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Abstract 

This paper models sequential auctioning of two perfect substitutes by a strategic seller, who 

learns about demand from the first-auction price. The seller holds the second auction only when 

the remaining demand is strong enough to cover her opportunity cost. Bidding in anticipation of 

such a contingent future auction is characterized, including a sufficient condition for existence of 

an invertible (increasing symmetric pure-strategy) bidding equilibrium that facilitates the seller’s 

learning. A unique invertible bidding equilibrium exists for the Dutch auction format, but only 

when the second auction is sufficiently discounted by the bidders. In the equilibrium, high-

valuation bidders shade their bids down as if the second auction were guaranteed. To counter 

such strategic bidding, the seller would value ex-ante commitment to hold the second auction 

less often. Three forms of such commitment are analyzed: commitment to list future auctions in 

advance, commitment to not hold the second auction unless the first price exceeds a publicly 

announced threshold, and commitment to a reserve-price in the second auction. 
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1. Introduction 
Unit-demand goods are frequently auctioned in a sequence of standard auctions, one unit at a 

time. On eBay, dealers and individuals sell unit-demand consumer durables, such as cars or 

electronics, using sequences of English auctions. Flower growers in the Netherlands and 

elsewhere sell carts of flowers using sequences of Dutch auctions. Finally, governments and 

large firms use sequences of first-price sealed-bid auctions to sell procurement contracts – unit 

demand goods to capacity-constrained firms. A seller of such goods facing persistent buyers has 

the opportunity to learn about demand from the early auctions and adapt her selling strategy 

going forward. For example, she may be better off not producing additional units when the 

remaining demand is weak. To accommodate such a selling strategy, most auctioneers give 

sellers the right to withdraw future lots from the auction. While clearly beneficial, learning more 

about remaining demand also comes with a cost of lower revenue in the early auctions because 

high-value bidders reduce their bids in response to a learning seller. They know that losing an 

early auction to an even higher competitor guarantees a high-demand signal that will entice the 

seller to offer another unit. Therefore, the high-value bidders can bid conservatively in the early 

auctions, knowing that there will be another chance to buy the good should they lose. This paper 

analyzes the resulting tradeoff between benefits and costs of learning, and finds that the seller 

can profit from various forms of commitment to reduce future supply.  

A concrete example is useful to both show an application of the theory, and to illustrate 

the different commitment strategies under investigation. Consider a flower grower selling carts 

of the same flowers to florists, with the auction format exogenously fixed to a Dutch auction (as 

in the world’s largest Aalsmer flower-auction house in the Netherlands). The grower has a cart of 

flowers to sell today, and she can produce another cart tomorrow at some publicly known cost. 

When there is a unique increasing symmetric pure-strategy bidding equilibrium in today’s 

auction, today’s price reveals the valuation of the highest-valuation florist, who subsequently 

exits the game because each florist only wants to buy one cart (unit-demand). The winner’s 

revealed valuation is an upper bound on the valuations among the remaining bidders, so a non-

commitment grower (who makes decisions one unit at a time) will produce and sell the second 

cart when her cost of producing it is less than the expected profit implied by the upper bound on 

valuations. Anticipating that decision in the first auction, florists with high-enough valuations 
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can take the second sale for granted and bid as if there were two carts for sale. In equilibrium, 

these high-valuation florists therefore bid less aggressively than in an isolated single-cart auction 

– a phenomenon called bid-shading here.  

Subgame perfection may force the non-commitment grower to produce and sell the 

second cart of flowers even when her bid-shading revenue-loss on the first cart exceeds the 

expected profits from the second cart. Under those market conditions, the grower would clearly 

benefit from some form of ex-ante commitment to reduce future production. The simplest such 

commitment is available to a seller who foregoes learning completely and always lists future 

auctions in advance: when she does not list a future auction, the bidders believe that there will 

not be one. Advance listing can be credible when there is a third-party auctioneer who requires 

advance notice (as effectively does eBay), or when such advance notice is a necessary feature of 

the market (as in procurement).1 This paper provides a general characterization of seller 

preference for advance listing over non-commitment. When the distribution of valuations is 

uniform, the problem is tractable in that a unique cost-cutoff emerges above which the seller 

prefers to list in advance (keeping the number of bidders constant). The cutoff rises with the 

number of bidders, so increased demand-side competition makes advance listing less desirable. 

 The complete loss of learning implied by advance listing is not a necessary feature of 

optimal selling when the grower can commit to second-period strategies contingent on the first-

auction price. Instead of making the decision about the second cart in the beginning of the game, 

the grower may be able to announce a threshold price – minimum first-cart price above which 

she will produce and sell the second cart. This may be credible when the seller is an agent who 

faces piecemeal incentives: for example, political pressure may force the government to cancel 

future infrastructure projects if the inaugural project turns out to be too expensive once 

contractors bid on it. Alternatively, credibility can always be established through reputation. It is 

immediate that an optimally selected threshold price will outperform both advance listing and 

non-commitment: First, extremely low or high thresholds replicate profits from advance listing. 

Second, a threshold slightly above the price that makes the non-commitment seller break even in 

the second period outperforms non-commitment because it reduces shading without a marginal 

reduction in profits. This paper analyzes the bidding strategies induced by a threshold selling 

                                                 
1 On eBay, auctions are open for bidding for several days, and so the economically relevant endgame is effectively 
listed several days in advance. To allow bid-preparation, government auctions of procurement contracts for highway 
construction are listed at least four weeks in advance (Jofre-Bonet and Pesendorfer 2003). 
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strategy, and finds that there is a unique increasing first-period bidding strategy if and only if the 

second period payoffs are sufficiently discounted. Therefore, informativeness of the first-period 

bids cannot be taken for granted. A general characterization of the optimal threshold price is 

derived, together with a closed-form result for the uniform distribution.  

 The threshold price strategy increases profits by convincing low-valuation florists that 

they should not expect a second cart of flowers on the margin. These florists then do not shade 

their bids in the first auction, in turn increasing competition for the high-value florists who also 

end up bidding more thanks to Dutch-auction incentives. Another way to convince low-valuation 

florists not to expect a second cart would be to pre-commit to a reserve price for the second cart 

in the beginning of the game. Credibility of a reserve price in the second period requires 

additional commitment to be credible, namely commitment not to re-auction unsold units 

(McAfee and Vincent 1997). When the seller does have this additional commitment, an 

interesting equivalence emerges: the second-unit reserve optimal for the entire sequential-auction 

profit is the same as the optimal reserve for selling only the second unit to the same group of 

bidders. In other words, the incentive to reduce first-period bid-shading by raising the second-

period reserve is perfectly balanced by the incentive to accommodate the weaker second-period 

demand arising from the highest bidder exiting the market in the end of the first period.  

 The paper is organized as follows: After a brief literature review in Section 2, Section 3 

defines the model, and derives the equilibrium strategies under the baseline assumption that 

second-period reserve prices are weak (production cost needs to be sunk before the second 

auction, seller cannot commit not to re-auction). Section 4 then changes these assumptions, 

considers commitment to a future reserve, and derives the equivalence between a single-auction 

reserve and pre-commitment reserve in two auctions. Section 5 concludes. 

2. Related literature 
It is well known that bid-shading by all bidders is the best response to an exogenous future 

auction for a substitute (Milgrom & Weber 2000, Engelbrecht-Wiggans 1994, Jeitschko 1999, 

and many others). This paper extends the literature on bidding in sequential auctions by making 

the existence of the second auction endogenously determined by a strategic seller. The bidders 

facing a strategic seller shade their bids today only when they expect her to sell another unit after 

learning about demand from the outcome of the current auction. This is different from Jeitschko 
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(1999), who studies an uncertain but still exogenous future sale: while all of Jeitschko’s bidders 

increase their bids in response to the uncertainty, the bidders here increase their bids more when 

their valuations are low. The most related paper is Zeithammer (2007) who analyzes the relative 

preference for advance listing over non-commitment in a stylized case of two patient bidders 

drawn from a discrete Bernoulli distribution. Proposition 4 in this paper generalizes his result to 

continuous distributions and an arbitrary number of bidders. The strategies available to the seller 

are expanded to include price-thresholds and future reserve prices.  Another closely related paper 

is Katsenos (2007), who analyzes a complementary model by focusing on a seller with “limited 

commitment” who can commit not to re-auction unsold units but cannot commit to a future 

reserve-price. He does not consider advance listing, commitment to a threshold price, or the case 

when the second-unit production cost needs to be sunk before the second auction. The present 

setting is also different in that the first item is sold without reserve, so low bidders do not 

strategically abstain from the first auction as they do in Katsenos (2007). 

As a consequence of the strategic selling, increasing symmetric pure-strategy bidding 

equilibria do not always exist, and so the informativeness (invertibility) of first-period prices 

cannot be taken for granted. It is well known that such informativeness breaks down when the 

seller can “ratchet up” the price to extract all remaining buyer surplus (Freixas, Guesnerie, Tirole 

1985). Such ratcheting cannot occur in a Dutch auction for unit-demand goods because the 

valuation of the second-period winner remains hidden in the first-period bids. This logic is the 

unit-demand good mirror image of the logic that makes the ascending English auction preferable 

for sequential auctioning of goods with rejuvenating demand in Caillaud & Mezzetti (2004): 

Their goods have identical demand in every period, and the ascending English auction keeps the 

valuation of the second-period winner (the overall highest bidder) hidden. Because of ratcheting, 

the present model would completely break down if the goods were sold by ascending English or 

second-price sealed-bid auctions, as explained in detail by Katsenos (2007). 

