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Abstract

We study competitive interaction between two alternative models of digital content distribu-

tion over the Internet: peer-to-peer (p2p) �le sharing and centralized client-server distribution.

We present microfoundations for a stylized model of p2p �le sharing where all peers are endowed

with standard preferences and show that the endogenous structure of the network is conducive

to sharing by a signi�cant number of peers, even if sharing is costlier than freeriding. We build

on this model of p2p to analyze the optimal strategy of a pro�t-maximizing �rm, such as Apple,

that o¤ers content available at positive prices. We characterize the size of the p2p network as

a function of the �rm�s pricing strategy, and show that the �rm may be better o¤ setting high

prices, allowing the network to survive, and that the p2p network may work more e¢ ciently in

the presence of the �rm than in its absence.
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1 Introduction

Since the inception of copyright law to grant intellectual property owners a temporal monopoly

on their works, the ability to capture value by copyright holders has persistently been threatened

by unauthorized reproduction of content. Technological innovations have not only presented new

market opportunities but also new threats. The radio, the cassette player, the video recorder, and

the compact disc have allowed the industry to deliver additional value and meet new demand. But

backed by fair use provisions, these same technologies have also been employed to replicate and

distribute content without the consent of copyright holders.

In recent years, advances in the digitalization of content paired with the widespread adoption of

broadband Internet have shaped a new and formidable threat with the emergence of peer-to-peer

(p2p) �le sharing networks. Peer-to-peer �le sharing has grown spectacularly in the last few years.

The content industry has reacted, with limited success, by legally confronting the p2p phenomenon

and slowly embracing online distribution. Apple�s iTunes Store, built on a traditional client-server

architecture, has emerged as the dominant player in the market for legal digital downloads.

Peer-to-peer and licensed online stores constitute two fundamentally di¤erent distribution mod-

els that �compete�against each other. Demanders of digital content are faced with the choice of

whether to download content from p2p �le sharing networks or from legal sites. The ability (or

even the desire) of Apple to sustain high prices for downloads is a¤ected by the presence of p2p �le

sharing networks. Likewise, the success of p2p �le sharing is partly determined by actions taken

by Apple and the majors such as pricing per download, the proneness to embark into legal action

against users of p2p, their relationships with and demands from Internet Service Providers (ISPs),

and the like.

In this paper we present a simple formal model to investigate how these two systems of digital

distribution interact. Our model begins with the observation that peers in p2p networks face a

fundamental choice between sharing content and freeriding. Sharing entails additional costs for the

peer: committing computing resources such as storage space and upload bandwidth to the network

and increasing the likelihood of legal action against her. When a peer in a p2p network decides

to share content, she is e¤ectively supplying two di¤erent goods. On the one hand, she provides
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content. Obviously, the peer who shares does not bene�t from the content that she is sharing as she

already owns it. In the absence of social preferences (i.e., altruism, reciprocity...), providing content

has no direct bene�t to the peer who shares. On the other hand, by sharing, a peer also supplies

upload bandwidth to the network and this may result in lower network congestion. Sharing results

in lower congestion if upload bandwidth is a scarce resource. Based on the available empirical

evidence, we assume this to be the case.1

Similarly to content, bandwidth is a nonexcludable good. When a peer provides upload band-

width to the network she cannot decide who will and who will not have access to that bandwidth.

But contrary to content, bandwidth is a rival good because its use by one peer prevents use by

another peer. We show that the nature of p2p networks, however, warrants that the provision

of bandwidth bene�ts all peers equally in expected terms. Indeed, when a peer decides to share

content, the average number of peers connected to sharers decreases (because there are more peers

to connect to) and this reduces average network congestion. In sum, peers face a trade o¤: by shar-

ing they bear costs that could be avoided by freeriding, but sharing also reduces average network

congestion and this bene�ts every peer, including the peer who shares.

Building on this insight, we construct a model where peers provide bandwidth in addition to

content when they share. Speci�cally, we consider a �nite population of agents that derive positive

and homogenous utility from digital content. Peers su¤er disutility from the costs associated with

downloading content. These costs are proportional to the time required to complete downloads,

the level of congestion, which in turn depends on the bandwidth provision available in the network.

Peers may reduce their expected congestion by providing upload bandwidth to other peers. We

model this decision as a binary choice: share content or freeride. By allowing agents to di¤er in their

disutility of congestion (or impatience) we show that an endogenous level of sharing emerges in the

network. This depends on the size of the network, the costs faced by agents, and the disutility

of congestion of the population. Sel�sh utility-maximizing peers are better o¤ sharing because

by doing so they face less congestion. We fully characterize the congestion faced and the utility

enjoyed by all participants.

1 In fact, the content industry has begun experimenting with payment schemes that reward peers for the supply of
upload bandwidth in licensed p2p distribution networks. See, for example, Peer Impact: http://www.peerimpact.com.
The willingeness to reward peers for the supply of upload bandwidth is evidence that this is indeed a scarce resource.
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We build on this framework to analyze the optimal strategy of a pro�t-maximizing �rm that

o¤ers the same content available on the network. Contrary to p2p networks, online stores o¤er fast

downloads on a traditional client-server architecture and sell content at positive prices. We derive

the demand function faced by the �rm and characterize its optimal pricing strategy. We show that

the �rm may be better o¤ setting high prices instead of attempting to shut the p2p network down

by setting low prices. Moreover, we show that the p2p network may function more e¢ ciently in

the presence of the �rm than in its absence.

The model captures important stylized facts identi�ed by the literature. First, Asvanund et

al. [3] show that congestion worsens as the size of peer-to-peer networks grows. Our model en-

dogenously generates this result. In fact, the e¤ect of network size on congestion helps explain the

coexistence of multiple di¤erent p2p networks. The model can also accommodate positive network

e¤ects when users value content variety. Second, many studies have shown that heavy users of

p2p �le sharing networks are more prone to purchase content online.2 Our framework not only

suggests that there is no contradiction in this observed behavior, but also sheds light on the factors

that explain the demand for online content in the presence of a p2p network. Third, we provide

insights on content pricing and the e¤ectiveness of industry initiatives such as suing heavy sharers.

Finally, researchers and industry analysts have long questioned the existence of applications that

drive broadband demand (�killer apps�).3 Our model shows that �le sharing networks strictly

bene�t from improvements in broadband capacity, creating value for all participants. A study

performed by Internet research �rm CacheLogic in 2005 revealed that over 60% of total Internet

tra¢ c belonged to p2p �le sharing applications.4 This suggests that �le sharing is indeed a driver

for broadband demand and helps explain why Internet service providers have not taken action to

limit the spread of p2p applications and �le sharing tra¢ c load. We believe that our results should

be of interest to all participants in markets for digital information goods.

2See, for example, �Downloading myths challenged,�BBC News.com, July 27, 2005.
3See Crandall and Alleman [10].
4See Parker [20]. Modem transmission speeds are considered too low for e¤ective use of �le sharing applications.

The disutility of congestion given the long download delays over modem connections may be too high.
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1.1 Literature

This paper contributes to an emerging literature in Strategy that explores competitive interac-

tion between organizations with di¤erent business models. While there are several formal models

of asymmetric competition that exist in Strategy (di¤erences in costs, resources endowments or

information, mainly), the asymmetries that this literature wrestles with are of a di¤erent na-

ture: �rms with fundamentally di¤erent objective functions, opposed approaches to competing, or

di¤erent governance structures. Casadesus-Masanell and Ghemawat [6], for example, introduce

a dynamic mixed duopoly model in which a pro�t-maximizing competitor interacts with an open

source competitor that prices at zero with the installed base a¤ecting their relative values over time

and Casadesus-Masanell and Yo¢ e [9] study competitive interactions between two complementors,

Microsoft and Intel, with asymmetries in their objectives functions stemming from technology �

software vs. hardware.

