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On the Grouping of Tasks into Firms: 

Make-or-Buy with Interdependent Parts* 

Abstract 

A common element in many classical theories of the firm is that the 

inefficiencies of markets increase with the frequency of transactions, while the 

costs of integration are more or less fixed. In this paper we examine a similar but 

slightly different proposition: that it is more attractive to integrate a set of tasks 

when they require frequent coordination. We study the division of labor within a 

supply chain and look for the optimal grouping of tasks into firms. Using a unique 

dataset on supply chains in the global automobile industry, we present robust 

evidence consistent with the view that the firm is a low variable-, but high fixed 

cost way to govern adjustments. The results are very strong, suggesting that the 

theory captures a significant and important effect. This is evident even at the level 

of descriptive statistics. Holding group sizes constant, seven of eight supply 

chains studied internalize significantly more adjustments than 100,000 randomly 

generated alternatives, four beat 99,995, and one beats all 100,000. Going beyond 

the simulations, we estimate a structural model in which the supply chain is 

portrayed as the solution to an integer program aimed at minimizing the sum of 

adjustment-costs within and between firms. By taking account of 

interdependencies between parts, our econometric approach generalizes standard 

make-or-buy analysis and yields large improvements in predictive accuracy.  
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I. Introduction 

What determines how the sub-tasks of a production process are grouped 

into firms? This is a slightly novel way of asking a question that is central to our 

understanding of the nature of coordination within and between firms. Many 

classical theories in the field suggest that the inefficiencies of markets increase 

with the number of transactions, while the costs of integration are more or less 

fixed.1 We here examine a similar, but subtly different proposition: that the 

grouping of tasks is influenced by the frequency with they have to be coordinated. 

Using unique data on eight supply chains in the global automobile industry, we 

test the proposition that the firm is a low variable-, but high fixed cost way to 

govern adjustments. 

Because our hypothesis involves the entire supply chain, the empirical 

specification relaxes an independence assumption implicitly made in most studies 

of make-or-buy decisions.2 From the perspective of our model, a make-or-buy 

study starts with a focal task and works off the  relationship between that and each 

of the other tasks, while ignoring relationships between pairs of non-focal tasks. 

For example, suppose that tasks 1 and 2 should be together and that tasks 2 and 3 

should be together as well. In this case tasks 1 and 3 will be together 

                                                 
1 In particular, Coase (1937) emphasized the need to avoid the haggling costs associated with 
market transactions, Simon (1951) used implicit super game arguments to suggest that more 
frequent trades should be internalized, and Williamson (1979) similarly argued that higher 
frequency of trade, combined with asset specificity, favors integration. 
2For example Masten (1982), Monteverde and Teece (1982), Novak and Eppinger (2001), and 
Simester and Knez (2002). The assumption is irrelevant in single input studies such as Hortacsu 
and Syverson (2007) 
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independently of their direct relationship, and it is meaningless to perform a 

make-or-buy analysis of the question. 

In a model that takes all pair-wise relationships are taken into account 

simultaneously, we show: (1) that any two tasks are more likely to be performed 

by the same firm if mutual adjustments are needed on a sufficiently frequent 

basis, (2) that a disproportionate share of all adjustments are managed inside 

firms, and (3) that industry design can be portrayed as the solution to an integer 

program aimed at minimizing the sum of adjustment-costs within and between 

firms. The results are very strong and robust, suggesting that the theory captures a 

significant and important effect. To evaluate the practical importance of the 

above-mentioned independence assumption, we compare the analysis with a 

standard make-or-buy estimation and find that the predictive accuracy is much 

improved by taking into account the interdependencies between tasks.   

While our test is more powerful, data requirements and computational 

difficulties are obstacles to its use. For each pair of parts, we need data on the 

frequency with which mutual adjustments are needed; and for each part, we need 

to know its producer. Publicly available sources do not contain this type of 

information, and we had to make an extremely large investment in data collection 

in order to acquire it. The second problem concerns the estimation procedure. 

Even for small sets of parts, there are a very, very large number of possible 

groupings of tasks, each of which needs to be considered as a counterfactual. 

Since the dependencies cause extreme non-linearities, we use simulated GMM to 

estimate the model. A very large integer programming problem has to be solved 
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in each simulation, and we believe that our 36 parts are close to the limit of what 

is currently practical. On the other hand, the efforts at data collection and 

computation have given us a very well-fitting structural model. 

After a brief review of the theoretical and empirical literature in Section II, 

we derive the hypotheses in Section III. The data are described in Section IV, and 

estimation techniques and results are presented in Section V. In Section VI, we 

briefly compare our estimates with those from a traditional make-or-buy model, 

and the paper concludes with a discussion in Section VII. 

 

II. Literature 

In spite of its central importance to the field, economists have not yet 

agreed on a theory of the firm. The several competing theories include, but are not 

limited to, those of Coase (1937), Grossman and Hart (1986), Hart and Moore 

(2007), Holmstrom and Milgrom (1994), Simon (1951), and Williamson (1979). 

A significant amount of empirical work has failed to settle the issue, possibly 

because many of the theories are difficult to conclusively falsify with available 

data. As a result, many economists evaluate the alternative theories on essentially 

a priori grounds.  

In the present paper, we are able to perform a very strong test of the 

adjustment-cost theory of the firm (Wernerfelt, 1997). There are two reasons for 

this. First, our data map very closely to the central prediction of the theory - that 

tasks in need of more frequent mutual adjustments are grouped together. 

Secondly, the prediction is robust across a variety of extensive forms. 
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Given this, we now summarize the underlying argument. The adjustment-

cost theory of the firm compares alternative game forms in light of the costs of 

change (adjustment).3 In its simplest form, it looks at a trading relationship 

between two players in which maximization of joint payoffs occasionally requires 

that the actions of one or both players change. The theory looks for the most 

efficient game form with which the players can agree on the adjustments and 

associated changes in payments. The choice of game form is non-contractible, but 

is sustained by an implicit contract. There are a sea of possibilities, but it is useful 

to keep three examples in mind: “Negotiation-as-needed” in which the players 

have a bilateral discussion about each adjustment and associated changes, a 

“Pricelist” in which the consequences of all possible adjustments are agreed upon 

ex ante, and an “Employment Relationship” in which one player ex ante agrees to 

let the other dictate what happens in case of adjustment, while both retain the 

right to terminate the relationship.4 Purchases governed through these three game 

forms could be a house renovation, a beauty treatment, and secretarial services. 