 The goods considered here are durable in that bidders are persistent across time-periods 

and have unit demand over time. The commitment problem of the non-commitment seller is 

analogous to the commitment problem of a durable-goods monopolist who sets prices (Coase 

1972, Stokey 1979). The problem appears even when there is only one unit to sell by auction 

with a reserve, because the seller will be tempted to lower the reserve price tomorrow in case no 

bids exceed it today. As a result, the ability to re-auction immediately leads to the Coase 
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conjecture – the auction seller cannot credibly use a reserve above her opportunity cost (McAfee 

& Vincent 1997). When instantaneous re-auctioning is not possible and the horizon is finite, 

Skreta (2007) builds on Skreta (2006) to show that the optimal way to sell the single unit is  a 

sequence of auctions with declining reserves. This paper abstracts away from the re-auctioning 

complications by assuming that re-auctioning is instantaneous. However, the seller still has a 

commitment problem because there may be more than one unit sold, and she will be tempted to 

produce and sell the second unit “too often” for overall profit maximization. The analysis 

contributes to the durable-goods literature by examining a case of a seller who is initially 

uncertain about demand and subsequently learns about it from the early transactions. As a result 

of this learning, commitment needs to be sufficiently fine-grained (contingent on observable 

first-auction outcomes) to prevail over non-commitment. With only a coarse commitment, such 

as that arising from advance listings, the increased profit from learning can exceed the revenue 

loss due to lack of commitment, and thus make the non-commitment seller better off. In contrast, 

the canonical price-setting monopolist of Stokey (1979) faces a perfectly known downward-

sloping demand curve and always benefits from commitment not to lower price tomorrow.  

3. Model of sequential auctioning with a threshold price 
There are two periods, 1 and 2. Everyone lives for both periods and discounts second-period 

outcomes by factor δ<1. 

Seller: There is a monopolist risk-neutral seller endowed with one unit of a good in the 

beginning of the game. In the first period, she sells the first unit in a first-price sealed-bid auction 

(hereafter 1PSB) without a reserve and observes the first-period price p1.2 In the second period, 

she can produce and sell one additional unit at a cost of production , where 0 is WLOG the 

seller’s own value of a unit.

0c ≥

                                                

3 The market conventions dictate that the second-period auction must 

be a 1PSB, possibly with a reserve-price. The production cost c must be sunk before the second 

auction, so the seller’s opportunity cost at auction time is her value (zero). In the flower-grower 

example, this assumption means that the seller first produces the flowers and then offers them for 

sale without having a good option to sell them in some other market. When the seller uses a 

reserve price, she can instantaneously re-auction any unsold units. As a consequence of the sunk 

 
2 Either a third-party auctioneer keeps all the bids hidden and discloses only the price, or this is a Dutch auction. 
3 The cost-asymmetry between the two units simplifies the analysis by not modeling the decision whether or not to 
offer the first unit. The symmetric case of constant marginal cost is considered throughout as c=0. 
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cost and instant re-auctioning, she can credibly use only a reserve equal to her value (zero) in 

either period (McAfee & Vincent 1997).4 Note that even with these two reserve-weakening 

assumptions, ratcheting would lead to valuation-obscuring mixing strategies if second-price 

auctions were used instead of 1PSB: if the seller knows the highest remaining bidder has 

valuation exactly v, then take-it-or-leave-it offer at v is credible (Levine & Pesendorfer 1995). 

Bidders: There are N ≥ 3 unit-demand patient bidders indexed by i with single-item 

valuations xi drawn iid from some continuous distribution F on [0,1] . In the case of durables that 

provide a flow of benefits in each period, “valuation” is the net present value of the total utility 

derived from the good. There is no resale by the first-period winner to remaining bidders. 

Information: The seller knows F, but xi are private information of each bidder. c, δ and N 

are common knowledge at the start of the game, everyone learns p1 in the end of the first period.  

Selling regimes: Three selling regimes are considered: non-commitment, advance listing, 

and commitment to a first-period threshold price. The non-commitment seller plays a Perfect 

Bayesian Nash Equilibrium strategy. She decides whether or not to sell the second unit in the 

beginning of the second period after observing the first-period transaction price p1. The seller 

who lists in advance decides her entire selling strategy in the beginning of the game.5 The seller 

with commitment to a threshold price can commit before the game to only produce and sell the 

second unit when p1 weakly exceeds some cutoff level m (for “minimum”). Both commitment 

sellers play a Nash equilibrium strategy. 

Notation: Following Chapter 15 of Krishna (2002), let ( )m
kY be the k-th highest of m draws 

drawn iid from F. Six important special cases used in this paper are: ( )
1 1

NX Y≡  ( )
2 2

NX Y≡  

( )
3 3

NX Y≡   ( )1
1 1

NY Y −≡ ( )1
2 2

NY Y −≡ ( )2
1 1

NZ Y −≡ . The distributions of the order-statistics of N-1 

“competing” bidders are denoted ( ) ( )jY xPrjF x = ≤ , with corresponding densities ( )jf x . The 

distributions of the order-statistics of the entire population of N bidders are denoted 

, with corresponding densitites ( ) PrjH x ( jX x= ≤ ) ( )jh x .  It is convenient to also introduce 

, i.e. the conditional distribution of X2 given X1. ( )2|1H v x ( 2| = Pr X )1|v X x≤ =

                                                 
4 The assumption of cost sunk before second auction together with instant re-auctioning make reserve-prices 
toothless. Section 4 investigates how changing these assumptions changes the seller’s preferred strategy. 
5 The advance listing regime is revenue-equivalent to a simultaneous sale of both units via a third-price sealed-bid 
auction but delaying the delivery of the second unit. Please see Section 3.3 for details. 
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3.1 Bidding strategies 

The game can be solved by backward induction. I restrict attention to symmetric pure-strategy 

equilibria described by strictly increasing bidding strategies ( )1 xβ ( )2 and xβ  in the first and 

second auction respectively. It will be shown that there exists a unique such equilibrium 

whenever δ  is small enough.  

( )1 xSuppose the first-period bidding strategy β  is pure and increasing. Then, the 

equilibrium second-auction bidding strategy ( )2 xβ

( )1
1 1

 is standard because the first-period price 

does not impact second-period bids. This simplification is analogous to that in Milgrom & 

Weber (2000), and it follows from mutual independence of the bidders: the first-period price 

reveals an upper bound pβ − on the valuations of the surviving bidders (i.e. the N-1 bidders 

who lose the first auction), but this bound does not bind survivors’ optimization problem. The 

bound does not bind because each bidder only considers the remaining competition at or below 

his own valuation, and the revealed valuation ( )1
1 1pβ −  of the first-period winner is by definition 

higher than that of all surviving bidders. Therefore, the surviving bidders bid according to the 

same function as bidders in a standard 1PSB with N-1 IPV bidders drawn from F  (see Krishna 

2002 for a detailed proof): 
 
Lemma 1: The unique symmetric second-period bidding strategy is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )3
2 1 1 2 1 3 22

1 2 ( ) | | |
x

N
Nx

0

v N f v F v dv E Z Z x E Y Y x E X X x
F x

β −
−= − = < = = = =∫  

( )2 xβUnlike , first-period bidding depends on the seller’s strategy. Because both non-

commitment and advance listing correspond to special cases of a price-threshold, the following 

proposition characterizes bidding in all selling regimes (see the Appendix for all proofs): 
 
Proposition 1: Let m E  be the seller’s threshold price, and let w be the bidder who 

would bid m in the absence of the second auction: 

( )10, Y∈⎡ ⎤⎣ ⎦

( )1 1|Y Y w= <

( )1

m E . When it is increasing, the 

following xβ

(

 is the unique increasing symmetric pure-strategy equilibrium: 

( ) ( ) ) ( )1 1r |1 1 1| P 1 1 2 |x E Y Y xβ δ= < w Y Y x Y x− < <E Y Y w< − <    

( )1 xβ  is not increasing, there is no non-decreasing symmetric pure-strategy equilibrium. When 
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A key property of ( )1 xβ  is that bidders below w bid as if there were no second auction while 

bidders above w bid as if the second auction were guaranteed. The reason for the different 

expectations is that bidders correctly anticipate the seller’s decision should they lose. When 

x w> , it is obvious that losing means that 1p m>  because losing means  and 1Y x> x w> . In 

contrast, a bidder with x w

( )

<

1

 will only get to bid in the second auction when . Therefore, 

local deviations above 

1Y > w

xβ  (slightly above ( )1 xβ  but still below m) do not change the chance 

that , and so low-value bidders do not consider the second-auction on the margin. 

Proposition 1 is surprising in that threshold-crossing deviations are not profitable either: even 

bidders slightly below w do not find it beneficial to increase their bids in order to ensure the 

existence of the second auction. Such a deviation would only change the existence of the second 

auction if the bidder were pivotal to the outcome of the first auction, i.e. losing with the 

equilibrium bid but winning thanks to the deviation. But since winning the first auction rules out 

participation in the second, being pivotal implies that the deviation is not profitable. 