Interest in the study of competitive interactions between organizations with di¤erent business

models has increased in the last few years as new technologies, regulatory changes, and new cus-

tomer demands have allowed �rms to implement new approaches to competing in a wide range of

industries spanning from airlines (Ryanair) to furniture (Ikea) and from circus (Cirque du Soleil) to

software (open source projects). In fact, many of the fastest-growing �rms in the recent past appear

to have taken advantage of opportunities sparked by globalization, deregulation, or technological

change to �compete di¤erently�and to innovate in their business models.

To assess the sustainability of competitive advantage of new business models it is critical to

understand how they interact with those of other players. So far, the literature has studied interac-

tions between new and traditional business models. This paper studies the competitive interactions

between two new business models: p2p �le sharing and pro�t-maximizing client-server digital dis-

tribution.

Our model of p2p (Sections 4 and 5) also contributes to a growing literature on the economics

of p2p. This literature asks why individuals share �les in p2p networks. Because contributing �les

is costlier than freeriding, sel�sh utility maximizers �should�freeride and freeriding should lead to

the collapse of p2p; however, p2p is thriving. To solve this puzzle, the literature has, for the most

part, assumed that individuals are concerned with each others�wellbeing. Altruistic agents, for
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example, realize a direct bene�t from contributing content. Golle et al. [14] and Antoniadis et al.

[2] consider agents that derive utility from contributing content to the network. Feldman et al.

[13] explicitly consider agent types which di¤er in their willingness to contribute. Cunningham et

al. [12] assume reciprocity by a positive fraction of users, where increased sharing by some ensures

a further increase in the overall provision. More recently, Jian and MacKie-Mason [17] present a

model of generalized reciprocity where peers share expecting others in the network to indirectly

reciprocate. While social preferences underlie many aspects of human behavior and may indeed

play a role in p2p �le sharing, we question the adequacy of models built on the assumption that

peers care about each others�utility in a setting where millions of individuals interact anonymously.

Closer to our approach, Asvanund et al. [3] analyze p2p tra¢ c data and build a stylized model

around the notion of congestion and Krishnan et al. [18] propose some theoretical implications

of congestion to explain sharing. To the best of our knowledge, there is no earlier model of p2p

�le sharing that models congestion endogenously and considers peers concerned solely about the

impact of their actions on their own utility. Moreover, the literature on the economics of p2p has

not considered interactions between p2p and client-server distribution models.

The paper is organized as follows. Section 2 describes the phenomenon that we study. Sec-

tion 3 introduces the building blocks of our model of peer-to-peer �le sharing. In Section 4 we

present a simple approximation to the average congestion in an arbitrary peer-to-peer network.

Section 5 derives the equilibrium network con�guration and studies its properties. In Section 6 we

introduce a pro�t maximizing �rm that competes for users against the p2p network and analyze

interdependencies that arise between both models of digital distribution. All the proofs are in the

appendix.

2 Peer-to-Peer vs. iTunes5

The technology enabling peer-to-peer networks became mainstream in 1999 with the release of

a music �le sharing application called Napster. Contrary to a client-server model, in which all

communication takes place through a central server, peer-to-peer architectures allow every computer

5This section draws from Casadesus-Masanell, Hervas-Drane, and Mitchell [8]. See also Casadesus-Masanell,
Hervas-Drane, and Sean Silverthorne [7].
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to directly communicate with others pertaining to the same network (running the same software)

without having to go through intermediaries. This network topology increases scalability and

robustness for a wide range of applications and is an active area of research.6 File sharing has so

far been the most disruptive and widespread application of p2p architectures.

A �le sharing network allows participants to o¤er digital content for download to other connected

peers, enabling content exchange to take place on a large scale. Because the value of �le sharing

networks depends on individual contributions and a high proportion of users consume network

resources without contributing their own, congestion is one main problem in p2p. Depending on

the resources available, downloading a full music album can take anywhere from minutes or hours

to several days, or not complete at all in some cases.

Peer-to-peer �le sharing and iTunes constitute two di¤erent paradigms for digital content distri-

bution over the Internet. Contrary to p2p networks, Apple and its partners appear to be motivated

by pro�t maximization. iTunes o¤ers downloads on a traditional client-server architecture at posi-

tive prices, $0.99/song in the U.S. The client-server architecture allows Apple to manage congestion.

A full music album can be downloaded from iTunes over a broadband connection in less than three

minutes, and a song in just a few seconds.

Content distributed through p2p networks has several advantages over licensed content dis-

tributed through iTunes. Digital Rights Management (DRM) restrictions render licensed content

an inferior good compared to unlicensed content; only the latter can be played, transferred, or

replicated on any multimedia device without limitations. Furthermore, DRM restrictions may

compromise future playback compatibility. For example, Apple restricts to �ve the number of PCs

(or Macs) where a user can play content purchased on iTunes, and only on iTunes software. Digital

encoding quality makes for an ambiguous case between both systems, and it is not infrequent for

the same content to be available at higher quality in p2p networks.

But peer-to-peer distribution also has disadvantages. iTunes o¤ers not only faster content

download but it is also well-integrated with the iPod. In addition, iTunes metadata (�le naming

and tagging) is superior to that of �les distributed through p2p. Moreover, iTunes is legal while

6Applications of p2p networks include: �le sharing (Napster, BitTorrent and eMule), distributed computing
(SETI@home and Folding@home) and voice over IP (Skype). These applications all create an overlay network over
the host network (generally the Internet). For a detailed review of the technology see Schollmeier [21].
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users of p2p networks are open to legal action against them. The following table summarizes the

main dimensions on which p2p and iTunes di¤er:

p2p iTunes
Free content Pay for content
No DRM restrictions DRM restrictions
Bad metadata Good metadata
Congestion (slow downloads) No congestion (fast downloads)
More difficult to use Easy to use
Mostly illegal Legal
Heavy use of upload bandwidth (sharers) Little use of upload bandwidth

Both models have grown rapidly in the past few years. As of 2006, it is estimated that over 10

million users participate in p2p �le sharing networks worldwide at any given instant. BigCham-

pagne.com found that over 90% of the content exchanged was copyrighted. And according to

CacheLogic.com, over 60% of Internet tra¢ c in Europe and the U.S. was accounted for by p2p �le

sharing. In a 2005 survey, half of the experts consulted believed that �le sharing on p2p networks

will still be easy even a decade from now.7 Apple, on the other hand, in 2006 claimed more than

80% share of U.S. legal music downloads.8 And according to the Recording Industry Association

of America (RIAA), in 2005 iTunes outsold several large traditional music retailers such as Tower

Records, Borders, and Sam Goody.9 Presently, iTunes o¤ers more than 3 million songs for download

and sells over 2,000 songs per minute, on average.

Copious amounts of airtime has been given to p2p�s e¤ect on music industry players. Some

industry participants feel that p2p �le sharing is destroying the industry. The RIAA, for example,

claims that piracy cost the industry $4.2 billion each year on a worldwide basis.10 The RIAA has

been at the centre of the battle against p2p networks, �rst starting with lawsuits against MP3.com

in 1997, then Diamond Media in 1998 for their MP3 player and then Napster in 1999. Lawsuits

against other p2p networks have continued (Kazaa, Morpheus and Grokster in 2001) but to little

avail. In 2003, the RIAA launched lawsuits against 261 individuals and over 2,000 other individuals

in the following two years. Meanwhile, numerous consumer groups and online activists, such as the

Electronic Frontier Foundation, feel that p2p represents unmatched opportunities the industry has

failed to understand.
7See Pew Internet & American life project 2005 survey on �The future of the Internet.�
8See �France Poised To Soften Controversial iTunes Bill,�CNNMoney.com, June 21, 2006.
9See �iTunes outsells traditional music stores,�CNET News.com, November 21, 2005.
10RIAA website, www.riaa.com.
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3 The model

Consider a population of M agents that obtain utility from the consumption of digital information

goods. They all value content equally and di¤er only in their disutility of congestion. We model

the formation of a peer-to-peer �le sharing network as a two stage process. In the �rst stage, agents

choose (simultaneously) whether or not to join the network. Agents who choose to belong to the

network can either share their content or freeride. Sharers o¤er content for download by other peers

while freeriders do not. While sharing content is costly, some sharing is required for the network to

survive as downloads can only be realized from other peers. We will refer to agents in the network

as peers and those outside as outsiders. We let N � M denote the number of peers. M � N is

the number of outsiders. In the second stage peers interconnect and downloads are realized. The

utility of a peer that freerides is given by

ufi = ud � (cn + �i)td, (1)

and that of a peer who shares content by

usi = ud � (cn + cs + �i)td, (2)

where i 2 N = f1; 2; :::; Ng. Outside utility is normalized to zero.