The theory is controversial because the adjustment-costs, through which it 

compares these game forms, essentially are bargaining costs.5  

                                                 
3 Bajari and Tadelis (2001) present a related argument. 
4 Since players can save pricing costs in a wide set of circumstances, it is not uncommon to see 
hybrid game forms with employment-like elements in pricelists (a haircut “as you like it”) or 
negotiation-as-needed (contracts for janitorial services). However, consistent with everyday 
language, the term “employment relationship” is reserved for the extreme case in which one 
player’s discretionary power includes at least some adjustments to the work methods used by the 
other. For example, a hairdresser has agreed to sell only a haircut. You could not ask this agent cut 
with the left hand, nor to take your car for an oil change, while a butler could be asked to do either.  
5 In the simplest versions, we assume that all efficient adjustments are implemented, such that 
gains from trade have no impact on the comparisons. 
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Costs of bargaining may be incurred before, during, or after the process. 6 

The most obvious source is the time consumed during bargaining. Any explicit 

model of alternating offer bargaining must posit some costs of refusing an offer 

and making a counter, since the process otherwise would go on ad infinitum. 

Delays are strictly out-of-equilibrium outcomes in the most simple models 

(Rubinstein, 1982), but not in richer settings (Watson, 1998; Smith and Stacchetti, 

2003). Consistent with this, a survey by Purchasing Magazine suggests that US 

purchasing managers spend 15% of their time on price negotiations. Costs 

incurred prior to bargaining may be an even more important source. It is well-

documented that better-informed bargainers get better results (Busse, Silva-Risso, 

and Zettelmeyer, 2006), and while this result does not figure prominently in the 

theoretical literature, it is easy to understand. The idea is that players, prior to 

bargaining, can invest to get information that will improve their shares, but not 

the overall gains from trade. Consistent with the importance of anticipatory 

bargaining costs, the above-mentioned survey of purchasing managers found that 

they spent about 25% of their time “Preparing Bids” and “Researching Prices”. 

Finally, Hart and Moore (2007) have recently argued that any not-ex-ante-agreed-

upon outcome produces post bargaining aggrievement towards the trading partner 

and a reduction in gains from trade.  

Given the existence of bargaining costs, the argument is simple. Since the 

employment relationship implements individual adjustments without negotiation, 

no other game form can have lower variable costs. On the other hand, 

employment entails some fixed costs ex ante because the parties have to reach 
                                                 
             6 The exact nature of the bargaining costs is not essential to the argument. 
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agreement on the arrangement. There are no such fixed costs with negotiation-as-

needed because no ex ante agreement is needed to open negotiation ex post. So 

among these three game forms, “Negotiation-as-needed” is most efficient when 

adjustments are rare, a “Pricelist” is best when the set of possible adjustments is 

small, and the “Employment Relationship” is the lowest cost solution when 

adjustments are both frequent and diverse.7 Among all possible game forms, none 

can implement adjustments at lower variable (per-adjustment) cost than the 

Employment Relationship, implying that it is asymptotically efficient under the 

stated assumptions. Different implications of the theory have been tested by 

before, for example by Simester and Knez (2002), but the present paper is the 

most extensive test by far.   

While the study of supply chains is unusual in economics, it has a long 

history in operations management, primarily in the context of the “Design 

Structure Matrix” (Steward, 1981; Eppinger, 1991; and Baldwin and Clark, 2000). 

This matrix summarizes the direction and importance of information flows 

between pairs of tasks, and is a tool for managing new product development 

processes. It contains more and different information than that used here, but 

cases with “important bi-directional information flows” are suggestive of the 

frequent mutual adjustments that we here focus on - although “important” is 

different from “frequent”. The question of firm boundaries receives little attention 

                                                 
7 Hart and Moore’s (2007) above-mentioned paper on “Contracts as Reference Points” may offer 
a different foundation for the same prediction. While this theory relies on some behavioral 
features, it is also based on bargaining costs. We can get the difference in variable costs if, as the 
authors suggest, aggrievement costs are smaller under employment than after bargaining. The 
difference in fixed costs could then come from reduced incentives under employment or some 
other effect that is independent of adjustments.  
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in this literature, but it is interesting to note that Baldwin and Clark (2000, p. 

368ff.) adopt arguments similar to those tested here and suggest that firm 

coordination carries low variable costs compared to market coordination.  

 

III. Theory and Hypotheses 

As we ultimately will estimate a structural model, we need to be explicit in 

describing how the adjustment-cost theory applies to our data. The product 

consists of N parts, and for each of the N(N-1)/2 pairs i and j we know the 

frequency with which there has to be a coordinated adjustment in them.8 We 

denote this variable by aij. Since the parts are complex in themselves, there is no 

automatic transitivity in the need for adjustment. That is, it is possible that a12  > 

0, a23  > 0, and a13  = 0. The first two sets of adjustments could be necessary 

without the third being so (as if the first is about color and the second is about 

size).   

The N parts can be made by anywhere from one to N firms and we define 

a supply chain design (aka a grouping of tasks) as an allocation S = {S1, S2,…, Sn} 

of all N parts into n  ≤  N non-empty, non-overlapping sets. We take the frequency 

of needs for adjustments as exogenously given and look for the most efficient 

design.9 To economize on notation, we denote the set of N parts by N. We use i 

                                                 
8 For the present purposes, we only consider mutual adjustments betweens pairs of parts. We could 
more generally think of all higher orders up to N. Ricard Gil has pointed out to us that our theory 
in that case would have a close mathematical relationship to that of the core. 
9 While we thus treat technology, represented by the frequency of needs for mutual adjustments, 
as exogenously given, it is obviously endogenous in the very long run. The theory implies that 
firms can influence the industry design by investing in more or less modular technologies. It is 
likely that the incentives to do this will depend on the number of firms competing, as well as 
economies of scale in each module. 
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and j as generic parts produced in firms I and J, respectively, while b and c are 

generic firms. The variable adjustment-costs, per adjustment per pair, are m in the 

market and f(sb) < m in a firm of size sb≡| Sb|, where the f’s are non-decreasing. 