1Y w>

Given that only bidders above w shade their bids, it is possible to develop intuition for the 

shading decrement below the single-shot 1PSB strategy of ( )1 1|E Y Y x< : in a first-price sealed-

bid auction, it is optimal to bid the expected valuation of the highest competitor conditional on 

winning the auction (Krishna 2002). A guaranteed existence of a future auction effectively 

reduces the valuation of the first unit by the opportunity cost of not winning the second unit – the 

discounted expected surplus ( )2x xδ β−⎡⎣ ⎤⎦ . Therefore, the valuation of the highest competing 

bidder net of the potential second-period auction is ( )1 1 1w Yδ β− > (2 1Y Y Y− )⎡ ⎤⎣ ⎦1 , from which 

the formula for ( )1 xβ  in Proposition 1 follows. One could therefore consider (1 )xβ  to be an 

obvious candidate for the equilibrium bidding function. Proposition 1 confirms that this intuition 

indeed works by ruling out all possible deviations and establishing uniqueness. 

The advance-listing and non-commitment special cases are as follows: When the seller 

lists in advance, no second sale  obviously yields standard 

1PSB bidding 

( )1,  hereafter called w rationing=

)1 1( ) (0
1 |x E Y Yβ = x< .  Conversely, a guaranteed second sale  yields the 

bid-shading strategy as in Milgrom & Weber (2000), but modified for discounting:  

( 0w = )

( ) ( ) ( ) ( ) ( ) ( )1 0
1 1 1 1 1 1 2 11 |MW |x x x E Y Y x E Y Y Yβ δβ δ β δ= + − = < − − x<  
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where ( ) ( )1 2 1|MW x E Y Y xβ = <

the breakeven w0 that is implicitly defined by:

 is the original Milgrom & Weber strategy. A non-commitment 

seller cannot pre-commit to an arbitrary w, and is instead bound by subgame perfection to select 

( ) ( ) ( ) ( )
0

1
3 1 0 21

0 0

1|
w

N
Nc E X X w v dF v

F w
β −

−= = = ∫ .  

mple: When F is a power distribution parametrized by t >0 as Exa
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Figure 1:  First-period bidding strategies (uniform example)
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Note to Figure 1: The equilibrium first-period bidding strategy β1(x) is shown for the 
case of the Uniform distribution, N=4 bidders, δ=3/4 discount factor, and w=2/3. The 
two strategies of the seller who lists in advance are also shown: the dashed line marked 
with circles shows the strategy when the seller rations, and the lowest solid line shows 
the strategy when the seller sells again for sure.

w

( )1 xβ

( )1
1 xβ

( )0
1 xβ

( ) tF x x= , 

( ) ( )( ) ( ) ( ) ( ) ( )
( ) (

( ) ( )

)

1 1 1 1

1 1

2 1 N t N tN t N t x w
x

+ − + −

2 1, 1
1 2 1 1 1 2 N tx x x x x w

N t N t N t
β β δ

+ −

⎡ ⎤− − −
= = − >⎢ ⎥

− ⎤+ − + − +⎡⎢ ⎥⎣ ⎦⎣ ⎦
, and  

( ) ( )
( )( )

1

0 2

1 2 1 1
2 1

N t N t
w c

N N t
+ − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=

− −
. When 1t , F is the uniform distribution, and the functions =
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( )2
2
1

Nx x
N

β −
=

−
, ( ) ( )1 1

N N

N
x x wx N x w
N x

δsimplify to β
⎡ ⎤−

= − − >⎢ ⎥
⎦

1 , ( ) (
⎣

)0
1 1xx N

N
β = −  

> ( ) ( )1
1 1xx N

N
β δ= − − , and 0 2N

cNw =
−

.  Please see Figure 1 for an illustration. 

guaranteed. he

One surprising aspect of Proposition 1 is that the existence of an invertible equilibrium is not 

Discounting of t  second auction turns out to be necessary for existence: 

 
Corollary 1: When δ=1, there does not exist an increasing symmetric pure-strategy equilibrium 

for any . For the equilibrium to exist,  δ needs to be small-enough. In the power-( )0,1w∈

distribution example, “small enough” δ is ( )
( )

1 2
1 1

N t
N t

δ
+ −

<
+ −

. 

To prove the Corollary, differentiate the candidate function ( )1 xβ . When { }0,1w∈ , the slope of

( )1

  

xβ  is guaranteed to be positive. But when 0 1w< < , there is a kink at w in that ( )1 xβ  

becomes flatter at that point: ( )
( ) ( ) ( )

1x w

x ( )( )1 2
11 fd x x x w

dx F x
β δ

≠

x xββ ⎡ ⎤−= − − >⎣ ⎦  1

The reason for the kink is that marginal incentives change at elow w, t nal surplus of 

er with valuation x is just the 1PSB surp

 w: B he margi

a winn lus ( )0
1x xβ . Above w, however, w ng

( ) ( )( )

−

d so the ma

inni  

means not participating in the second auction, an rginal surplus is 

1 2x x x xβ δ β− − − . The kink at ( )w implies that the candidate function for 1 xβ  is not 

increasing for high δ. When δ=1, the right-hand slope at w simplifies to: 

( )
( ) ( ) ( )011

1

lim 0
x w

f wd w w
dx F w
β β β

→ +
⎡ ⎤= − < . This limiting slope is negative despite the fact that the 2 1⎣ ⎦

derivative of ( )1
1 xβ  has a very similar form and is always positive: 

( )
( ) ( ) ( )

1
111

2 1 0
f xd x xβ β β⎡ ⎤= − >⎣ ⎦  for all x.  The reason for the different r

1dx F x
ight-h es of and slop

( )1 xβ  and ( )1
1 xβ  at w is the fact that under ( )1 xβ , low-value bidders with x<w do not shade 

their bids below 1PSB levels, and so the equilibrium bid at w is too high for ( )1 xβ  to keep 

increasing above w when the second auction becomes a consideration and the incentives to shade 
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“kick in”. Specifically, δ=1 sorts the three key bidding strategies as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 1
1 1 1 1 2 1 1 1 2 1 1| |w w E Y Y w w E Z Z w w E Y Y wβ β β β β= = < > = < > = <

It is no

ails. 

case. The t

expected profit is the profit from the first auction plus the profit from the second auction

| .  

otal 

t clear what happens when δ=1, but Proposition 1 also shows that there cannot be a 

weakly increasing equilibrium with partial pooling at m, see the proof for det

3.2 Seller profits 

It is enough to evaluate the total expected seller profits in the price-threshold 

 

whenever 1X w> . Thanks to the mutual independence of the bidders, the total expected prof

can be expressed neatly in terms of order-statistics, as demonstrated by Proposition

it 

 2: 

 
en the second unit is sold wheneverProposition 2 : Wh ( )1

1 1p wβ − > ,total expected 

( ) ( ) ( )

profits are:  

( ) ( ) ({ )}2 2 3 2 1 3 10 Pr | Pr |w X w E X X X w X w E X c XδΠ = Π + < − < − < − <

where ( ) ( )

w  

) ( ( )3 20 1 2E X E X cδΠ = + − −⎡ ⎤⎣ ⎦  is the expected profit of a seller committed to 

hold  the second auction, and where 

Π

( ) ( )21 E XΠ =  is the expected profit of a rationing 

term are the foregone second-period profits.  Note that δ factors out of the curly bracket becau

expected shading is proportional to δ. Therefore, the seller strategy does not depend on δ

as δ is small-enough to make ( )1

seller. 

d 

e 

 (as long 

 
The first term in the curly brackets is the expected shading-reduction due to w>0, and the secon

s

xβ  increasing). Also note that ( )2E X  is the baseline revenue in 

ws most easilya standard 1PSB auction, which follo  by revenue equivalence of standard 1PSB 

with the second-price sealed-bid auction.  

3.3 Seller strategy: seller who lists in advance 

The simplest selling regime to discuss is the seller who lists in advance, i.e. the seller restricted 

to { }0,1w∈ . Her optimal stra s obvious from Proposition olds the second auction 

whenever ( ) ( )3 22

tegy i 2: she h

E X E X c− >  and receives ( )0Π , otherwise she rations the good and receives 

( )1Π . Note that compared to myopic 1PSB bidding, the first-period revenue when the seller lists 

the second unit in advance is reduced by ( ) ( )2 3E Xδ −E X⎡ ⎤⎦  because of bid-shading. The bid-⎣
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shading makes rationing more attractive than myopic bidding would, especially when the 

In th

demand-side competition is low. 

e uniform example, the expectations of relevant order-statistics have a very simple 

form: ( ) ( )2 3
1  and 
1 1

N E X
N N
− −

=
+

erefo2NE X =
+

. Th re, the profit function simplifies to: 

( ) 1 3
1 1

N N
N N
− −⎛ ⎞
+ +⎝ ⎠

period profit 

0 cδΠ = + −⎜ ⎟ , where the part in parentheses combines the additional second-

2
1

N c
N

δ −⎛ ⎞−⎜ ⎟+⎝ ⎠
 with the profit-reduction due to shading of 

1N
δ
+

. The seller th

prefers to ration whenever cost is high-enough, and there is al

us 

ways a region of the parameter-

space, in which rationing is preferred to selling two units, namely 3
1

N
N

c −
>

+
 (line MaxCommit in 

Figure 2). The above claim that bid-shading makes rationing more attractive than myopic 

bidding would can be illustra , 

whereas the same seller would sometimes want to sell two units if bid-shading did not occur. 

single multi-unit auction. The natural auction to use would be a third-price sealed-bid auction: 

both units in the first period, with the delivery of the second unit to the runner-up delayed until 

ted as follows: when N=3, a seller facing c > 0 will always ration

 The advance listing regime is revenue-equivalent with allocating the two units via a 

 
Proposition 3: Suppose the seller uses a third-price sealed-bid auction to decide the allocation of 

the second period. Then, the seller makes ( )0Π , and the bidders follow a unique symmetric 

pure-strategy Nash equilibrium with a bidding function ( ) ( ) ( )
( ) ( )

1 xF x
x x

δ
β δ

−
= + . 