The utility derived from content once a download has been completed is ud. We assume that

ud is common across all content and peers. This simpli�es the analysis and lets us focus on the role

of congestion as a determinant of peers�willingness to contribute content (and bandwidth). The

assumption amounts to stating that content is not a scarce resource. As will become clear shortly,

the scarce resource in our model is bandwidth.11

The time required to complete a download, td, is endogenous and depends on the level of

congestion which, in turn, depends on how many peers share content. Lower bandwidth provision

implies higher levels of congestion resulting in higher download time.

11 If every sharer contributes su¢ ciently many �les, a peer will always �nd some content they value at ud when
downloading from any given sharer. The speci�c content may di¤er depending on the sharer, though. See Appendix
2 for further details on content availability in p2p networks.
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Every peer su¤ers a positive cost cn of using the p2p network. This captures the opportunity

costs of computing resources employed, the bandwidth for signalling tra¢ c required to remain

connected to the network until a download completes, and possible legal action against the peer.

In addition to cn, sharers (but not freeriders) bear cost cs. This is the cost of o¤ering content for

download on a public p2p network, including the use of additional computing resources such as

storage space and upload bandwidth and the increased likelihood of legal action against sharers

(over and above that faced by freeriders).

Parameter �i � 0 re�ects the disutility of congestion experienced by peer i. The larger �i is,

the higher the disutility from an increase in the time required to complete a download. Hence �i

can be interpreted as impatience or how much peer i values quick access to content. Without loss

of generality we choose indexes i so that �i � �i+1 for all i. All other costs being equal, peers prefer

to obtain content immediately avoiding congestion delays.

In the second stage, after peers have decided whether to share or to freeride, interconnections

take place. Let S � N be the set of sharers (given the agents��rst-stage strategies) and denote

by S the number of sharers (the cardinality of S). We assume all peers have an upload bandwidth

capacity of 1=�, where � > 0. Because delay (congestion) is measured by the inverse of bandwidth,

this implies that a downloader exclusively served by a sharer downloads a unit of content in � units

of time. That is, we normalize to td = � the time required for a download when a peer is served by

a sharer that receives no other incoming connections. Parameter � captures the residential capacity

o¤ered by the broadband infrastructure; the relation between �le size and bandwidth available to

peers. An improvement in broadband infrastructure that increases available bandwidth, decreases

download times and amounts to a reduction in �.12 Download bandwidth capacity of peers is

assumed not to be a limiting factor. If more than one downloader are connected to a given sharer,

upload bandwidth is shared evenly amongst them. This can be interpreted as downloading taking

place simultaneously or, alternatively, the sharer serving download queues for fractions of content

by turns.

A set of links connecting peers to sharers where every peer connects to one sharer only and

12An improvement in encoding e¢ ciency reducing �le sizes has the same e¤ect. In practice these improvements
tend to be modest in comparison to changes in broadband infrastructure. We focus our discussion below on the
latter.
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no sharer connects to herself is called a network allocation. A stable network allocation is one

where no peer can be made strictly better o¤ by connecting to a di¤erent sharer. We assume

that following the �rst stage, a stable network allocation ensues. If a social planner were to assign

peers to sharers to distribute bandwidth as equitably as possible, only stable allocations would be

considered.13 Similarly, if peers were given the choice to update their link in a random sequence,

the resulting network allocations would also be stable. Clearly, if the network allocation was not

stable, at least one peer would have incentives to update her link and connect to a di¤erent sharer.

We assume for simplicity that all stable allocations are equiprobable.

To summarize, our model of p2p assumes:

� All peers have 1=� units of upload bandwidth capacity;

� All peers have at least 1=� units of download bandwidth capacity;

� Every peer connects to one sharer only;

� A sharer may not connect to herself;

� Upload bandwidth is allocated equably amongst all peers connected to a sharer;

� Second-stage network allocations are stable and equiprobable.

Finally, the following mild assumption on the parameters is required for the results: ud >

(cn + cs + �i)� for all i. This ensures that a p2p network with minimum congestion is always

preferred to the outside option of not pertaining to the network.

With the notation in place, we proceed to solving the model. We start by considering a �xed

number of sharers (S) and network size (N) and present a simple approximation to average con-

gestion. In Section 5 we endogenize the sharing decision, and in Section 6 we endogenize the size of

the network by allowing agents to not consume content or download from the �rm instead of using

the p2p network.

13The decision rule followed by such a social planner can be implemented by a centralized algorithm that assigns
links of all peers.
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4 Network foundation

In this section we present an approximation to the average congestion in an arbitrary peer-to-

peer network with an exogenous number of sharers and freeriders. This provides a foundation for

download time td in the second stage of our model, a central variable of our analysis. Congestion

plays a crucial role in our development as peers choose to share taking into consideration the e¤ect

that their sharing has on congestion. In Section 5 we analyze the �rst stage and endogenize the

number of sharers and freeriders. This Section follows our work with Albert Creus on bandwidth

allocation in p2p �le sharing networks (see Creus et al. [11]).

To simplify the exposition, suppose initially that � = 1. Thus all peers have one unit of upload

bandwidth capacity. Given a network allocation, the bandwidth obtained by peer i 2 N can be

computed as follows: if the peer is connected to a sharer to which k other peers are connected

to, then peer i obtains e¤ective bandwidth 1=(k + 1). Freeriders are allowed to connect to every

sharer. Therefore, they have S possible links available to choose from. Sharers, on the other hand,

cannot connect to themselves. As a consequence, sharers have S � 1 possible links available. This

implies that, in general, the bandwidth obtained by both groups of peers will di¤er. To compute

the expected bandwidth for freeriders and sharers in a network with N peers and S sharers, we

begin by computing each peer�s e¤ective bandwidth in every stable network allocation. We then

average these e¤ective bandwidths assuming that every stable network allocation is equally likely.

The following example illustrates our approach.

Example 1 N = 5 and S = fS1; S2g. There are three freeriding peers: F1, F2, and F3. In this

example there are exactly six stable network allocations.

� Stable network allocation 1: S1 ! S2 (this means that S1 connects to and downloads from

S2), S2 ! S1, F1 ! S2, F2 ! S1, and F3 ! S1. No peer can be made better o¤ by changing

her connection only.

�E¤ective bandwidths (resp.): 12 ,
1
3 ,

1
2 ,

1
3 , and

1
3 .

� Stable network allocation 2: S1 ! S2, S2 ! S1, F1 ! S1, F2 ! S2, and F3 ! S1.
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�E¤ective bandwidths (resp.): 12 ,
1
3 ,

1
3 ,

1
2 , and

1
3 .

� Stable network allocation 3: S1 ! S2, S2 ! S1, F1 ! S1, F2 ! S1, and F3 ! S2.

�E¤ective bandwidths (resp.): 12 ,
1
3 ,

1
3 ,

1
3 , and

1
2 .

� Stable network allocation 4: S1 ! S2, S2 ! S1, F1 ! S1, F2 ! S2, and F3 ! S2.