Total fixed adjustment-costs are w(s-1) in a firm of size s (and 0 in the market). 

To keep things simple, we assume that all adjustments are implemented, 

regardless of the costs thereof. Recalling that I is the set of parts made by the 

same firm as part i, total expected costs are therefore given by 

(N-n)w + ½Σi∈N[f(sI)Σj∈I aij + mΣj∉I aij], and the cost-minimizing grouping solves 

the Partitioning Problem (P): 

MinnMinS (N-n)w + ½Σi∈N[f(sI)Σj∈I aij +mΣj∉I aij], s.t. 

Ub
n

=1 Sb = N, ∩b,c≠b Sb Sc = Ø, and Sb  ≠ Ø for all b.                    (P) 

There are a finite number of possible groupings, so while it is hard to characterize 

solutions, they trivially exist. 

  To gain some intuition about solutions, it is useful to start thinking about 

truly modular cases in which the symmetric NxN matrix {aij} is block-diagonal 

with n blocks. It is natural to propose a supply chain design with n firms, 

corresponding to the n blocks, with expected costs (N-n)w + ½Σi∈N f(sI)Σj∈I aij. 

Alternatives with fewer firms are dominated because they will add w per firm 

eliminated (employee added) and offer no benefits. Alternatives with more firms 

will save fixed costs of w per firm added (employee eliminated), but add extra 

costs of market adjustments in the form ½Σi∈N[m-f(sI)]Σj∉I aij.  So if the marginal 

costs of market over firm adjustment [m-f(sI)] are sufficiently large relative to the 
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fixed costs of firm adjustment (w), the proposed supply chain design will be 

optimal.  

  Beyond the block-diagonal case, things are much more complicated. If we 

add inter-block entries to {aij}, designs with fewer firms offer the possibility of 

saving [m-f(sI)] on inter-block adjustments. Similarly, if we eliminate some intra-

block entries, designs with more firms become more attractive because there will 

be fewer additional market adjustment costs. More firms always imply lower fixed 

costs, while a “merger” of two firms implies lower variable costs. However, the 

variable cost savings are weighted by the elements of {aij}. This means that it may 

be very complicated to identify the design that minimizes the expected sum of 

variable costs - even if we keep the number of firms constant. For example, given 

firms of size s1, s2,… sn, parts can be assigned to firms in N!/(s1! s2!... sn!) possible 

ways. There are ΣΣ sb sc/2 ≡ t designs in which one pair is switched and t(t-1)p-1/p! 

designs in which p pairs are switched. 

To understand the first-order effects of increasing needs for adjustments, 

we consider a candidate solution in which i and j are produced by two different 

firms. Formally, the candidate has n firms, i∈ I, j∈ J, I ≠ J. The expected 

adjustment costs associated with i and j in the candidate solution are 

f(sI)Σk∈I/i aki +mΣk∈J/j aki + maij +f(sJ)Σk∈J/j akj +mΣk∈I/i akj.                  (1)                              

If i is moved to J, the expected costs change to 

mΣk∈I/i aki + f(sJ+1)[Σk∈J/j aki + aij + Σk∈J/j akj] + mΣk∈I/i akj.                (2)                   

Comparing (1) and (2), we see that the candidate solution can be improved by 

putting i in J if 
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aij>Σk∈I/iaki[m-f(sI)]/[m-f(sJ+1)]+Σk∈J/jakj[m-f(sJ)]/[m-f(sJ+1)]-Σk∈J/jaki-Σk∈I/iakj,(3)                   

with a parallel condition for the option of moving j to I. That is, the candidate is 

suboptimal if aij outweighs the advantages of having i in I instead of J or vice 

versa. The chances of this happening are, ceteris paribus, increasing in aij.  

 As mentioned in the Introduction, a key contribution of this paper is to go 

beyond these simple effects. In most industries, there are important 

interdependencies between parts, leading to higher-order or network effects. The 

fact that i and j are more likely to be co-produced if the frequency of mutual 

adjustment aij is large can be thought of as a direct (or first-order) effect. It is not 

unlike the forces studied in the firm-level tests discussed in the Introduction. 

However, there are also several indirect (or higher-order or network) effects. An 

example of a second-order effect is that the parts i and j are more likely to be co-

produced if there exists a third part k such that both aik and ajk are large. While 

this condition might seem less likely to be satisfied, there are N-2 possible ways 

to meet it. A third-order effect would be the existence of a k, h pair such that aik 

and ajh and ahk all are large, etc. The only way to capture all indirect effects is to 

take all the elements of {aij} into account by solving (P). 

We test the theory from three different angles. We start by checking the 

first-order implication that two parts i and j are more likely to be made by the 

same firm if aij is higher. To account for indirect effects, we then look at the entire 

supply chain and find that a disproportionate number of adjustments are managed 

inside firms. We finally estimate a structural model in which supply chain design 
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is found as a solution to a program like P aimed at minimizing total adjustment-

costs.  

 

IV. Data 

  We test the theory by looking at supply chain designs and adjustment 

frequencies among parts going into cars. We have data from the late 1980s on 

eight supply chains pertaining to eight different cars in the luxury-performance 

segment of the automobile market. We look at each supply chain as a separate data 

set and will henceforth use that term and label them, or the cars they produce, A, 

B, C, D, E, F, G, and H. Since there is virtually no overlap between the participants 

in the eight supply chains, we treat them as independent, but identical.10 That is, 

we assume that the same technology and the same set of parts, and therefore the 

same adjustment frequencies, drive the design of all eight supply chains. So we can 

estimate on a per-car basis, or pool the data across all eight.  