2 1N F x− −⎡ ⎤⎣ ⎦

Because the runner up does not receive his full valuation at auction time, bidders do not have a 

dominant strategy to bid their valuations as they would in a canonical Vickrey auction. For the 

ery δ

same reason, the standard multi-unit revenue-equivalence result of Maskin & Riley (1989) does 

not apply either. Therefore, I prove this revenue equivalence directly, exposing an interesting 

bidding equilibrium in the process. For ev <1, ( )xβ  is a peculiar bidding function for at

least two reasons: First, high bidders x such that 

 

( )
( )

2
1

F x
N

F x
> −

−
 bid more than their 

valuations. Second, ( )xβ approaches infinity as x approaches the top of the valuation support. It 
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is interesting how even a slight delay in delivery of the second unit completely changes the 

bidding incentives. Given the peculiarity of the bidding strategy, the third-price sealed-bid 

auction is not a practical way to sell the two units when the delivery of the second unit needs to 

be delayed due to production constraints assumed in this paper. 

3.4 Seller strategy: non-commitment seller  

The learning ability of the non-commitment selle

the first period relative to holding the second auction for sure. Therefore, the non-commitment 

seller always makes more than ( )0Π . However, the non-commitment seller does not always

outperform the seller who lists in advance because it is possible that 

r makes her expected second-period profit 

positive, while also implying a cutoff 0 0w > , which in turn implies a reduction in bid-shading in 

 

( ) ( )0 1wΠ < Π . While the 

expected non-commitment second-period profit is guaranteed to be y not 

compensate for first-period bid-shading. The following Proposition 4 characterizes when the 

ing valuable: 

): The

profit she expects to earn in the second period.  This happens when  

(

 positive, it ma

non-commitment seller would find advance list

 
Proposition 4 (Value of advance listing  non-commitment seller would prefer commitment 

to advance listing whenever the bid-shading she faces in the first period exceeds the additional 

( ) ) ( )2 3 2 0 3 2 0 3 2 0− > > > − <

 
In the uniform example, value of advance listing can be related explicitly to the parameters of

model because the formulae in Proposition 4 take on a neat form. It is obvious that the seller w

N >3 and c=0 does not find advance listing valuable: she mak

| | |E X X X w E X X w E X X w  

 the 

ith 

es a second-period profit of 

2N −⎛ ⎞
1N

δ ⎜ ⎟+⎝ ⎠
 at the cost of only 

1N
δ
+

 in added bid-shading. As the cost increases to the maximum

feasible cost 

 

2N
N
−  ( )0line  in Figure 2, i.e. cost such that MaxLearn w 1= , both the additional 

profit and the additional bid-shad ro – at which point the seller 

ceives ( )1Π ediately 

ing decrease all to way to ze

. Since both components of additional profit decrease to zero, it is not immre

clear whether the shading decrement ever exceeds the additional profit for intermediate costs. 

The following Corollary 2 shows that this indeed happens, and it happens for high costs: 
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Corollary 2: When F is Uniform[0,1], then for all 3N ≥ , there is a ( ) 3* Nc N −
≤  such th

ly prefer to list in advance for every cost c such that 

( )

1N −
at the 

non-commitment seller would strict

2*c N c< < . 

 

N
N
−  increases in N. ( )*c N

3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figur  Value of  listing in advance relative to non-commitment (uniform example )e 2: 

N (number of bidders)

c (
m

ar
gi

na
l p

ro
du

ct
io

n 
co

st
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f t
he

 se
co

nd
t

MaxLearnBoth sellers: 
no 2nd auction 

Advance-list
no 2nd auction  (ration)

ing seller:

 u
ni

)

Advance-listing seller:
2nd auction offered

Note to Figure 2: The optimal non-commitment strategy is shown in ovals, optimal 
advance-listing strategy is shown in rectangles. Line MaxLearn is the maximum feasible 
cost of the second unit given first-period price, i.e. (N-2)/N. Line MaxCommit is the ex-
ante maximum feasible cost of the second unit, i.e. (N-3)/(N+1). The shaded region is the 
region in which the non-commitment seller would strictly prefer listing in advance. The 
lower boundary of the shaded region is c*(N) of Corollary 2. The thin dashed line marked 
with triangles is the analytical upper bound for c*(N) of Corollary 2, i.e.(N-3)/(N-1). The 
lines do not depend on δ.

Non-commitment seller: 
2nd auction offered if 

first-period price high enough

MaxCommit
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Corollary 2 is illustrated in Figure 2. The fact that ( )*c N  

f advance lis

llows: Higher

e

increases in N means that increased 

demand-side competition reduces the usefulness o ting relative to non-commitment 

selling. One way to interpret this result is as fo  demand competition makes the 

second period more lucrative, so the non-commitm nt seller sells again more often (

decreases in N ). Therefore, more bidders shade their bids, and so it may seem that the seller 

would be more interested in commitment to list in advance. However, the increased competition 

also reduces expected bidder surplus that drives bid-shading, and so the bidders shade by less. 

Corollary 2 shows that the second effect dominates the first, at least when F is uniform.  

3.5 Seller strategy: seller with commitment to threshold price 

The seller who can commit to any w solves the problem 

0w  

(
[ ]

)max wΠ . As discussed above, this 

decision does not depend on δ. From Proposition 2, the 
w

   (FOC) 

d-shading, i.e. the bid-shading 

decrement of the bidder of type w. The RHS is the marginal increase in second-period profit, i.e. 

the expected profit ( )2 2

0,1w∈

first-order condition is: 

( ) ( ) ( ) ( ) ( )2 2 1 2 2|1
0

|h w w w h w v c h v w dvβ β− = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫

The LHS of the FOC is the marginal reduction in expected bi

X cβ −  given that 1X w= . Loosely speaking, the FOC equates the 

ma ion with the marginal profit to the seller. The 

seller cares about the marginal second-auction surplus of the bidders because it enters first-

period profits through bid-shading.  

Solving the problem in general is difficult because the LHS margin is weighted by the pdf 

of X2 while the RHS margin is weighted by the pdf of of X1. However, it is easy to see that w* 

always exceeds w0 because the RHS of the FOC is zero when w=w0 and increasing above w=w0. 

e. 

A general characterization of the optimal type-threshold w*  is not feasible in closed 

rginal surplus to the bidders in the second auct

Therefore, whenever there exists a monotone pure-strategy equilibrium characterized in 

Proposition 1, commitment to threshold price strictly dominates non-commitment. Compared to 

the nuanced result of Proposition 4, the principle of commitment in dynamic games is thus 

restored when the commitment strategy is contingent on the observable first-auction outcom

form, but the uniform example yields a closed-form solution: When F is Uniform[0,1], 
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( ) ( ) 2

2|1 1

1
|

N

N

N v
h v w

w

−

−

−
= , and so ( )

( )
1

*
2 1
N c

w
N
+

=
−

 which in turn corresponds to the cutoff price of 

( )0
1

1* *
2

cm wβ +
= = . Figure 1 shows the w* for the N=4 and c=0 case, along with the 

associated ( )1 xβ . The surprising aspect of the uniform e at m* does not depend on N

and corresponds exactly to the optimal reserve price in a single-shot 1PSB aucti

xample is th  

on for the second 

unit, but with the cost c not sunk until after the second auctio

mechanisms may be equivalent on some level. The next section investigates this possibility, and 

 

4. Commitment to a future reserve price 

1 1

n. This match suggests that the two 

shows that the above exact correspondence is a coincidence, and the two mechanisms are not

equivalent. 

In the threshold-price equilibrium, the highest bidder X1 always receives a unit of the good, but 

the second-highest bidder X2 is excluded from trading whenever X  is low ( ) when *X w< . The 

same ex

 

 highest 

 

assump ost 

old units. 

Suppose instead that the cost does not have to be sunk until after the auction. In the flower-

grower example, this co

flowers after the second auction.6 In addition, suppose the seller can credibly commit not to re-

auction the second un  in the 

clusion could be accomplished by using a reserve price in the first period, and only 

producing the second unit if the first unit sells. If not (if no bids exceeded reserve), the first unit

would be resold in the second period without a reserve. This mechanism would be less efficient 

than the threshold-price mechanism because it would delay the delivery of the unit to the

bidder X1. Moreover, Katsenos (2007) shows that bidding would be very complicated due to 

strategic abstentions of low-valuation bidders from the first auction. 

Yet another way to exclude X2 from trading is to use a second-period reserve price. The

tions of Section 3 made second-period reserve prices weak by timing the production c

c before the second auction, and by allowing the seller to instantaneously re-auction uns

st-structure would arise if the grower only sold a promise to grow 

it. To keep the amount of (inter-temporal) commitment the same as

threshold-price case, suppose the seller can commit to any second-period reserve in the 

                                                 
6 Another context with the cost not sunk until after the auction would be a seller endowed with two units and 
diminishing marginal utility: if I have two identical bicycles but I only ride one to work, I can sell one on eBay 
without reserve because it is worthless to me. If I get a really high price, I may want to sell my remaining bicycle as 
well, but my value of it is higher than that of my second bicycle. 
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beginning of the game. It can be shown that under this alternative selling regime, a unique 

increasing symmetric pure-strategy equilibrium exists for all parameter values and all reserves

Interestingly

. 