�E¤ective bandwidths (resp.): 13 ,
1
2 ,

1
2 ,

1
3 , and

1
3 .

� Stable network allocation 5: S1 ! S2, S2 ! S1, F1 ! S2, F2 ! S1, and F3 ! S2.

�E¤ective bandwidths (resp.): 13 ,
1
2 ,

1
3 ,

1
2 , and

1
3 .

� Stable network allocation 6: S1 ! S2, S2 ! S1, F1 ! S2, F2 ! S2, and F3 ! S1.

�E¤ective bandwidths (resp.): 13 ,
1
2 ,

1
3 ,

1
3 , and

1
2 .

The expected bandwidth of sharers is 1
6

�
1
2 +

1
2 +

1
2 +

1
3 +

1
3 +

1
3

�
= 5

12 � 0:417. The expected

bandwidth of freeriders is 7
18 � 0:389. On average, sharers face less congestion than freeriders.

The computational complexity of the problem increases with the number of stable allocations,

which grows rapidly with N . In [11] we derive an exact expression for the expected bandwidths

of both types of peers. Unfortunately, the exact formula is far too complex to be used in applied

models. However, in that paper we show that S=N is a good approximation to the expected

bandwidth of both sharers and freeriders. Moreover, we show that the expected bandwidth of

sharers is always greater than or equal to S=N and that that of freeriders is always less than or

equal to S=N .14

It is interesting that sharers obtain a slightly higher bandwidth than freeriders even if they face

more constrains than freeriders (as they cannot connect to themselves). As N grows the di¤erence

between expected bandwidths and S=N decreases. In fact, already in a network of size N = 10, the

14 It is easy to see that S=N is the �dividing line.�Let Bu be the total upload bandwidth of all sharers. Let bs and
bf be the expected bandwidth of sharers and freeriders respectively. Then, Bu = bsS + bfF . Notice that S = Bu.
Therefore, S = bsS+ bfF . Rearranging, we have that bf = S (1� bs) =F . Recall that F = N �S. Therefore we have
bf = S (1� bs) = (N � S). Dividing numerator and denominator by N we obtain bf = S

N

�
1�bs
1� S

N

�
. Clearly, bs > S=N

implies that bf < S=N .
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expected bandwidth of sharers and freeriders di¤ers from S=N by, at most, 0:0012.15 And when

N = 100 the di¤erence is always less than 0:0000064. Moreover, when N is a multiple of S, the

expected bandwidth of sharers and freeriders coincides and it is equal to S=N .

To sum up, all peers obtain expected bandwidth close to S=N and we take this approximation as

the measure of expected bandwidth for all players. For an arbitrary value of �; expected bandwidth

can be expressed as S=�N . This allows us to easily compute expected congestion in a network withN

peers and S sharers, which is the time required to complete downloads td, as the inverse of expected

bandwidth. Hence, expected congestion for all peers is given by td = 1= S
�N = �NS . It should be

noted that although bandwidth depends linearly in the number of sharers, expected congestion does

not. This property is crucial to our results. Technically, it ensures that our objective function is

concave in S, allowing for interior equilibria in which sharing and freeriding may coexist for certain

ranges of N .

Notice �nally that our approximation punishes (slightly) sharers and rewards (slightly) freerid-

ers. Therefore, we are making it �harder� for peers to share. In Section 5 we endogenize the

decision to share or to freeride and show that in equilibrium there is sharing. If instead of using

the approximation we used the exact formula in [11], our results would only be strengthened.

5 Equilibrium network con�gurations

In this Section we analyze the �rst stage. This is the stage where every peer chooses whether to

freeride or to share (at additional cost cs). In other words, we now endogenize td. In making their

decision, peers consider the e¤ect of their choice on expected download time �NS . Equations (1)

and (2) imply that if expected download time was not a¤ected by the sharing decision, no peer

would ever share and the peer-to-peer network would not be viable.

In this Section we take N as given. This amounts to assuming that all peers in the network

obtain positive utility. In general, this will depend on S and the distribution of �s. We relax this

assumption in Section 6 and let peers decide whether or not to join the network.

Let P = fF;Sg be a partition of N. We refer to P as a network con�guration.16 F is the set

15Given N the expected congestion of sharers and freeriders will change as the cardinality of S varies.
16Notice that a network con�guration can be mapped to many di¤erent network allocations.
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of freeriders and S the set of sharers. Obviously, P constitutes an equilibrium if no i 2 S prefers

to (unilaterally) become a freerider and no j 2 F prefers to become a sharer. Sharer i will not free

ride if

ud � (cn + cs + �i) �
N

S
� ud � (cn + �i) �

N

S � 1 . (3)

On the other hand, freerider j will not want to become a sharer if

ud �
�
cn + �j

�
�
N

S
� ud �

�
cs + �j

�
�
N

S + 1
. (4)

The following proposition characterizes the equilibrium.

Proposition 2 Every equilibrium network con�guration P = fF;Sg has the following form: F =

f1; 2; :::; n� 1g and S = fn; n+ 1; :::; Ng for some n 2 N.

The proposition says that if peer i is a sharer in equilibrium network con�guration P , then

peer i+ 1 must also be a sharer. Moreover, if peer j is a freerider, then peer j � 1 must also be a

freerider. Thus, the most impatient peers prefer to share while the more patient peers are better

o¤ freeriding. The reason is simple: by sharing content, peers reduce congestion and the (positive)

marginal e¤ect on peer utility implied by lower congestion is proportional to the value of �i. Peers

for whom the opportunity cost of time is high, are more inclined to share. This is true even though

given any �xed level of congestion, all peers (regardless of the value of �) are better o¤ freeriding

than sharing.

We now further characterize the equilibrium network con�gurations by pinning down to the

fullest possible extent the cardinality of S. Let P = fF;Sg be an equilibrium network con�guration.

Let �i be the most patient sharer in S. Equations (3) and (4) imply that

S � cn + cs + �i
cs

and S �
cn + �i�1

cs
.

Thus,
cn + �i�1

cs
� S � cn + cs + �i

cs
. (5)
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Let I be the set of integers. The following two objects are useful in what follows:

G (�i) =

�
k 2 I

����cn + �i�1cs
� k � cn + cs + �i

cs

�
(6)

and

H (�i) = N + 1� i. (7)

Correspondence G indicates the cardinality of S if the sharer with lowest impatience has time

preference �i. Function H tells us the number of peers with parameter �j larger than or equal to

that of peer i.

The solution to the system of equations given by G and H pins down the most patient sharer:

�s = fi 2 I jH (�i) � G (�i)g .

Because G (�i) is a correspondence, �s may not be a singleton set. The following example illustrates

this approach.

Example 3 Assume there are 22 peers with time preference parameters �i (i = 1::22) = 1, 3, 4,

5, 8, 9, 10, 12, 14, 16, 17, 18, 21, 22, 26, 27, 29, 30, 33, 34, 35, and 38. If cn = 1 and cs = 2

we have that �s = f13g. Thus, there is one equilibrium network con�guration: S = f13; :::; 22g (10

peers share and 12 freeride).
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Notice that H (�i) does not change with the values of the parameters. Therefore, to perform

comparative statics we need only look at how changes in the parameters a¤ect the position and

�slope�of G (�i). When cs falls or cn grows, G (�i) shifts upwards, bringing down the most patient

sharer and thus increasing sharing in the network.

The di¤erence between the e¤ect of cs and cn on congestion is as follows. When cs increases,

sharers are worse o¤ because they bear additional cost. Freeriding now becomes more attractive.