A car consists of more than ten thousand parts. Since we need information 

on N(N-1)/2 pairs of parts, computational constraints and problems associated 

with administering very long questionnaires force us to divide the set of parts into 

36 “megaparts”, henceforth “parts”, for the purposes of the study. For each of the 

resulting 630 pairs of parts, we know the frequency with which mutual adjustment 

is needed as well as whether or not they are co-produced (made by the same firm). 

During the time period covered by the data, in all eight cases, every component of 

                                                 
10 Across the 36x8 part-car combinations, very few were subject to inter-car linkages: one firm made a part 
for 4 cars, three made a part for 3 cars, and eight made a part for 2 cars. In each of these cases, the firm was 
required to have separate employees and often even separate production facilities to serve each customer. 
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each part was made by a single firm. So no inconsistency is introduced by 

conducting the study at the megapart level, although we do lose a significant 

amount of information. In particular, we can not make use of the fact that the sub-

components of the parts are co-produced, even though our theory speaks directly 

to it. The (mega)parts are listed in Table 1 below. 

 

Table 1 

List of Parts 

Body in white Airbag controller Intake manifold Alternator 

Body sheet metal Airbag Crankshaft Speed control 

Headlining Power steering gear Camshaft Automatic transmission 

Bumpers Steering linkage Piston Suspension 

Safety belts Steering column Intake valves Drive shaft 

Lock cylinders Steering wheel Radiator ABS system 

Door handles Power steering pump Starter Spindle assembly 

Windshield washers Cylinder head Distributor Upper and lower arms 

Seat system Engine block Instrument panel AC assembly 

 

  The data on supply chain design (patterns of co-production), as well as 

some of our information about adjustment frequencies, come from interviews 

conducted by one of the authors. These interviews were very extensive and wide-

ranging – involving more than 1000 employees of the eight firms. They were 

focused on sourcing, and included specific questions identifying the producer of 

every part in every industry. In spite of the fact that the cars use very similar 

technologies, there are very large differences in co-production practices between 
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them. We have too few data points to explain these differences, but they do not 

appear to be related to societal factors. For example, the number of co-produced 

pairs ranges from 11% to 79% among four supply chains anchored in a single 

country. 

The Interview subjects were not systematically asked about adjustment 

frequencies, but the topic was repeatedly touched upon and the interviewer was 

able to use her notes to construct estimates for all (part, part) pairs. Specifically, 

for each pair of parts, she rated “the frequency with which there needs to be a 

mutual adjustment in this pair" on a seven point scale from 0 - 6. As mentioned 

above, we think of these as fundamental engineering relationships that should 

apply to all the cars. Table A-1 in the Appendix displays the interview data on 

adjustment frequencies along with the co-production data for car A. 

A possible problem is that the interviewer rated the adjustment frequencies 

with knowledge of the hypothesis to be tested. As an ex post check, we therefore 

used a questionnaire to collect a second set of adjustment frequencies from an 

industry expert who was unaware of the hypothesis. Our expert is Dan Whitney, 

who for many years has played a major role in MITs International Motor Vehicle 

Program. After getting a table with the 630 (=36 x 35/2) pairs of parts, this expert 

was asked to think of a typical luxury-performance car in the late 1980s, and 

answer the question: "Please consider a pair of parts and rate, on a scale from 0-6, 

the frequency with which there needs to be a mutual adjustment in this pair." It 

turns out that the questionnaire ratings are extremely similar to the interview 

ratings. The expert could have calibrated the seven point scale differently than the 
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interviewer, but at .88 and .87 the means are almost identical, as are the fraction 

of frequencies rated zero (.72 and .74). Most importantly, there is a highly 

significant Spearman rank-order correlation of .915 between the two data sets. To 

keep the argument as clean as possible, all results reported in the body of the 

paper are based on the expert’s questionnaire responses. Analog analyses, based 

on our interviews, are reported in the Appendix. As can be seen there, the results 

are essentially the same for both measures.  

Some descriptive statistics are given in Table 2, in which the second 

column indicates the fraction of each industry’s parts that are co-produced, the 

third gives the sizes of all clusters of co-produced parts, and the r’s in the fourth 

column are Spearman rank-order correlations.  

 

Table 2 

Descriptive Statistics by Supply Chain1 

Car Fraction co-

produced 

Size-distribution r(co-production, 

adjustment frequency)  

A .29 19, 5, 2, 2, 2 .53  

B .26 16, 9, 4, 2 .51 

C .14 13, 5, 2, 2, 2 .61 

D .18 15, 3, 3, 2, 2, 2, 2 .58 

E .79 32 .51 

F .17 14, 5, 3, 3, 2, 2 .54 

G .12 12, 4, 3, 2, 2, 2 .63 

H .11 11, 4, 3, 3, 2 .64 
                                 1N=630.  
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Looking first at the fraction of parts that are co-produced, we notice that 

all the supply chains are designed differently, with E as an extreme outlier.11 This 

heterogeneity ought to make us pessimistic about our tests, since we hypothesize 

that all supply chains are solutions to the same optimization problem, but observe 

apparently very different designs. As a first clue that this pessimism would be 

unfounded, we see in all eight cases a very strong rank-order correlation between 

co-production and adjustment frequency. In spite of the differences, all the 

designs reflect a strong influence of adjustment frequency. 12 

 

V. Estimation Techniques and Results  

In this Section we present three successively deeper tests of the 

relationship between adjustment frequency and co-production. To assess the 

robustness of the theory, we have done most of these tests on a car-by-car, rather 

than pooled, basis. We start by looking at direct effects only, asking whether two 

parts are more likely to be co-produced if mutual adjustments are needed more 

frequently. This is done for each pair, while incorporating corrections for the 

interdependencies between the pairs. To take account of indirect effects, we then 

go to the supply chain-level and compare the sum of internalized adjustment 

ratings against the distribution of the same measure in random supply chain 

                                                 
11 E represents a corporate form not used in the U.S., and it is possible to argue that the 32 parts 

are produced by three, rather than one, firm. However, we wanted to be as conservative as possible. 
It should also be noted that three of the other supply chains are anchored in the same country as E. 