, the optimal reserve to use turns out to be exactly the same as the reserve optimal 

for selling the second unit in isolation: 

 
 

Proposition 5: Suppose there are 3N ≥ unit-demand bidders drawn iid from distribution F, such

that  ( )
( )

1 F x
x

f x
−

−  is increasing in x. The seller sells one unit without a reserve, and pre-commits 

to a reserve price r for a second unit sold in a future auction discounted by factor δ. The seller’s 

opportunity cost of the second unit at the time of the future auction is c.  For every cost 0c ≥  

and number of bidders 3N ≥ , the r optimal for selling both units sequentially is the same as the 

optimal reserve price for selling only the second unit to the original group of bidders, namely

such that 

 r* 

( )
( )

1 *
*

F r
r c

−
= + . 

*f r

Two opposing forces act on the optimal reserve: increasing the second-period reserve obviously 

reduces bid-shading in the first period, so one might expect that the optimal second-period 

reserve for selling two units sequentially would be higher than the optimal reserve for sellin

second unit in isolation. On the other hand, the first-unit sale also depletes the distribution o

bidders by removing the highest one, and so the optimal reserve for the second-unit sale may 

actually be lower to accommodate the weaker demand. Proposition 5 shows that these two forces

exactly cancel out.  

It is possible to prove Proposition 5 by first deriving the equilibrium bidding strateg

then maximizing the implied seller profit. Instead, I use a direct proof that analyzes the 

equivalent direct revelation mechanism.

g the 

f 

 

y and 

 

) showed that the optimal direct revelation mechanism 

for selling many units to unit-demand bidders involves the same optimal reserve r* for every unit 

as the direct revelation mechanism for selling just one unit in isolation. One implementation of 

the multi-unit optimal mechanism is a sequence of standard auctions which all have a reserve of 

r*. Proposition 5 confirms that r* is ex-ante optimal for the second unit even when there is no 

7 The result extends earlier results from the mechanism

design literature: Maskin & Riley (1989

first-period reserve.  

                                                 
7 I thank an anonymous referee for suggesting the direct proof. 
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 A general revenue comparison of commitment to threshold price and commitment to a 

shown that the commitment not to re-auction is necessary for this dominance.  Therefore, even 

when the grower from the Introduction is only selling a promise to grow flowers after th o

auction, she is better off with an optimal first-period price-threshold than with a second-period 

reserve set at the production cost. Finally, the 

second-period reserve is beyond the scope of this paper. In the Uniform example, it can be 

shown that the second-period reserve revenue-dominates the threshold price, and it can also be 

e sec nd 

( ) ( )* | *m c N r c=  equality found in Section 3.4 

for the Uniform case is a coincidence, because e more general power-

distribution case 

it does not hold in th

( ) tF x x=  (see Appendix for details of this example). 

ler 

logously to a durable-goods monopolist who sets prices, the seller may find 

it benef

t 

 

t 

nd-price sealed-bid auction because of ratcheting: the auction would reveal 

 

es 

 

5. Discussion 
An auction seller with the ability to procure additional units of a durable good in the future has a 

commitment problem because high-value buyers anticipate that should they lose today, the sel

will find it profitable to produce and sell another unit. The high-value buyers therefore shade 

their bids down as if the future auction were guaranteed, reducing the seller’s revenue from the 

current auction. Ana

icial to credibly announce that she will not sell another unit in the future. However, this 

posted-price market intuition is not complete because a canonical auction seller starts ou

uncertain about demand and has a natural ability to learn about demand from the outcomes of 

early auctions. Therefore, the auction seller may want to make future auctions contingent on the

outcome of the current auction. This paper presents a model of a seller who makes the future 

auction contingent on today’s price reaching a threshold. 

A key technical contribution of this paper is a general analysis of the bidding strategy 

induced by a price threshold. No invertible (increasing symmetric pure-strategy) equilibria exis

for the sequential seco

the valuation of the highest surviving bidder, and the seller would exploit that bidder by setting

the second-period reserve-price equal to that valuation. An invertible bidding equilibrium do

exist for the Dutch auction (i.e. a first-price sealed-bid auction with only the price revealed), but

only when the second auction is sufficiently discounted by the bidders, for example when it is 

delayed. When it exists, the first-period bidding strategy is qualitatively different for low and 

high bidders: the low bidders bid as if there were no chance of a future auction, while the high 
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bidders bid as is the future auction were guaranteed. Because of this difference, the equilibrium 

bidding strategy has a kink in that it becomes l exceeds the threshold price. 

When the second auction occurs instantaneously after the first auction, no informative 

equilibrium exists  the Dutch auction, nor does an equilibrium w

ocally flatter as it 

 even for ith partial pooling. A 

mixed-strategy equilibrium occurs, and the seller thus cannot interpret the price as the bid of the 

ay 

f 

 

tually 

 

 

d to allocate both units through the 

revenu

 

e 

 

distributional assumption (Corollary 2). An interesting result emerges in the uniform special 

highest bidder. 

When an informative equilibrium does not exist, or when the commitment needed for the 

credibility of an arbitrary threshold price is not available, the seller may be able to ration the 

good, i.e. commit not to sell the future unit under any circumstances. Commitment to ration m

be more realistic as it is naturally available to all sellers in markets that require advance listing o

future auctions. By rationing the good, the seller concentrates the demand-side competition in the

first auction but foregoes the future revenue completely. When she lists a future auction, she 

suffers from first-period bid-shading by all bidders but gets the future profit (which may ac

be negative if her opportunity cost is high). Either way, and regardless of discounting, there 

exists a unique symmetric pure-strategy bidding equilibrium. When the future auction is delayed,

the simple bidding equilibrium in the sequential auction for two units contrasts with relatively

non-intuitive strategies that would arise if the seller wante

e-equivalent third-price sealed-bid auction (Proposition 3). 

Schelling’s commitment principle in dynamic games implies that commitment to a 

threshold price always dominates non-commitment. In contrast, commitment to advance listing 

is too coarse to always outperform non-commitment. A key question thus arises: when would a 

seller prefer advance listing (no learning) to non-commitment (with learning)? The regime 

preference between advance listing and non-commitment boils down a production decision at the

margin, and so it is natural for the seller to consider marginal revenue versus marginal cost. On

contribution of this paper is to highlight the composition of these marginals: First, because the

bidders are strategic and forward-looking, the correct marginal revenue to consider must be net 

of the reduction in first-period revenue due to bid-shading. Second, the correct marginal cost is 

the cost of production minus the information rent from non-commitment’s better-informed 

production decision. The indifference condition of the seller can be written in terms of 

conditional order-statistics (Proposition 4), and analyzed explicitly under the uniform 
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case: advance listing is preferred when the cost is high and demand weak in the sense of a small 

number of bidders. As the demand strengthens, advance listing is less and less useful. The reason 

for the 

n.  

ut 

y easy to characterize: it is the 

same re ). 

 

latter effect is that increased demand-side competition reduces the bidder surplus from the 

second auction, in turn reducing the incentive to shade early bids in a non-commitment auctio

 While the main focus of this paper is the threshold-price model, I also considered two 

other forms of intertemporal commitment to a contingent future strategy. First, the seller could 

use a reserve price in the first period, re-auction the first unit if no bids exceed it, and only 

produce the second unit if the first unit sells. This mechanism would allocate the unit(s) to 

exactly the same bidder(s) as the threshold price, but the delivery of the first unit to the highest 

bidder would sometimes be delayed until the second period. Because of the same allocation b

the additional delay, it is unlikely that the seller could make a higher profit through this 

mechanism. Another way the seller could reduce future supply would be to pre-commit to a 

future reserve price. This mechanism would work well if the seller could commit not to re-

auction unsold units. The optimal reserve price to use is surprisingl

serve the seller would use to auction only the second unit in isolation (Proposition 5

Therefore, unlike the optimal threshold price, the optimal future reserve does not depend on the 

number of bidders. The seller’s relative preference between the two contingent strategies 

depends on the timing of production costs: the first-period threshold can always consider the

second-period production cost on the margin, while a second-period reserve can only consider it 

if it is not sunk before the second auction. As a result, first-period threshold-prices can dominate 

second-period reserves in terms of overall profit.   
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Appendix: Proofs of propositions  

Proof of Proposition 1 

Proof: For any function ( )1 xβ to constitute a symmetric-equilibrium bidding function, there

be no profitable deviations from ( )1

 must 

xβ  for any [ ]0,1x∈ . This proof first uses necessary first-
order conditions for x w≠  to derive a unique continuous candidate function, confirms that the 
candidate function offers no profitable deviations to any [ ]0,1x∈ , and shows that continu
is necessary for equilibrium. 
 Suppose ( )1

ity at w 

xβ  is strictly increasing so first-period bids have the same ordering as 

valuations. It is helpful to introduce notation ( )B x  for “baseline” ex-ante expected surplus

the second auction: ( ) 0B x >  because the following three events can co-occur for every x: 1) 

1Y x>  and x thus loses the first auction 2) 1Y w≥  and so the second auction is offered by the 
seller  3) 2Y x<  and so x wins the second auction. 

 from 

( )B x captures the resulting expected surplus: 