Sharers with the lowest time preference parameters �i will prefer to freeride and congestion in-

creases. When cn increases, however, both sharers and freeriders bear additional cost. In this case,

sharing becomes more attractive. Sharers do not gain from becoming freeriders as freeriders also

bear cn. Freeriders can reduce (somewhat) the negative e¤ect of cn on their utility by becoming

sharers and thus reducing td. Not all freeriders will �nd it advantageous to become sharers but those

with the largest time preference parameters �i will. This is why sharing increases and congestion

falls when cn grows.
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5.1 Full vs. partial sharing

Let S = fn; n+ 1; :::; Ng be the set of sharers in an equilibrium network con�guration. We refer to

the case n = 1 as a full-sharing network con�guration (or full-sharing equilibrium) and to the case

n > 1 as a partial-sharing network con�guration (or partial-sharing equilibrium). In a full-sharing

network con�guration all peers are sharers. In this case, congestion is minimized as the expected

download time for all peers (td) is equal to �. For a full-sharing network con�guration to obtain,

every peer must realize higher utility by sharing than by freeriding. In particular, the most patient

peer (�1) must be better o¤ sharing than freeriding (given that everybody shares):

ud � (cn + cs + �1) � � ud � (cn + �1) �
N

N � 1 .

Solving for N we obtain:

N � cn + cs + �1
cs

. (8)

Therefore, if N is su¢ ciently small, the unique equilibrium network con�guration has all peers

sharing content. Notice that as the incremental cost of sharing cs approaches zero, the maximal

network size that supports full sharing grows without bound. Inequality (8) also reveals that when

cn is large, everybody shares. In this case, peers su¤er more from congestion and are all better o¤

sharing. Finally, if the most patient peer (�1) is very impatient (�1 large), then all peers prefer to

share. When N is large, the equilibrium will typically entail partial sharing. In this case, expected

download time will be larger than � for all peers.

Although bandwidth is not a pure public good because it is rival, our model of endogenous

congestion is related to work in public economics that studies the private provision of public goods.

This literature proposes two approaches to modeling the decision to contribute: the self-interested

approach of Bergstrom et al. [5] where individuals are concerned about the total supply of public

goods, and the �warm-glow� approach of Andreoni [1] where individuals �feel good� when they

privately provide public goods. Our approach is closer to the former. In fact, ours is a model of

negative warm-glow (or cold -glow) because sharers bear additional costs (cs) that can be avoided

by freeriding. Compared to the self-interested approach our model is similar in that individuals
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care about the total amount of public good available and di¤erent in that the decision of how much

to share is discrete (all or nothing). In this sense, ours is a model exclusively about the �extensive

margin��the decision of whether or not to become a contributor �whereas Bergstrom et al. [5]

considers both the extensive and the �intensive margin��the decision of how much to contribute.

5.2 Equilibrium with �i � U [0; ��]

We have characterized the equilibrium for the general case, without speci�c assumptions on the

distribution of �is or the cardinality of N. In order to ensure tractability when we introduce a

pro�t maximizing �rm (Section 6), we make the additional assumption that �is are i.i.d. U [0; ��].

This allows us to further characterize the set of equilibrium network con�gurations.

Proposition 4 identi�es the most patient sharer as a function of the parameters. Identifying

precisely the most patient sharer will allow us to easily analyze how the di¤erent parameters a¤ect

network congestion. In particular, we are interested on the e¤ect that N has on congestion. If

congestion decreases when N grows, then the p2p network becomes gradually more valuable as the

number of peers expands. If, on the contrary, network congestion grows with N , the value of the

p2p network decreases with size.

Proposition 4 Let �s(N) be the most patient sharer in equilibrium. Then, for N large,

�s(N) '
�� ((N � 1) cs � cn)

��+Ncs
.

Notice that �s(N) is increasing in N . This implies that the larger is the cardinality of N, the

lower is the proportion of sharers in equilibrium. In other words, the p2p network exhibits negative

network e¤ects (past the threshold network size of full sharing): the larger the number of peers, the

lower the average utility that peers obtain. In fact, as N ! 1, �s(N) ! ��. Therefore, when the

network is very large, there is essentially no sharing.

The following result is a direct implication of Proposition 4.

Corollary 5 When N is large, the equilibrium cardinality of S is:

SN '
��+ cs + cn
1
N ��+ cs

. (9)
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Notice �rst that dSN=dN > 0: as N grows, the number of sharers does not decrease. However,

SN ! ��+cs+cn
cs

<1 as N !1. Therefore, the proportion of sharers converges to zero as N grows.

In other words, the expected download time (�NS ) grows without bound as N increases. This means

that large p2p networks operate worse than smaller ones. The intuition lies on the e¤ects of network

size on the marginal utility of sharing. As the network grows, �sharing�makes less of a di¤erence on

the reduction of congestion and the incentives to share fade. This problem is similar to the classic

�moral hazard in teams�(Holmstrom [16]) where team members contribute e¤ort only to the extent

that marginal bene�t is larger than marginal cost. When the team grows, marginal bene�t tends

to decrease and freeriding grows. This e¤ect is felt by all peers, but those with higher disutility of

congestion su¤er a larger decrease in utility when N grows. This has important implications for

the equilibrium pricing strategy of a �rm competing for customers against a p2p network (Section

6).

The costs of using the network (cn and cs) play a crucial role in determining congestion and

thus the viability of p2p �le sharing networks.17 In fact, given a large N < 1, congestion may

be low if cs is small and/or cn is large. Di¤erentiating N=SN with respect to cs we see that

congestion worsens as the cost of sharing increases. Clearly, as cs grows, less and less peers �nd it

attractive to share. As a consequence, congestion increases and all peers in the network are worse

o¤. Actions targeting an increase in cs (such as suing sharers) reduce the attractiveness of the

network. An increase in the cost of pertaining to the network achieves a similar e¤ect. In this case,

the derivative of congestion N=SN with respect to cn is negative. However, although there is less

congestion when cn grows, all peers wind up worse o¤ as du
f
i =dcn < 0 and dusi=dcn < 0 except

for �i = �� for whom dusi=dcn = 0. That is, in the case of �i � U [0; ��] the positive e¤ect of lower

congestion is more than o¤set by the negative e¤ect of larger cost cn. Therefore, increases in cs or

cn end up hurting peers.

Corollary 5 also helps explain why p2p �industry structure�is characterized by the presence of

multiple, independent �le sharing networks. The model suggests that as network size grows and

17Anecdotal evidence suggests that users of �le sharing networks experiment in setting the p2p software parameters
that determine the bandwidth allocated to uploads. That is, the decision to share is, to some extent, continuous.
The aggregate equilibrium upload bandwidth predicted by our model can also be interpreted as the steady state of
a process where peers decide how much upload bandwidth to o¤er.
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congestion worsens, peers are better o¤ forming new networks with fewer peers (initially) and faster

download speeds. The number of coexisting networks must then be a function of population size

and the scalability of p2p technology. Although we do not pursue this research question here, it

is worth pointing out that to study the equilibrium number of p2p networks and their sizes one

would want to work with a model that captures the positive network e¤ects resulting from having

higher content variety in larger networks.18

The evolution of p2p technology has improved its scalability. As a consequence, there is a

trend towards increased concentration: fewer, larger p2p networks in operation. One key factor

driving this trend are incentive schemes that promote sharing to lower congestion. In essence,

these mechanisms redistribute bandwidth away from freeriders towards peers who share. The e¤ect

of these incentives is similar to that of altruism or reciprocity between peers; in both cases the

marginal utility of sharing is increased. Our model, however, is one where sharers and freeriders

are all assumed to obtain the exact same bandwidth S=N (there is no redistribution). We have

analyzed extensions where sharers are favored and freeriders punished. As expected, congestion is

reduced and scalability improves. Unfortunately, a model with such extensions becomes intractable

when we introduce the �rm (Section 6). The power of our model of p2p is in showing that even

without such incentive mechanisms there is sharing in equilibrium.19

It is easy to see that the utility of peers increases as residential broadband infrastructure im-

proves (lower �). The availability of larger bandwidth reduces congestion and allows downloads to

complete faster. The model suggests that �le sharing plays an important role as a driver of demand

for broadband. The evidence seems to con�rm this.20 File sharing may very well be the �killer

app�that broadband has reportedly been missing. Recent data on Internet tra¢ c shows that �le

sharing has continued to increase and currently accounts for more than 60% of total tra¢ c. This