12 If all observations were independent, the Spearman correlations in Table 2 would have t-values 
(~25r) above 10. However, as noted earlier, the data exhibits complicated dependencies, because 
“parts 1 and 2 are co-produced” and “parts 2 and 3 are co-produced” imply that “parts 1 and 3 are 
co-produced”. So the correlations in Table 2 do in some sense overstate the degrees of freedom but 
are suggestive.  
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designs. We finally estimate a structural model in which supply chain design is 

portrayed as the outcome of a maximization problem aimed at internalizing a 

weighted average of adjustments and random noise. This allows us to evaluate the 

importance of adjustment costs relative to other forces in supply chain design. 

V.i. Tests at the pair-by-pair level 

There are many ways to draw statistical inferences about the relationship 

between co-production and adjustment frequency at the pair-by-pair level. We 

have chosen to compare the actual design (the actual pattern of co-production) to 

those in randomly generated allocations of the 36 parts to firms of the same size. 

It may seem more natural to compare against “completely” random designs 

generated by allocating each of the 36 parts to 36 equiprobable firms without the 

constraint on firm sizes. The problem is that all eight industries have quite skewed 

size-distributions, with the owner of the brand name being very large. Such large 

firms, and thus instances of co-production, would be relatively rare in a set of 

completely random designs, implying that our results would be much stronger. 

However, since we do not feel comfortable attributing the skewed size-

distributions to our theory alone (the brand name manufacturers are becoming less 

and less integrated, but are still making a very large share of all parts); we prefer 

the more conservative test, simulating as outlined above. The results are given in 

Table 3 below.
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                                                       Table 3 

Probability of Pairwise Co-production by Adjustment Frequency1 

Car 0 1 2 3 4 5 6 

A .232  (.001) .364  (.234) .500  (.089) .517  (.020) .286  (.598) .500  (.012) .867  (.001) 

B .221  (.008) .273  (.474) .250  (.605) .448  (.026) .314  (.272) .406  (.050) .600  (.019) 

C .105  (.002) .242  (.139) .150  (.533) .379  (.004) .257  (.056) .188  (.306) .333  (.095) 

D .141  (.006) .152  (.681) .200  (.491) .345  (.045) .257  (.173) .313  (.057) .733  (.000) 

E .761  (.087) .939  (.113) .800  (.662) .897  (.164) .771  (.683) .844  (.301) .933  (.283) 

F .150  (.047) .121  (.795) .150  (.650) .345  (.029) .229  (.245) .281  (.089) .333  (.140) 

G .090  (.005) .091  (.745) .050  (.887) .241  (.070) .229  (.059) .250  (.038) .667   (.001) 

H .077  (.004) .030  (.963) .200  (.194) .172  (.202) .257  (.007) .125  (.458) .600  (.000) 
1 p-values in parentheses refer to tests relative to 100,000 randomly designed supply chains.  

 
 
 

Since there is a lot of information in Table 3, we will briefly look at the 

interpretation of a couple of cells. The .232 in the “A, 0” cell means that 23.2% of 

all pairs rated 0 were co-produced in supply chain A. This is significantly less 

than the 29% (see Table 2) one would expect from a random design. Similarly, 

the .867 in the “A, 6” cell means that 86.7% of all pairs rated 6 were co-produced 

in supply chain A. This is significantly more than the 29% one would expect from 

a random design. 

Adjustment ratings from 1 to 6 are only given to about twenty pairs each, 

but the larger ratings are still individually significant compared to random 

allocations. The strong significances in the first column reflect the very large 

number of 0’s in the data. The lacking significance for supply chain E is perhaps 

surprising in light of the high Spearman correlation (.51) from Table 2. However, 

the high level of co-production “eats up degrees of freedom” and causes the 

performance difference between a random and an optimal design to be very small, 
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leaving us with less statistical power. We will see this more clearly in the supply 

chain level analysis presented below.  

Looking beyond the individual entries at the overall pattern of results in 

Table 3, we see that most rows show a monotonic increase indicating that pairs 

are more likely to be co-produced if the adjustment frequency is higher. We could 

also perform a statistical test of this relationship, but since a more correct analysis 

takes indirect effects into account, we do not offer any analyses of direct effects 

beyond those reported above. 

In spite of the fact that we used the aforementioned conservative test, 

Table 3 show very strong support for the hypothesis that a pair of parts is more 

likely to be produced by the same firm if mutual adjustments are needed on a 

more frequent basis. The results are also broadly based in the sense that we see 

the same general pattern across all the industries in spite of their apparent 

differences. 

V.ii. Tests at the supply chain level 

The analysis in Table 3 is incomplete because it only takes direct effects 

into account. In fact, it is closely related to the one-part-at-a-time studies 

criticized in the Introduction. To capture indirect effects, we need a test that takes 

account of the entire matrix of adjustment frequencies. To this end, we use as our 

measure the sum of importance-weighted internalized adjustments. This can be 

formally expressed as Σijzijaij, where zij is a 0-1 indicator of co-production. (We 

will later see that this is the correct measure of performance if the number of 

firms is held constant and the variable adjustments-costs are independent of firm 
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size.) To test the hypothesis that a disproportionately large number of adjustments 

are internalized, we compare the actual value of this measure against those in 

100,000 random designs.13 Following the arguments made before Table 3, we 

again opt to be conservative and constrain the random designs to have the same 

firm sizes as the actual.  

Table 4 below contains the results of the resulting test. The second column 

give the means of the measures (EΣijzijaij) based on the simulations, the numbers 

in the fourth column (MaxzΣijzijaij) are its theoretical maximum (the best that can 

possibly be done within the constraints of the actual size-distribution) and is 

found by integer programming. The third column reports the actual measures of 

internalized adjustments (Σijyijaij), where yij is the value taken by zij in the data (a 

0-1 indicator of actual co-production). 

Table 4 

Sum of Internalized Adjustments by Supply Chain1 

1 p-values in parentheses refer to tests relative to 100,000 randomly designed supply chains. 

