(J s)ds,

V
(F )
k = −

∫ ∞
s=t

e−ρsFk(J s|θ)ds,

V
(A)
k =

∞∑
l=1

e−ρτ
A,(l)
k WA

a
(l)
k

(CCPAk ,J
τ
A,(l)
k |θ),

V
(R)
K =

∞∑
m=1

e−ρτ
R,(m)
k WR

r
(l)
k

(CCPRk ,J
τ
R,(m)
k |θ),

V
(P )
k =

∞∑
l=1

e−ρτ
A,(l)
k − P (a

(l)
k ,J τ

A,(l)
k |θ).
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Each of these components can be expressed as a linear function of parameters θ and sufficient statistics about the simulated industry

paths Ĵ s,r for r = 1, . . . , 1000. I discuss all components below.

The first component V
(π)
k does not depend on dynamic parameters, so the sufficient statistic is just an average of all draws. The

second component V
(F )
k is a discounted sum of fixed costs. The sufficient statistic to compute this cost is a matrix

SIMF (f, x, y) =

∫ ∞
s=t

e−ρs1(ωskf = x, nsk = y)ds.

Fixed cost can be obtained using

V
(F )
k =

F∑
f=1

F̄mf
∑
x,y

SIMF (f, x, y)FS(x|θF )FE(y|θE).

The third component consist of sum of discounted acquisition shocks. It can be decomposed into

V
(A)
k = θA,m

∞∑
l=1

e−ρτ
A,(l)
k +θAπ

∞∑
l=1

e−ρτ
A,(l)
k πk(J τ

A,(l)
k )+

θA,mσ

∞∑
l=1

e−ρτ
A,(l)
k E[εA(k′)|a(l)

k ] + θA,mσ,π

∞∑
l=1

e−ρτ
A,(l)
k πk(J τ

A,(l)
k )E[εA(k′)|a(l)

k ].

In such a case, I need four sufficient statistics to evaluate this part of the value function. One can similarly decompose the fourth

component and obtain nine sufficient statistic. An extra five statics come from the fact that I allow six different means of repositioning

cost depending on the source and target format.

The last component is the sum of discounted acquisition spending. To obtain it, I use the fact that the acquisition price P (a
(l)
k |J

t, θ)

is equal to the value function of the acquiree conditional on rejecting every equilibrium merger offer. Thus, obtaining an acquisition

price is the same as simulating a value function for the fringe firm. Such a value function contains three of the above terms, namely,

V
(π)
k , V

(F )
k , and V

(R)
k , which are simulated using the aforementioned sufficient statistics in the nested loop.
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