18Asvanund et al. [3] show that the variety of content available in p2p networks is increasing and concave in network
size. Positive network e¤ects can be captured in our model by assuming that peers value content variety, a function
of network size: ud(N) = N� with � 2 (0; 1). The tradeo¤ between content variety and congestion determines the
optimal network size. We do not follow this approach as the model with content variety becomes intractable when
we introduce a pro�t maximizing �rm that competes against the network (Section 6).
19Napster, the �rst �le sharing network deployed on a large scale, operated with no incentive schemes to promote

sharing. Nonetheless, the network continued to operate up until its forced closedown with usage peaks of over one
million simultaneous users. The Napster protocol was reverse-engineered after the shutdown and continued to operate
in parallel on several smaller networks.
20See, for example, Om Malik, �P2P, the only killer broadband application,�GigaOM.com, August 29, 2005.
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phenomenon seems to a¤ect data networks of operators worldwide, even as the capacity of broad-

band infrastructure available to residential users varies substantially from country to country.21

ISPs report that a small number of residential customers are responsible for a big proportion of

total tra¢ c. Our model is also consistent with this observation because sharers (a small number in

large networks) generate higher volumes of tra¢ c than freeriders.

6 The �rm

We next introduce an online �rm that sells digital information goods also available on the peer-to-

peer network. To the �rm, the network is a competitor because peers that choose to download �les

from the network could otherwise become paying customers. In the absence of altruism towards

artists, it is an interesting question why consumers would pay to purchase content online. Empirical

studies have shown that preferences for content available on p2p networks are similar to those

for products available in traditional distribution channels.22 Furthermore, the variety of content

available on major �le sharing networks after many years of operation is still unmatched by licensed

online stores. This suggests that preferences for content do not explain why individuals choose to

purchase from online stores.

Because content is free on p2p networks, for the �rm to persuade users of digital content to pay

positive prices, it must o¤er added bene�ts that �le sharing networks cannot match. In our view,

the most important advantages of licensed online distribution are: (1) it o¤ers lower download time

and (2) it is legal. Online distributors such as Apple�s iTunes Store o¤er content on a traditional

client-server architecture. Contrary to the p2p network, consumption of content acquired from the

�rm can be enjoyed almost immediately at the moment of purchase. A song can be downloaded

from iTunes over a broadband connection in a few seconds. By adding servers and bandwidth,

Apple can manage congestion. Furthermore, the industry seems to be engaged in an assertive push

towards content streaming.23 To capture this fact, we let the �rm o¤er immediate consumption.

21See the data published by CacheLogic, Parker [20], the tra¢ c measures on Japanese ISPs performed by Nissho
Electronics co., and the data on tra¢ c of Spanish ISPs disclosed by Telefónica during the Internet Global Congress
2006.
22The media industry has recognized the value of the Internet as a tool to learn about consumer preferences and

it is increasingly using the web to better estimate demand. See Bhattacharjee et al. [4].
23New players in this market such as Google and CinemaNow o¤er content streaming. This allows for real-time
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In this case, the utility of buyers becomes:

ui = ud � p. (10)

Notice that (10) is the natural adaptation of (1) and (2) to the case of immediate consumption,

as the expected download time td falls down to zero. Thus, the terms cn+ �i and cs do not appear

in (10). On the other hand, the �rm charges positive prices for content.

Because we are considering pure information goods, the �rm has zero marginal cost. All in-

frastructure and running costs related to the service are �xed or sunk and independent of activity

level. We also assume that the p2p network and the �rm o¤er the same content. Individuals face

the choice of purchasing from the �rm or downloading content o¤ the network for free. Addition-

ally, individuals now have the outside option of not consuming content at all. The outside utility

is normalized to zero.

We modify the timing accordingly. In the �rst stage, the �rm chooses the price at which content

is sold. In the second stage, individuals choose to either purchase from the �rm, enter the network,

or stay outside. Those who enter the network may share or freeride. In the third stage, agents in

the network interconnect and downloads take place.

The following proposition characterizes the demand faced by the �rm.

Proposition 6 The �rm faces the following demand function:

q =

8>>>>>>>>>><>>>>>>>>>>:

M if p � �(cn + cs) (full coverage)

(1� p��(cn+cs)
��� )M if �(cn + cs) < p � �(cn+cs)(��+Mcs)

Mcs
(high coverage)

max[(1� p
�(��+Mcs)

)M; 0] if �(cn+cs)(��+Mcs)
Mcs

< p < ud (low coverage)

max[(1� p
�(��+Mcs)

)M; 0] if p = ud (outsiders only)

0 if p > ud (no demand)

As expected, demand is downward sloping. Moreover, individuals with high disutility of conges-

tion prefer to buy from the �rm than to obtain content from the network for free. These individuals

bene�t the most from fast downloads. As they choose to purchase, the network becomes smaller

viewing of content purchased. Streaming of audio and video content over broadband under client-server architectures
is a proven, well-established technology. Reliable content streaming over peer-to-peer architectures, however, remains
a theoretical construct known to present several technical complications. See Habib and Chuang [15] and Pai and
Mohr [19].
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and the proportion of peers who are better o¤ sharing increases (see Section 5.2). As a consequence,

congestion falls. Hence the size and e¢ ciency of the network is a¤ected by the presence of the �rm.

Proposition 6 shows that both models of digital distribution are interdependent.

The following �gure shows the shape of the demand curve and illustrates how the size of the

p2p network is determined by the price charged by the �rm.
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Full market coverage is obtained at any price below or equal pfc. The agent who su¤ers conges-

tion less (�i ' 0), purchases at this price out of indi¤erence (and all other agents prefer to purchase)

rendering the network empty. Any price above pfc will ensure that some agents prefer the network.

Above this price, both distribution models coexist. Demand is characterized by a non-derivability

at price pnd. This price separates two ranges over which the behavior of congestion in the network

di¤ers. Below pnd full sharing holds. In this case, congestion is not a¤ected by peers entering or

exiting to purchase. Above pnd partial sharing holds. Here congestion varies with network size;

the smaller the network, the lower the level of congestion. This is true although the population of

peers that remain in the network are on average more patient and, thus, less prone to sharing; the

e¤ect induced by the reduction in network size is always stronger, resulting in a larger proportion

of peers sharing content.24 Finally, ud is the maximum price that the �rm will ever charge. Any

24Consider a reduction in price. In the full sharing price range, peers who switch to purchase are not a¤ecting
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higher price will be met with no demand.

Given the demand function derived in Proposition 6, the problem of the �rm is to set p to

maximize pro�ts. The �nal proposition characterizes the �rm�s optimal pricing strategy.

Proposition 7 Let

pfc := �(cn + cs) (full market coverage)

phc :=
1
2�(��+ cn + cs) (high market coverage)

plc :=
1
2�(��+Mcs) (low market coverage)

poc := ud (outsiders only coverage)

The optimal pricing strategy is given by:

ud � 2�(cn + cs) ud > 2�(cn + cs)

�� � cn + cs
pfc if M < Md

poc if M �Md

pfc if M < Ma

plc if Ma �M < Mc

poc if M �Mc

�� > cn + cs

phc if M < Mb

plc if Mb �M < Mc

poc if M �Mc

phc if M < Mb

plc if Mb �M < Mc

poc if M �Mc

where Ma =
4(cn+cs)���

cs
, Mb =

(cn+cs)(2��+cn+cs)
��cs

, Mc =
2ud����
�cs

and Md =
u2d����(ud��(cn+cs))
�cs(ud��(cn+cs)) .