Car EΣijzijaij Σijyijaij MaxzΣijzijaij 

A 161 275  (.0001) 395 

B 142 221  (.002) 397 

C 79 143  (.005) 288 

D 100 195  (.0001) 316 

E 433 468  (.120) 521 

F 95 147  (.017) 329 

G 68 152  (.00000) 269 

H 59 134  (.0001) 251 

 

                                                 
13 Another way to approach the problem is to use an entirely different statistical technique. A 
particularly interesting candidate may be cluster analysis, the use of which has some history in 
sociological and ecological studies of network effects (Frank, 1995).  
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Consistent with the results at the pair-by-pair level, we see that the 

industry-level measures, except for supply chain E, are very significant. In fact, 

four of the supply chains internalize more adjustments than 99,995 randomly 

generated designs. The result is also robust in the sense that all supply chains 

show similar patterns. So with the exception of supply chain E, there is strong 

statistical support for the claim that a disproportionate number of adjustments are 

managed inside firms.  

One way to measure the magnitude of the effect is by comparing the 

performance of random designs (EΣijzijaij), actual designs (Σijyijaij), and optimal 

designs (MaxzΣijzijaij). We can interpret (Σijyijaij - EΣijziaij)/(MaxzΣijzijaij - EΣijzijaij) as 

the actual “excess internalization” divided by the highest possible “excess 

internalization” (what would be observed if the theory explained everything and 

our measures were perfect). The average of this ratio is around .33, suggesting 

that one third of the forces captured by our measures are reflected in the actual 

design. However, the sheer size of the optimization problem raises an almost 

philosophical question about the use of full optimality as a benchmark. Clearly, 

no precise solution has been feasible until very recently and it is difficult to think 

that the industry, based on just 100 years of competition or experience, would 

have found the most efficient structure among so many possibilities. The supply 

chain for car G internalizes more adjustments than all of the 100,000 random 

designs created to test the hypotheses in Table 4, and yet scores less than one half 

on the (Σijyijaij - EΣijziaij)/(MaxzΣijzijaij - EΣijzijaij) measure. While this certainly is a 
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case where bounded rationality is a reasonable assumption, it is obviously very 

hard to argue for any specific benchmark other than full optimality.  

V.iii. A structural model 

The results in Table 4 tells us that actual supply chain designs internalize 

many more adjustments than one would expect if designs were random. They do 

not tell us why this is. To this end, we will use simulated GMM to estimate a 

structural model of supply chain design, aiming to show that it can be portrayed 

as the solution to a program like (P). This will allow us to measure the extent to 

which ours is the right model of supply chain design. Specifically, we formulate a 

program in which adjustment-costs plus noise are minimized, and show that the 

former can not be ignored. One way to do this is by writing the objective function 

in (P) as (N-n)w + ½Σi∈N[f(sI)Σj∈I (βaij + eij)  +mΣj∉I (βaij + eij)], where once again 

N is the number of parts, n is the number of firms, w(s-1) are fixed adjustment-

costs in a firm of size s, f(s) are the variable adjustment-costs in a firm of size s, m 

are the variable adjustment-costs in the market, aij is the frequency of mutual 

adjustment, and eij is normally distributed noise. The idea is now to evaluate the 

importance of adjustment frequencies by looking at the magnitude and 

significance of β. Since the theory allows the f(sb)’s to be constant, we simplify a 

bit by restricting them to be independent of firm size. This allows us to write the 

objective function of (P) in terms of the two parameters f/w and m/w, thus 

reducing the dimensionality of the estimation problem. On the other hand, since it 

is hard to believe that the f(sb)’s are constant, we achieve the formal simplicity at 

the cost of estimating a very coarse and presumably less well fitting model.  
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There are, however, significant computational barriers to even this plan. 

To estimate the model with simulated GMM, we start with a provisional 

parameter value β’ (say 1) and solve P for a number of randomly drawn {eij} 

matrices. After using the appropriate moment conditions to evaluate β’, we repeat 

the procedure for a new parameter value, continuing until we find the best 

estimate. We might thus end up solving (P) more than 2000 times. But for N = 36, 

the number of feasible solutions to (P) is comparable to the number of seconds 

passed since the big bang, resulting in what presently are insurmountable 

computational demands. Rather than reducing the number of parts, we have once 

again chosen to constrain the simulated solutions to the same size-distribution of 

firms as that in the data, denoted by (s1
o, s2

o, ..sn
o). That is, we test that parts are 

allocated to minimize adjustment-costs under the assumption that the supply chain 

has to follow an exogenously imposed size-distribution.  

A fixed size-distribution implies that the number of firms is constant, and 

the objective function in (P) reduces to ½Σi∈N[fΣj∈I (βaij + eij)  +mΣj∉I (βaij + eij)]. 

This can be expressed as ½(f-m)Σi∈NΣj∈I (βaij + eij)  + ½mΣi∈NΣj∈N (βaij + eij), 

where the last term is a constant and (f-m) < 0. So total adjustment-costs are 

minimized by having as many intra-firm adjustments as possible, while respecting 

the actual size-distribution. Consequently, (P) is equivalent to the following much 

simpler Partitioning Problem  

MaxS Σi∈NΣj∈I (βaij + eij), s. t. sb= sb
o, for all b.                                      (P’)                               

In our context, we can interpret (P’) as a problem in which 36 parts have to be put 

into n firms of predetermined size in such a way that the sum of the intra-firm 
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benefits, (βaij + eij), is maximized. If β = 1 and eij = 0, this is the same measure 

used in the simulations underlying Table 4.  

While it is much, much smaller than (P), (P’) is still a very large integer 

programming problem. In the typical supply chain, it has more than 1022 possible 

solutions, but can be formulated as a linear integer program with about 2000 

variables and 4000 constraints. If we use a number of tricks to speed up the 

program, the CPLEX IP code allows us to find an optimal solution in a reasonable 

amount of time. Most of our individual runs take ten to fifteen minutes, although 

the time varies from a few seconds (for supply chain E) to several days or weeks 

(for supply chains F and B). The results reported below are based on a total of 

roughly 25,000 optimizations.  