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )dv

1 2 2

2 2
2

0

Pr max , &

1 1 max , 1 1 max ,
x

N N

B x Y w x Y x x x

N F w x F x x x N F w x F v

δ β

δ β δ− −

≡ > < − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − − = − −⎡ ⎤⎣ ⎦⎣ ⎦

quality follows from Lemma 1 

& integration by parts, which together imply 2 2
x

N N v− − . The latter is a 

familiar result: the expec t the st grated 

probability of

 Consider a bidder with 

⎣ ⎦ ∫
The first equality evaluates the joint probability of 1) to 3),  i.e. the probability that there is one 
competing bidder above ( )max ,w x  and N-2 competing bidders below 
competing bidder can be selected N-1 different ways). The third e

 

x (noting that the highest 

( ) ( ) ( )2
0

F x x x F v dβ− =⎡ ⎤⎣ ⎦ ∫
art of an IPV sealed-bid auction is the inte

ter, I denote ( ) ( )2
2

0

x
NS x F v dv−≡ ∫ . 

ted surplus a

 winning the auction. Hereaf

x w≠  who bids ( )1 zβ instead of ( )1 xβ , but only deviates locally 

in that z x w x− < − . There are two cases: CASE 1: For x < w, al profit function is the 

same as that in a 1PSB except there is the second-period surplus

 the loc

( )B x : 

( ) ( )) ( ( )1 1| ,z x z w x z F xβΠ < = − +⎡ ⎤⎣ ⎦ . Since z B ( )B x  is co , the local maximum of nstant in z Π  
must satisfy the same first-orde ition (F

1PSB: ( ) ( )
r cond OC) as a standard bidding strategy in a single 

( )1 1
1

d z F z
xf z

dz
β

= . Symmetry of ium plies that the FOC mu

with cally optim

 the equilibr

al to bid 

 then im st hold 

x=z so that type x finds it lo ( )1 ( )1xβ . Therefore, for x<w, the xβ  mu

satisfy

st 

 the differential equation ( ) ( ) ( )1
1 1F xd x

xf x=
dx

 with the in ndition 
β

itial co ( )0 01β = . 
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 CASE 2: For x > w, the profit function is the same as in Milgrom & Weber (2000) except 
. There are two sub-cases depending on the direction 

of the local deviation from x: 
that the second-period surplus is discounted

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
1 1 2

1 1 1

1

| ,

N

z

z F z F z F x x x N F x B x

z x w z x x z F z x y f y dy B x

β δ β

β δ β

−− − − − +⎤ ⎡ ⎤ ⎡ ⎤⎦ ⎣ ⎦ ⎣ ⎦

Π < < = − + − +⎡ ⎤ ⎡ ⎤⎣ ⎦∫
 

| ,z x w x z xΠ < < = −⎡⎣

1 1 2 1

x

⎣ ⎦

where z < x deviation is more involved because losing to ( )1 ,y z x∈ implies that it is optimal to 

bid only ( ) ( )2 1 2y xβ β<  in the second period  (see Krishna he FOC in each subcase 2002). T

( ) ( )coincide at z=x an ply the differential equation d im ( ) ( ) (1 1
2 11

d x F x )x x f x
dx

β
δ δβ= − +⎡ ⎤⎣ ⎦

 The above FOC determine the slopes of any candidate

 

( )1 xβ at x w≠ , i.e. the slope of 

any ( )1 xβ  that offers no local deviations at x w≠ . It is immediate from the FOC that any 
ate must be continuous and different t can idid able a x w≠ . Moreover, there is a unique way to 

connect th  and x>w regions to achieve continuity at w, namely using ( )1lim |e x<w
x w

x x wβ <  as 
→ −

the initial condition for the differential equation describing the x>w region: 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) 
( ) ( ) ( )

[ ] ( ) [ ]

2
1 10

1 1 1 1 1 2 1

11

| Pr | |

x x

w

N
vdF x w S v f v dv

F x F x

E Y Y x w Y Y x E Y Y w Y x

δ

δ

−
= − > =

= < − < < − < <

∫ ∫1  

where the second equation follows from 

1 2 1
1 0

1

1 1
x

x v v w v v dF v
F x

v

β δ β⎡ ⎤= − > − =⎣ ⎦∫

( ) ( ) ( )2NF x x xβ−= −2 2S x ⎡ ⎤⎣ ⎦ , and the third equation 

follows from multiplying and dividing the first equation by ( )1Pr w Y x< < . 

1 [ ]0,1x∈( )xβ  offers no deviations ( )zβI now show that  to any bidder . There are six 1

different orderings of x,z, and w. The cases z x w< ≤  and x z w< <  are  as in standard 
PSB,  case

the mesa
1 (see Krishna, p. 18). The s w x z≤ < w z x and ≤ <  are straightforward 
generalizations of the Milgrom eber result, I include th re for intuition, 
completeness, and as building-blocks for the subsequent evaluation of threshold-crossing 
deviations: 

( ) ) ( ) ( ) ( ) ( ) (

( ) ( ) ( ) ( ) ( ) ( )

2
0

2 2

1 1

, 1 0

z z

w x

z v
N N

x x

N dF v N S x dF v B x

x x w x z N v x F v F y dy dF v

δ δ

δ − −

− − − +

⎡ ⎤
⇒Π ≤ < = − − − ≥⎢ ⎥

⎣ ⎦

∫

∫ ∫

The intuition behind the result is as follows: in a singl t 1PSB, ( ) ( ) ( )z x xF z vΠ = , 

which is maximized at z=x. From s of the first line, it is thus at

& W  and em he

e-sho

 the the first two term
bidding 

( ) ( ) ( ) ( )

) (

1 1 2| ,

| , |

z

z x w x z xF z vdF v S v

w x z z x

Π ≤ < = − +

≤ < −Π

∫ ∫
 

1 1
0

|
z

vdF− ∫
evident th  by 

( )1 zβ  > ( )1 xβ , the bidder loses as if by bidding too much in a single-shot 1PSB. At the 

 23



s me, he also gets a net gain because the additional expected price-reduction due to bid-
shading (third term) exceeds the foregone expected continuation payoff (fourth term). As the 
second-line shows, however, t

ame ti

he net gain will always be smaller than the loss from overbidding 
in a single-shot 1PSB. The case of w z x≤ <

( ) (F v N+

 is analogous, with the intuition reversed: 

e remaining tw

( ) ( ) ) ( ) ( ) ( ) ( ) ( )

) ( )

1 1 2 2 1
0

1

| , 1
z z x

w z
x

z x w z x xF z vd S v dF v x v dF v B

dF v

δ δ βΠ ≤ < = − − + − +⎡ ⎤⎣ ⎦

≥

∫ ∫ ∫
 

x

( ) ( ) ( ) (| , | , 1 0
z

x x w z x z x w z x x vδ⇒Π ≤ < −Π ≤ < = − −∫
 Th o cases treat the threshold-crossing deviations, namely x w z< ≤  and
z w x< ≤ . ( )| ,z x x w zΠ < ≤  is the same as 

 
( ), w x z|z xΠ ≤ <

: the continua
 except that the la al (the 

 instead from tion payoff is only availab  the 
st integr

le iffourth term) is from w to z x to z 
( )z1βhighest opponent is above w. The net profit from deviation to  de oses as follows: 

( ) ( ) ( ) ( ) ( ) ( )1| , | , | |
w

x x x w z z x x w z w x z x w z v x dF vΠ < ≤ −Π < ≤ = Π = −Π = < + −⎡ ⎤⎣ ⎦ ∫
where the part in brackets was shown to be positive above (in the w x z

comp

≥ 0
x

w z<

≤ <  case), and the 
remaining integral just ( ) ( )| |x x w w x wΠ < −Π <  in the single-shot 1PSB case. Intuitively, a 
threshold-crossing deviation from  yields the same profit as the same deviation 
would to a bidder with w=x mi  overbidding in the first auction. 
 Finally, the rofitable because the deviation to z=w is not 

rofitable by abov nt in the 

x<w to z>w 
nus the additional loss from

 deviation is also not p
w z

z w x< ≤
e argume xp ≤ <

 deviating to 

)x< =

 case, and further reduction in z below w yields the 
same net surplus as bidder with x=w z<w: 

) ≥  ( ) ( ( ) ( ) ( ) (| , | , | | 0
w

x x z w x z x z w x w x w w x x v dF vΠ < < −Π < Π < −Π < + −⎡ ⎤⎣ ⎦ ∫  1
z

It remains to be shown that continuity of ( )1 xβ at w i r es necessary fo quilibrium. 

Suppos e there not, and suppos e is a jump J >0 such that ( ) ( ) ( )1 1x x x w Jβ β= + . Then, 

there is a type w+ε that will find it profitable to deviate to w ng the new ( )1

δ >1

. Pluggi xβ candidate 
into the w z x≤ <  case analyzed above

( ) ( ) ( ) ( ) ( )1| | 1
w

w x w x x w J x v dF v
ε

ε ε δ
+

Π = + −Π = + = − − −∫ , and so there is an ε >0 

 yields

a

 

such 
w

that the deviation is prof
( )1 1

itable. Altern
of ( ) ( )

tively, consider the other possible jump 
x x x w Jδ ≥1β β= + . Then, plugging the new ( )1 xβ into the z w x< ≤

) ( )1dF v , and so there is a type w-ε

 case above 

 such yields ( ) (| |
w

w w
ε−

= − Π ∫
at w w-ε

)
w

x w J= = −

. This concludes the proof that when 

(x v−w xεΠ −

 will deviate to ( )1 xβ  is increasing, it defth ines a 
unique symmetric pure-strategy equilibrium.  