Equilibrium pro�ts are:

�fc =M�(cn + cs) (full market coverage)

�hc =
M�(��+cn+cs)2

4�� (high market coverage)

�lc =
1
4M�(��+Mcs) (low market coverage)

�oc = ud(1� ud
�(��+Mcs)

)M (outsiders only coverage)

The following �gure illustrates the four di¤erent equilibrium market coverage levels. In each

the congestion experienced by those stay in the network. But in the partial sharing price range, peers leaving are
(indirectly) reducing congestion by reducing the size of the network. This e¤ect ensures that fewer peers will leave
the network in response to a price reduction when price is above pnd.
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case, the graph on the top shows demand (black line), marginal revenue (discontinuous blue line),

equilibrium price (horizontal dotted line), and equilibrium pro�ts (yellow area). The graph on the

bottom shows pro�t as a function of quantity sold.
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This result characterizes the optimal pricing strategy of the �rm and shows that market size M

is a critical parameter. The �rm will only quote a low price and cover the entire market if M is

su¢ ciently small and agents su¤er little from congestion (low ��). In fact, when �� is low, the relative

bene�t of the �rm vs. the network is low (as peers are all patient) and the �rm must set low prices

to gain share.

In general, the �rm will not cover the whole market. The bigger the market, the more pro�table

it is for the �rm to target agents with high disutility of congestion by quoting high prices. If the

market is su¢ ciently large, it is optimal for the �rm to set p = ud and serve outsiders exclusively.

Intuitively, as the size of the network increases, so does congestion. Therefore, when M is large

the surplus that the �rm can extract by targeting agents who most su¤er congestion is larger than

that obtained by quoting a low price and covering a larger chunk of the market.

The presence of the network always decreases �rm pro�ts. The e¤ect of the network on the

�rm can be likened to a low quality �rm competing against a vertically di¤erentiated competitor.

The �rm has strong incentives to o¤er high quality service to remain competitive (by investing to

minimize congestion) and to quote a high price.

26



The result also highlights other strategic considerations. Pro�ts under all market con�gurations

are increasing in market size. As M grows, so does congestion and this bene�ts the �rm. Further-

more, pro�ts are increasing in the cost of sharing (cs) and nondecreasing in the cost of using the

network (cn). Because lager cs and/or cn result in lower utility levels for users of p2p (see Section

5.2), the �rm will want to take actions to increase cs and cn, such as suing peers.

Proposition 7 also shows that pro�ts decrease as � falls. That is, as residential broadband

infrastructure improves (lower �), the network becomes a better competitor. To take actions that

a¤ect the availability of residential bandwidth (upload mainly) may be unfeasible, but selective

degradation of �le sharing tra¢ c will serve the same purpose. Prioritization schemes favoring

commercial tra¢ c will strengthen the competitive position of the �rm and weaken the network.

Such schemes can be implemented with private contracts between telecommunications operators

and content providers or through vertical integration.

7 Concluding remarks

Decentralized peer-to-peer �le sharing networks and for-pro�t centralized online stores constitute

alternative distribution models for digital information goods. In this paper we have presented a

simple formal model to analyze some aspects in which p2p and online stores interact. This paper is

a �rst step towards improving our understanding of competition between two distribution models

that have been enabled by one technology, the Internet.

Although the two models have emerged only recently, it is more likely than not that they will

endure. iTunes is legal and has grown spectacularly since its inception. Because peer-to-peer �le

sharing activity is mostly illegal, one is tempted to believe that legal attacks against p2p with the

goal to shut them down will continue and eventually succeed. However, due to their decentralized

nature, p2p networks have proven di¢ cult to block. We expect our analysis to stay relevant going

forward.

The e¤ects of p2p �le sharing on content providers are signi�cant, and can be compared to those

of cassette recording in earlier analog technological generations. The cassette recorder allowed indi-

viduals to generate unauthorized copies and to illegally share copyrighted content lowering potential
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revenues to content providers. Analog content sharing was subject to quality degradation and re-

quired physical exchange, which mainly con�ned the process to relatively small social networks. By

eliminating these restrictions, peer-to-peer �le sharing technology has increased the accessibility

and attractiveness of unauthorized content replication. The threat of p2p is not di¤erent in nature,

but of much larger scale as it does not require the exchange of a physical support: p2p networks

allow individuals who have never met and who may be located far apart to exchange digital content

as easily as if they where close next-door friends.

The content industry has so far faced the new online paradigm as a threat more than as an

opportunity. But the need to embrace digital distribution seems obvious by now; there is no way

back to a world of physical distribution only. Due to this transition and the increasing value of

the online channel to reach consumers, we expect ISPs to have a stronger role in shaping market

structure. We also expect the content industry to reassess their revenue models. Changes towards

monetizing products not subject to replication, such as the increased attention paid by major record

companies to live concerts and merchandising, may be signals of a new trend.

Our formal model is necessarily partial in that it is focussed around characterizing the �rm�s

pro�t-maximizing pricing strategy. More generally (but less formally), to compete e¤ectively

against p2p, online digital distribution must strive to become accessible and attractive to con-

sumers. Online content providers are in a unique position to optimize and deliver new experiences

to consumers which cannot be matched by decentralized, self-sustained peer-to-peer networks.

iTunes, for example, provides a better customer experience than �le sharing for similar content and

this allows Apple to charge positive prices and make a pro�t.25 The potential industry-wide revenue

implications of p2p are still uncertain. However, our analysis suggests that there is scope for pro�t-

maximizing online distributors and content producers to compete e¤ectively against unauthorized

�le sharing.

8 Appendix �Proofs

This appendix contains all the proofs.

25 iTunes is easy to use and it is well-integrated with the iPod, it o¤ers a secure and simple payment process, free
samples, and minimum download delay.
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Proof of Proposition 2. Sharer i 2 S will not free ride if (3) or

S

S � 1 �
cn + �i

cn + cs + �i

is satis�ed. Notice that
d
�

cn+�i
cn+cs+�i

�
d�i

=
cs

(cn + cs + �i)
2 > 0. (11)

Therefore, if (3) is satis�ed for sharer i 2 S it is also satis�ed for all sharers i0 with �i0 � �i. Thus,

the more impatient a sharer is, the less the incentive to become a freerider. A freerider j 2 F will

not want to become a sharer if (4) or

S

S + 1
�

cn + �j
cn + cs + �j

is satis�ed. Notice that (11) implies that if (4) is satis�ed for peer j 2 F it is also satis�ed for all

peers j0 2 F with �j0 � �j . Thus, the more patient a freeriding peer is, the less the incentive to

become a sharer.

Proof of Proposition 4. We look for �s(N) such that the set of peers with i � s (N) all

want to share. Because �s(N) is the most patient sharer, the cardinality of the set of sharers is

S = N � s (N) + 1.

For S to be the set of sharers of a stable network con�guration, it is necessary that the most

patient sharer does not want to freeride:

ud �
�
cn + cs + �s(N)

�
�
N

S
� ud �

�
cn + �s(N)

�
�
N

S � 1

This expression implies that

�s(N) � (N � s (N)) cs � cn.

Therefore, for S = N � s (N) + 1 to be stable, �s(N) must satisfy �s(N) � (N � s (N)) cs � cn.

We also need that the most impatient freerider does not want to share:

ud �
�
cn + �s(N)�1

�
�
N

S
� ud �

�
cn + cs + �s(N)�1

�
�
N

S + 1
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This expression implies that

�s(N)�1 � (N � s (N) + 1) cs � cn.

So, we need that

�s(N)�1 � (N � s (N) + 1) cs � cn and (N � s (N)) cs � cn � �s(N).

Suppose now that all �is are drawn from a uniform distribution �i � U [0; ��]. When N is

large we have that s (N)� 1 ' �s(N)�1
�� N . Furthermore, large N also implies that �s(N) ' �s(N)�1.