Because the actual size-distributions are quite skewed, we have argued 

that the tests reported in Tables 3 and 4 should be done against alternative designs 

with the same firm sizes. Without this constraint, large firms would rarely result 

from randomly generated data, and the actual designs would appear to perform 

extremely well. There is no similar problem with the structural model. For 

appropriate values of w, m, and f(s), we could easily find that a skewed size-

distribution performs well, even with essentially random inputs (for very small 

values of β). So while it is nice to estimate the structural model under the same 

assumptions as those used in the simpler tests, we would prefer to estimate 

without the constraint on size-distribution; were it not for computational 

considerations. However, the theory does imply that the actual industry design is 

better than any other with the same size-distribution. So we are in some sense 
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testing an implication of the theory, although our estimates are constructed in the 

restricted model only.  

We estimate β for individual supply chains from the moment condition: 

                            EΣij[yij –Prob(xij=1|β*)]aij = 0,                           (4) 

where yij and xij are 0-1 indicators of co-production, referring to the data and the 

simulations, respectively. For a specific {eij}, the solution to P’ does not change for 

very small changes in β, and Σijxij(β*)aij is a decreasing step-function. However, 

since we are using the expectation of this and the {eij} are normally distributed, the 

left side of (4) is a decreasing and continuous function of β.  We can therefore use 

Theorem 3.1 of Pakes and Pollard (1989) to show that it will yield a consistent 

estimator of β*. 

In practice, we find a measure of Prob(xij=1|β’) as the average value of 

xij(β’) over 100 simulations based on β’. We arrive at this average as follows: We 

first draw 100 independent {eij} matrices each consisting of 630 independent 

draws from N(0, σ2), where σ2 is the variance of the aij’s.  Given a provisional β’ 

and the first matrix, we then solve P by finding the allocation that maximizes 

Σijxij(β’)[β’aij + eij] subject to the constraint that the size-distribution is identical 

to the actual. After solving (P’) for the other 99 {eij} matrices, we assign β’ a 

score of Σ100Σij xij(β’)aij/100.14 We repeat the process for several other provisional 

β’s, searching for a score equal to Σijyijaij. To estimate the model on pooled data, 

we sum the left hand side of (4) over the eight supply chains to arrive at the 

moment condition: 
                                                 
14 Since individual optimizations of supply chain B took up to two weeks, the analysis of that is less 
rigorous. We used just 30 simulations for each value of β, and in some of them went with approximate 
solutions. In future work it might be worth investigating the use of importance sampling (Ackerberg, 2001) 
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E Σindustries{Σij[yij –Σ100xij(β*)/100]aij}=0,                                             (5) 

The left side of (4) is a step-function of β for any finite number of 

simulations and the estimated value of β* is a member of an interval. This 

complicates the estimation of standard errors by making it impossible to rely on 

standard limit theorems. Specifically, it is not clear how to find standard errors if 

Σ100Σij xij(β’)aij/100 is flat over very large intervals. Since we are looking at 

roughly 1022 solutions and β ∈ [0, 1], such problems would seem “unlikely”, but 

they can not be ruled out a priori.15 However, we are pleased to report that the 

iteration processes involved in the estimations were very well-behaved. We 

searched over grids of length down to .01 for the industry models, and down to 

.001 for the pooled model. In all cases the left hand sides of (4) and (5) were 

strictly decreasing in β and in most cases convex.  

Given the absence of large flat regions, we calculated the standard errors 

of the estimates by parametric bootstrapping from the asymptotic distributions. 

Specifically, we randomly drew 100 {β*aij + eij} matrices and optimized against 

each of them to find 100 hypothetical data matrices. We then estimated a value of 

β for each of these, and found the standard error from the distribution of these 100 

β’s.16 The results are reported in Table 5, where the row labeled POOLED refers 

to estimates with pooled data.  

 

 

 
                                                 
15 To overcome this problem, we would need to develop some more general results, along the lines of 
Berry, Linton, and Pakes (2004). 
16 Due to the computational difficulties, we generated just 30 simulated data points for supply chain B. 
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Table 5 

Structural Models of Max Σijxij(β)[βaij + eij].1 

Car β* s.e. β* 

POOLED .314 .095 

A .40 .15 

B  .29 .11 

C .27 .10 

D .37 .14 

E .26 .26 

F .21 .11 

G .35 .12 

H .33 .13 
                                             1Standard errors are bootstrapped.  
                              N=5040 for the pooled model, 630 for supply chains A-H. 
 

In spite of the fact that we estimated a very coarse model with very coarse 

data, the betas are, with the exception those for supply chain E, highly significant. 

In light of the very different supply chain designs documented in Table 2, the 

betas are also surprisingly similar. While each of the eight supply chains has 

solved the design problem in its own way, it appears that they all weigh the 

adjustment-costs to a similar degree.  

Because the aij’s and the eij’s have the same variance, we can use the 

magnitudes of the betas to get another perspective on the influence of adjustment 

frequencies. We have portrayed the supply chain as maximizing sums of βaij + eij, 

so β* = .33 suggests that our theory and measures capture about .33/[.33 + 1], or 

one fourth, of the forces going into the determination of supply chain design. The 

extent to which the model fits the data is surprising in light of the complexity of 

the optimization problem postulated by the theory. As discussed in connection 
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with Table 4, one can reasonably question the practical possibility of full 

optimality and thus of its use as a benchmark.  

Summarizing the results, we have provided robust and multifaceted 

evidence in support of the claim that the adjustment-cost theory provides a good 

explanation for several apparently very different supply chain designs. 

 

VI. Comparing Supply Chain- and Firm-Level Estimation 

Since the supply chain-level model is theoretically superior to a firm-level 

(make-or-buy) model, it is interesting to compare the empirical results from the 

two models. Specifically, how much more precisely could we estimate the model 

by using the entire matrix of adjustment frequencies, as opposed to a single row? 