When ( )1 xβ  is not increasing, there obviously does not exis
There is also is no weakly-increasing pure-strategy equilibrium, i.e. an equilibrium with partial 
pooling at m. Suppose otherwise, and assume all opponents bid according to a weakly-increasing 

t an increasing equilibrium. 
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( )1 xβ  such that ( ) [ ]1  for all ,x m x w w= ∈ . Now consider a focal bidder with β [ ],x w w∈ , and 
let τ be the probability of the highest opponent(s) bidding m and the resulting tie-break resultin
in a win of the focal bidder. The focal bidder’s best response to the opponents is almost never 
bid m: by bidding m, he gets expected surplus 

g 
to 

( ) ( ) ( ) ( )( )1 21F w x m x xτ δ τ β+ − + − −⎡ ⎤⎣ ⎦ . Now 
consider two epsilon deviations: bi m ε−  avoids the tie at m by always losing the first dding 

( )( ) ( )2P x x xτ δ β m⎡ ⎤− − −Δ ≡ + ⎣ ⎦auction instead, and profit changes by . Alternatively, bidding 

m ε+ . Since ( )2 xβ i avoids the tie by always winning instead and the profit changes by P−Δ s 

sing, it is impossible for PΔ  to be zero for all [ ],x w w∈ , and so one of the epsilon increa

deviations is almost always profitable. Therefore ( )1 xβ  not increasing rules out a
rategy equilibria

Proof of Proposition 2 

ll non
sing symmetric pure-st QE

( ) ( ) )2|1 1, |  i.e. int distri f the tov x dH v x dH

c

≡

-

)2

p two 

. X −

 

decrea

Let 

order-

dG

. 

 the diffe

om 

)E>

D

ren

0 a

E

 

( )
tial of the jo

s 0w E= Π =

⎡⎣

( ,

 the pr

x

(Xδ+

( )statistics. Also, denote ofit fr X E Xδ+ −

Pr w⎤⎦

(2 3

bution o

2

[ ]Then, the profit from setting 0,1  is:w∈

Π( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

1 1 1 2 11 1 1 | | 2 2

1 1 1

, , ,

X X X w X X

x x x

w E X X c

vdG v x v v dG v x v c dG v x

β β

δ β δ β

> ⎤= − =⎡⎣ ⎦

= − − + −⎡ ⎤ ⎡ ⎤∫ ∫ ∫ ∫ ∫ ∫2 2
0 0 0w w w

⎣ ⎦ ⎣ ⎦

( )2where the first term corresponds to s PSB revenue , the second term captures the
shading in the first period, and the last term captures the s

E Xtandard 1

1 1

cond-
x x

econd

0 0

d profit of

w x

c

-period pr
 

dd and subtract the sha nd se pe  the case w
ofits.

0 :

(

Now a

E X ) ( ) ( ) ( ( )

( ) ( ) ( ) ( ) ( ) (

2 2 2
0 0 0 0

1

2 2 2
0 0 0

, ,

, , ,
w x w

w

v v dG v x v dG v x

v v dG v x v v dG v x v c dG v

δ β δ β

δ β δ β δ β

)

rioding a =

=

)x

− − +⎡ ⎤ ⎡⎣ ⎦ ⎣

+ − + − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

 

( ) ( )

− ⎤⎦

( ) ( ) ( )

) (

,change

Pr

v

u E X

⎤⎣ ⎦

<

( )
0

 Therefor

v∫

( ) ( ) ( ) )
1

, , |
u

v x vdG v x v d X u+ =∫ ∫

( ) (2 2 2 2ogously, ,
u x

v dG v hβ∫ ∫ ∫ ∫

(2 2

F

X

−

=

).u<

2

2 2
0 0 0 0

Noting tha N

u

F v−= − ⎡

 

( ) ( ) ( ) ) (
1

2 1 3 1
0 0

An , |
u u

u x

v dG v x v dv u E X Xβ β+ = =

∫ ∫
 

2t 1  integratio r:h v N N 1

v

|X X

n orde

<

(

[ ]

Pr

0,1

X

∈

u x

vdG∫ ∫

al

and 

u

f v

vh∫

)
u

x

u= <

)

( ) ( ) ( ) (

3
0 0 0

, Pr e, for any :

u

v dG v x X E wβ

2 < 2 <
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ) ( ) ( }

2 2 2 2|1 1
0 0 0

2 1 3 1

0 |

0 Pr |    

w x

w v v h v dv v c h v x dvh x dx

( ) ( ){ 2 2 3Pr |

w

X w E X X

⎧ ⎫⎪ ⎪

− X w X w E X c X w QED

δ β β

δ

Π = Π + − − − =⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
= Π + < < − < − <

∫ ∫ ∫  

Proof of Proposition 3 

Suppose there is an increasing function ( )xβ  t
valuation x who pretends to be z gets surp
( ) ( ) (

hat all the N-1 opponents follow.  A bidder with 
lus: 
) ( ) ( )1 2 2 2Pr |Y z E Y Y z< <

( ) ( ) ( )( ) ( ) ( )

1 2

2
2

0

; Pr Pr

1 1 1
z

N

z x x Y z x Y z

x y dF y x N F z F z

δ β

β δ −

Π = < + < < =Y − ⎡ ⎤⎣ ⎦

 term 
w the 

 FOC is: 
) ( )

= − − − − −⎡ ⎤ ⎡ ⎤⎣ ⎦∫
where the first term is the standard third-price sea d auction surplus, and the second
reflects the reduction in surplus due to the delay in receiving the good whenever z is belo
top but still above the second highest competitor. The

⎣ ⎦
 

led-bi

( ) ( ( ) ( ) ( ) ( ) ( )31 1 2 1NFx N f z z N N F zδ −= − − − − −⎡ ⎤⎣ ⎦  2:FOC x z f zβ−⎡ ⎤⎣ ⎦

In a symmetric equilibrium, FOC must hold with z=x: ( ) ( ) ( )
( ) ( )

1 xF
x x

δ
β δ

−
= +

2 1
x

N F x− −⎡ ⎤⎣ ⎦
 

The expected revenue of the seller is: ( ) ( )3 | 32 2X X X XE X E E Xβ β
3 2 3 2

⎡ ⎤= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦  

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2

2

1

3 3 2 22
230 0

1
3 3

3 3 3 3 3 2 2 2
30 0

2 1
2 1

2 2 1 1 1
1

x

N

x
N

F x
x x

F xN F x

F x
E X x f x F x dx N N f x F x dx

F x

δ δ

δ δ

−

−

= + − ⎜ ⎟− −⎡ ⎤⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

= + − − − =⎡ ⎤⎣ ⎦−⎡ ⎤⎣ ⎦

∫ ∫

∫ ∫
 

1
2N

2
3 3

NdF x
dH x

−⎡ ⎤⎛ ⎞
=⎢ ⎥⎜ ⎟

( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3 3
0

2 1 1 1 0E X x N N f x F x F x dx cδ δ δ= + − − − = Π⎡ ⎤⎣ ⎦∫  

( ) ( ) ( )

− +

( )
3

2 2 2 3

1
31

because 1 1  by parts.
2x

f x F x dx F x− = −⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎣ ⎦

∫

Proof of Proposition 4 

F x−⎡ ⎤
QED 

For any w, the expected profit in Proposition 2 can be transformed: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

2 2 2
0

2

1 , , ,
x x w

w w w w w

w v v dG v x v c dG v x v c G v xδ β δ β δ βΠ = Π − − + − + − =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫ ∫ ∫ ∫  
d

( ) ( ) ( ) ( ) ( ){ }2 3 2 2 1 2 31 Pr 2 | Pr |X w E X X c X w X w X E X c w Xδ= Π + > − − > + > > − >

( ) ( )3 0 2 3 1 0Noting that | | 0E X c w X E X c X w− > = − = = , the non-commitment seller makes: 

( ) ( ) ( ) ( )0 2 0 3 2 2 01 Pr 2 |w X w E X X c X wδΠ = Π + > − − > .  Finally, c can be expressed in terms 

of w0 because ( ) ( )3 1 0 3 2 0| |c E X X w E X X w= = = < . QED 
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Proof of Corollary 2 

First express c in terms of w0: 

( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0

0 2 0 21 1
w w w w

w v w N v dvNdx v v N v dvNdx
N

β βΠ < Π ⇔ − − < − −⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫

( )

( ) ( )
1 1

2 22 1
x x

N NN − −−⎡ ⎤

( ) ( ) 1
0 01

0 0

1 12additional profit = 1 additional shading
1 1

N N w w
N N N

⎡ ⎤⇔ − + + < =⎜ ⎟ ⎣ ⎦⎜ ⎟+ +⎝ ⎠
( ) ( ) ( )( )

N N
N N w NwN +
+⎛ ⎞ − + +−

( ) ( )2 1
0 0 0 03 2 1 1 2 0N Nw N N N N w N N w N N wλ +⇔ = − − + − + − + + − + >  

When N=3, ( ) 0wλ > for every ( )0,1w∈ , and ( ) ( )0 1 0λ λ= = , so the seller prefers advance 

(listing for every c>0 and is indi n c=fferent whe 0. When N ≥4, the )wλ  has the following 

( )( ) ( ) ( ) ( ) ( ) ( ), 1properties: 0 0, ' 0 0, '' 0 0, ' 1 0, '' 1 2 1 0N Nλ λ λ λ< > = = = = + >  

Since ( )'' 1 0λ >  and ( ) ( )' 1 1 0λ λ= = ,  there exists a w < 1 such that 

0 λ λ

( ) 0wλ >  and ( )' 0wλ < . 