Therefore s (N) ' �s(N)�1
�� N + 1 ' �s(N)

�� N + 1. Substituting in the expression above, we obtain

�
N �

�s(N)

��
N � 1

�
cs � cn � �s(N)�

��N � �s(N)N � ��
�
cs � ��cn � ���s(N)

�� ((N � 1) cs � cn)
��+Ncs

� �s(N).

When N is large we have that s (N) � 2 ' �s(N)�2
�� N . Furthermore, large N also implies that

�s(N)�1 ' �s(N)�2. Therefore s (N) � 2 '
�s(N)�2

�� N ' �s(N)�1
�� N or �s (N) + 1 ' ��s(N)�1

�� N � 1.

Now, substituting in the expression above, we obtain

�s(N)�1 � (N � s (N) + 1) cs � cn

�s(N)�1 �
�
N �

�s(N)�1
��

N � 1
�
cs � cn

���s(N)�1 �
�
��N � �s(N)�1N � ��

�
cs � ��cn

�s(N)�1 (��+Ncs) � �� ((N � 1) cs � cn)

�s(N)�1 � �� ((N � 1) cs � cn)
��+Ncs

So, when N is large we have that

�s(N)�1 �
�� ((N � 1) cs � cn)

��+Ncs
� �s(N).

30



We conclude that when N is large

�s(N) '
�� ((N � 1) cs � cn)

��+Ncs
.

Proof of Corollary 5. We have that S = N � s (N) + 1 and s (N) � 1 ' �s(N)�1
�� N .

Furthermore, we have just seen that

�s(N)�1
��

=
(N � 1) cs � cn

��+Ncs
.

Therefore,

S = N � (N � 1) cs � cn
��+Ncs

N

= N

�
1� (N � 1) cs � cn

��+Ncs

�
= N

�
��+Ncs � (N � 1) cs + cn

��+Ncs

�
= N

�
��+ cs + cn
��+Ncs

�
.

Proof of Proposition 6. An agent with disutility of congestion �i will purchase from the

�rm i¤:

ud � p � ud � (cn + cs + �i)td.

Because td � � is positive, if the condition is satis�ed for peer i it will also be satis�ed for peer

i + 1. So, the agents who most su¤er congestion are the ones for whom purchasing the content

from the �rm is most attractive. To solve for demand given a price p we proceed by identifying the

indi¤erent buyer, denoted by �b. The indi¤erent buyer obtains the same utility from purchasing

content and from downloading it for free from the network. Hence, all agents with �i > �b will

strictly prefer to purchase from the �rm. Note that this includes outsiders (individuals who would

have experienced negative utility if in the p2p network), who choose to purchase as long as p � ud.
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If p = ud, only outsiders buy from the �rm, as all other agents obtain strictly positive utility in

the network. If p > ud purchasing yields negative utility and the �rm faces no demand. To obtain

demand when p � ud we must solve for �b, given by:

ud � p = ud � (cn + cs + �b)td. (12)

Because either full or partial sharing may hold in the network, we consider two separate cases. We

begin with the latter.

Substituting td = �NS in (12) and taking into account that congestion under partial sharing will

depend on �b, as only agents such that �i � �b are present in the network:

ud � p ' ud �
�
cn + cs + �

ps
b

�
�
N
�
�psb
�

S
�
�psb
� ,

where

N
�
�psb
�
=
�psb
��
M ,

and

S
�
�psb
�
= N

�
�psb
� �psb + cs + cn

�psb +N
�
�psb
�
cs

!

=
�psb
��
M

0@ �psb + cs + cn
�psb +

�psb
�� Mcs

1A
= M

�
�psb + cs + cn
��+Mcs

�
.

Thus,

ud � p ' ud �
�
cn + cs + �

ps
b

�
�

�psb
�� M

M
�
�psb +cs+cn
��+Mcs

� .
Solving for �psb yields:

�psb =
p��

�(��+Mcs)
.

We can now use this result to identify the boundary price which separates the full and partial
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sharing range. For the network size to equal the full sharing boundary size,

�psb
��
M =

cn + cs
cs

.

Substituting �psb and solving for p:

pnd =
�(cn + cs)(��+Mcs)

Mcs
.

We denote the boundary price by pnd to indicate that demand exhibits a non-derivability at this

point. For any price below pnd only full sharing will hold in the network, hence td = �.

We now solve for the indi¤erent buyer in the full sharing case by substituting td = � in (12):

ud � p ' ud �
�
cn + cs + �

fs
b

�
�,

and solve for �fsb :

�fsb =
p� �(cn + cs)

�
.

The demand function for the �rm is given by:

D = (1� �b
��
)M . (13)

Substituting �psb we obtain the expression for demand in the partial sharing range:

Dps = (1� p

�(��+Mcs)
)M .

Note that this expression may yield negative values for higher values of p. Substituting �fsb in (13)

we obtain demand in the full sharing range:

Dfs = (1� p� �(cn + cs)
���

)M .
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Full market coverage is obtained when �fsb = 0, which implies:

pfc = �(cn + cs).

A lower price will also ensure that the market is covered.

Proof of Proposition 7. Given the non-derivability that the demand curve exhibits at pnd,

the �rm faces two separate pricing ranges which describe two concave pro�t curves. Due to the

shape of the demand curve, each pro�t curve lies above the other in its own price range and both

intersect at the boundary price pnd. Let us consider separately the optimal strategy of the �rm in

each range. Pro�ts in the lower price range are given by

�lr = pDfs

= p(1� p� �(cn + cs)
���

)M , (14)

which has a maximum at

phc =
1

2
�(��+ cn + cs).

We denote the maximum by phc, as high coverage of the market is obtained in this price range. Note

that this price is not feasible if outside the range in which demand is well de�ned, that is, outside

the lower price range. First, if below or equal to the price which ensures full market coverage,

phc � pfc,

the optimal price in the lower range is that which covers the market pfc = �(cn+ cs). A lower price

will not increase demand but only lower pro�ts. Solving the inequality indicates that this is the

case if and only if

�� � cn + cs. (15)

Only in this case will a corner solution hold in the lower price range, implying full market coverage.

Second, if

plr � pnd,
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the optimal price for the �rm is in the higher price range. As each pro�t curve lies above the other

in its own price range, if the maximum of the lower range pro�t curve is attained in the higher price

range it follows feasible pro�ts in that range are e¤ectively higher. Solving this inequality shows

that this is the case if and only if

�� > cn + cs and M � 2��(cn + cs)

(��� cn � cs)cs
. (16)

Only when neither (15) nor (16) are satis�ed does the interior solution hold in the lower price range,

given by phc.

We next consider the higher price range. Pro�ts are given by

�hr = pDps

= p(1� p

�(��+Mcs)
)M , (17)

which has a maximum at

plc =
1

2
�(��+Mcs).

As market coverage is lower in this range, we denote the maximum by plc. We now consider the

conditions for this price to be feasible. First, if

plc � ud;

the higher feasible price for the �rm is that which covers outsiders only, poc = ud. A higher price

will face no demand. Solving the inequality yields

M � 2ud � ���
�cs

. (18)

Only if this condition is satis�ed does a corner solution hold in the higher price range, implying

outsider coverage only. Second, if

plc � pnd;
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it follows the optimal price is in the lower price range, as feasible pro�ts must be higher in that

range. Solving this inequality we have

M � 2(cn + cs)

cs
. (19)

Only when neither (18) nor (19) are satis�ed does the interior solution hold in the higher price

range, given by plc.

By the above construction, under condition (16) maximum pro�ts are obtained in the higher

price range, and under condition (19) in the lower price range. For the remaining cases, the price

range where maximum pro�ts are obtained needs to be determined. Pro�ts in both price ranges

as given by (14) and (17) must be evaluated under all combinations of conditions (15) and (18).

Solving these systems of inequalities we obtain the �rm�s optimal pricing strategy.
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