Together with the fact that ( )0 0λ < , the intermediate value theorem applied toλ im

z<w

plies that 

there is another  , ( )0,1z∈  such that ( ) 0zλ = . The intermediate valu

to '

e theorem applied 

λ then implies that there is a v z∈( ),1  such that ( )' 0vλ . This v ' must be the only root of λ  =

in ( )0,1 because:  ( ) ( )( ) ( ) ( )( )2 1 2' 2 1 1 1 2N Nw N N N N w N N N wλ −= − + − + + + − +  and so  

( ) 1N−

( ) 2

12' 0 N

w wNw
N w

λ
−−

= ⇔ = , where LHS is a constant and RHS r is strictly inc easing in w: 
1−

( ) 1 11 10
N N N

kw wd wN w
− −⎛ ⎞− −

> ⇔ > =
01 1N

kdw w w =
⎜ ⎟

− −⎝ ⎠
∑  which is true for every N and . Since v is 

the unique root of '

( )0,1w∈

 in ( )0,1 , z is the unique root of ( )0,1 , and λ λ  in λ  is negative below 
m nt). 

z  
itive above z The cutoff 

cost is obtained fr nition of w : ( )
(seller prefers advance listing) and pos e (seller prefers non-commit

om the defi 0
2*c N N

N
z−

=

( )

. The sufficient bound 

3* Nc N −
< s profit not just in expectation but 

for all values of 

1N −
 follows from a region in which shading exceed

2 0
( )( )w ( )> : X ( ) ( )2 0v w 2 0 1w

N
2 12 3

3 1
N NN Nv v c

N
β β

− −
N N
− −

− < − <⇔ > ⇔
− −

. 

It remains to be shown that ( )c N*  increases in N. Since 2N −  increases in N
N

, it is 

sufficient to prove that wherever λ  is increasing, increasing ( )wλ , and so 

( )|w Nλ  intersects the x-  
( )w

axis further to the right from

N reduces 

( )| 1w Nλ . The claim is: −

( ) ( ) ( ) ( )| 1w Nλ − <⎡ ⎤⎣ ⎦ ,' | 0w N wλ λ> ⇒ Δ ≡ | N 0 . To prove the claimwλ −  note 

( ) ( ) ( ) ( ) ( )1 24 2 2 1 1 2 2N Nw N N w N N w N N wλ −Δ = − + − + − − − + −w 12 Nw −, add and subtract  

( )1 1+ −to obtain: ( ) ( ) ( ) (2 1w w wλΔ = − − −( )1 1N − )1 12N NN w− −− ( )21 w− ( )2 1N w w− −  2− N w
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( ) ( ) ( )( )2 1' | 0 1 2 1N Nw N N w w N wλ −> ⇒ − > − −From above, , so 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )

( ) ( )( ) ( )

21 1

2

2 1 2 1 1 2 1 2 1 1

1 2 1 0

N N

N N

w w N w N w w N w w

Nw w N w w

λ

μ

− −

−

Δ < − − − − − − − + − − −

= − − − − ≡ <
 

N =

To see the last inequality, note that ( ) ( ) ( ) ( ) (0 0, 1 0, ' 0 0, ' 1 0,  and '' 0wμ μ μ μ μ )< = > =

( )w  in 

<  in 

( )0,1 , so w=1 μ [ ]0,1 , ensuring that ( ) 0wμ <  in ( )0,1 . QED  is the only root of 

Proof of Proposition 5 

The sequential auction with pre-
with the direct-revelation mech

commitment to a second-period reserve is revenue equivalent 
anism that allocates one unit of the good to the highest bidder 

immediately, and one unit to the second-highest bidder in the future. Because the bidders are 
risk-neutral, the delay of the second unit enters their utility in the same way as a reduction in 
probability, so the probability of type-x bidder winning a unit in the equivalent direct revelation 
mechanism is: ( ) ( ) ( ) ( ) ( ) ( )1 21 1N Nq x F x N F x F x x rδ− −= + − − >⎡ ⎤⎣ ⎦ 1 .  

Since ( )q x ity and individual-rationality 

arguments (Myerson 1981) can be used to derive the expected payment ( )m x of a single bidder: 

( )

 is non-decreasing in x, standard incentive-compatibil

( ) ( ) ( ) ( ) ( ) ( )1
x x

F x
E m x xq x q t dt f x dx E x x

f x
⎡1

0 0

t

q
⎤⎛ ⎞⎡ ⎤ −

= − = −⎡ ⎤ ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

iid from F, the expected revenue from N bidders is 
(NE m⎡ ⎤ he expected co

∫ ∫  

Because the bidders are drawn 
simply )x x⎣ ⎦ . T st is just ( )2Prc X rδ > , which c itten a

( ) (
an be wr s: 

) ( ))( ( ) ( )2
2Pr N

xc X r NE c N F x F x x rδ δ −⎡ ⎤> = >⎣ ⎦1 . Substituting ( )q x  into the 
expected revenue and s  yields the expected profit: 

( ) ( )

1 1− −

ubtracting the expected cost
( )

( )( ) ( ) ( ) ( )( ) ( ) ( )1 21 1r F x N F x F x x r x c
f x

δ− − ⎞
+ − − > − ⎥⎟ ⎜ ⎟

⎥⎠ ⎝ ⎠⎦
1

The direct revelation mechanism  

of screening the second highest bidder, irrespective of the other bidders. S

1 1N N
x

F x F x
NE x

f x
⎡ ⎤⎛ ⎞ ⎛− −

Π = − −⎢⎜
⎢⎝⎣

thus additively separates the impact of r on ( )rΠ into the effect

( )
( )

1
x

F x
ince 

f x
 is 

increasing, it is imm diat t screening at r such that

−

e e tha  

−

( )
( )

1
c

⎛ ⎞
0

F r
r

f r
−

− −  =⎜ ⎟
⎝ ⎠

 is optimal. QED
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Power- :  distribution example of relationship between m*  and r*

Claim: When ( ) tF x x=  on [ ]0,1 with t >0, there is a unique threshold price | ,c N t  f

nd t. Let ( )* |r c t be the optimal second-unit r . For every N, 
( )*m or 

every N a eserve price

, and ( )* | ,m c N t > (* |r c t )  when 1t > ( ) ( )* |r c t  when 1t < . Proof* | ,m c N t < : ( )F x tx=  

implies ( ) ( ) ( )

( )

1 1

2|1 1

t N

t N

v − −

−

1
w
−

|
t N

w =h v , and so the FOC of the 
[ ]

( )w
0,

ma
w∈ 1

x Π  problem is: 

( )
( )( )

( )
11 11

1 2
N
N t 1

t N
N 1

w c
t

tw −⎡ ⎤
⎢ ⎥
⎣ ⎦

+ −−
=

+ −
on is− . The LHS of the equati

sitive and increasing for 

+ −

 RHS of

 a positive quantity constant 

( )
( )( )

in w, and the o the equation is p
1 1

1 1
N t

t N
+ −
+ −

plied 

1

 that solves the equation, and the im

w c> > . By the 

intermediate value theorem, there is m* i

( ) ( )
 a u s nique w*

( )1

1
* *

N t
w wβ

−
= . The optimal reserve-price r sati*m =

1 1+ −N t
sfies 

( )
( )

1 F r
c r

f r
−

= − (Proposition 5) which becomes ( ) 1t tt r ctr −1 1+ − =  under the ( ) tF x x=  

assumption. Inverting the 1β  at the optimal reserve by using the bidding function form 
( )
( )

1
1 1 r

N t
r w

N t
−

=
+ −

yields the optimal-reserve condition in terms of the cutoff type wr : 

( )
( )

( )( )
( )

1
1

1

t
t

−

1t1 11 N t 1 N
1 1 r rw c w

t N t N t
⎛ ⎞+ − −⎡ + ⎤−

= −⎜ ⎟ ⎢ ⎥⎜ ⎟ + −⎝ ⎠ ⎣ ⎦
. Note that the RHS of the optimal-reserve 

condition is the same as the RHS of the FOC equation above, so wr > w* ever 
−

h w en

( )
( ) ( )

1
1 1

1 1

t
N t N

t N t

−
⎛ ⎞+ −

>⎜ ⎟⎜ ⎟− +⎝ ⎠

1 1
2N t

−
−

 and vice versa. This inequality holds iff: 

( ) ( ) ( ) ( ) ( )log 1 log 1 2 1 log 1 1 0t t t N N t t N tλ ≡ − − + − − − + − <⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . Since ( )1λ

( )' 1t tλ > ≥ , ( )1 0t tλ> ⇒ > . Since 

0=  and 

0 for all ( ) ( ) 0
0

0 lim
t

tλ λ
→ +

≡ =  and ( )
0

lim '
t

tλ
→ +

= −∞ , ( ) 0tλ <  

near zero. Since ( )1 0λ =  and ( )' 1 0λ > , ( )0 1 0t tλ< < ⇒ <  unless λ has a root in ( )0,1 . S

a root does not exist because it would imply at least two roots of ''

uch 

λ  in ( )0,1 . However, 

( )'' tλ , nam( ) ( ) 2'' 0 1 2 0t t N N tλ = ⇔ − − − = , and so there is only one positive roo

( )
t of ely 

( )
1 1 4 2

1
2 2N N

<
−

. So, 1 is the unique positive root of λ, and )0 1 0t t
N N− + + −

(λ< < ⇒ < QED  
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