To look at this, we represent the firm by body-in-white - a part always made by 

the brand name manufacturer. Since the pair-wise ratings between body-in-white 

and the other parts have larger variance than those in any other row, this choice 

gives the firm-level model as much information as possible and thus leads to the 

most conservative evaluation.17  

To minimize confounds, we compare the supply chain-level model to an 

analogously constrained and estimated firm-level GMM. Specifically, if body-in-

white is co-produced with s1 other parts, (e1j) is a vector consisting of 35 

independent draws from N(0, σ2), and σ2 is the variance of all the aij’s, we portray 

the firm as solving 

                      Max Σjx1j(βa1j + e1j), s. t. Σjx1j = s1.                                             (P’’) 

                                                 
17 If we had chosen to represent the firm by a part that is produced in isolation, the logit model would have 
been inestimable, while our model would be unchanged. 
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In close analogy to (4), we estimate β from the moment condition 

E Σj[y1j –Σ100x1j(β*)/100]a1j =0.                                             (6) 

For each value of aij (0, 1, 2, 3, 4, 5, and 6), this model gives us an estimate of 

Prob (x1j=1|aij). To evaluate the extent to which the firm-level model fits the 

supply chain data, we insert these probabilities into the entire matrix, subtract 

{yij}, square each cell, and sum the squares to find the sum of squared residuals 

(SSR) over the 630 cells.  

As there is little reason to estimate a firm-level model with GMM, we also 

estimate an (unconstrained) logit model of co-production with body-in-white. 

Since this model is based on a different functional form, it is a bit harder to 

compare with our supply chain model, but we can measure its relative 

performance by finding the SSR over the 630 cells as above. The SSRs from the 

supply chain model, the firm-level GMM model and the firm-level logit model 

are given in Table 6 below. 

Table 6 

Sum of Squared Supply Chain Residuals (SSR) by Alternative Models.1 

Car Supply Chain GMM  Firm GMM  Firm Logit  

A 117.2 136.2 133.5 

B 117.4 151.1 150.5 

C 74.4 89.3 88.6 

D 84.8 99.3 97.4 

E 105.9 115.1 114.6 

F 88.6 100.6 99.2 

G 60.5 72.9 71.9 

H 56.7 70.8 70.8 
                                 1 All entries are based on 630 pairs of parts. 
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The table shows that the supply chain-level model consistently fits better 

than either of the two firm-level models. Since it makes more intensive use of the 

data, it is not surprising that the supply chain-level model does better than the 

firm-level GMM model.  We showed in Section II that its theoretical advantage is 

larger when fewer parts are co-produced, and we would expect the superiority of 

the industry-level model to differ between industries. The Table bears this out as 

the ratio between the SSRs generally is larger in supply chains like H, G, C, F, 

and D where fewer parts are co-produced, and smaller in supply chain E.  

As mentioned above, it is harder to compare the supply chain GMM with 

the logit model because the difference in data sets is confounded with a difference 

in functional forms. To (imperfectly) decompose the effects, we can start by 

comparing the two firm-level models. From Table 6, we see that the logit model 

fits the questionnaire data bit better, but Table 6A in the Appendix shows that the 

firm-level GMM fits the interview data better. As one would expect, the relative 

advantages of the two functional forms depend on the data sets. On the other 

hand, the logit model clearly does less well than the supply chain-level GMM, 

suggesting that any advantages tied to functional forms are overwhelmed by those 

associated with more intensive use of the data. 

One could argue that the above model comparison is biased against the 

firm-level models in favor of the supply chain-level model, because only the latter 

is estimated on the data used for comparison. However, we will claim that this 

standard of comparison is the only correct one, since it is consistent with the 
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belief that all co-production decisions follow the same logic. We can nevertheless 

get another take on the model comparison by evaluating model performance 

relative to co-production with body-in-white only. These results are given in 

Table 7 below. 

Table 7 

Sum of Squared Firm Residuals (SSR) by Alternative Models.1 

Car Supply Chain GMM  Firm GMM  Firm Logit  

A 7.41 8.52 8.29 

B 7.31 5.01 4.75 

C 7.25 6.59 6.35 

D 7.26 8.01 7.88 

E 3.57 3.62 3.53 

F 8.58 8.45 7.95 

G 6.13 7.29 7.14 

H 6.36 7.15 7.06 
                                      1 All entries are based on 35 pairs of parts. 

 

Since the two firm-level models are estimated on that data only, this 

measure does not penalize them for over-fitting and will be more favorable to 

them. In spite of this, the supply chain-level model still outperforms the two firm-

level models in more than half of the industries. We conclude that supply chain-

level estimation offers significant advantages over firm-level (make-or-buy) 

estimation, but admit that it uses more data and that it entails non-trivial 

computational difficulties.  
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VII. Discussion 

Using original data that map very directly and precisely to the theory, we 

have presented several successively deeper tests of the proposition that the firm is 

a low variable- , but high fixed cost way to govern adjustments. Our results are 

very strong and robust across alternate specifications and supply chains. By taking 

a supply chain-level perspective, we have been able to avoid the mis-

specifications inherent in make-or-buy estimates and extract much more 

information from the data, especially in the cases where many parts are out-

sourced. Consistent with this, we found that our structural model fits better than a 

firm-level model, both theoretically and in this dataset. Our innovative testing 

strategy is not tied to the adjustment-cost theory and it should be possible to apply 

it to other theories of the firm as well. While our findings are very strong, we now 

turn to possible limitations of the work as well as topics for future research.  

On the empirical side, we are very encouraged by the .915 correlation 

between our two measures of adjustment frequency. Even so, we can not 

generally rule out that “the frequency with which there needs to be a mutual 

adjustment”, is picking up something other than adjustment frequency.18 An 

interesting area for future research is to conduct tests of specific competing 

theories. 

It is possible to interpret our results as reflective of endogeneity with the 

idea being that there are more or fewer mutual adjustments between two parts 

because they are or are not co-produced. There are two reasons we are not too 

                                                 
18 As a preliminary check in this direction, we asked our expert for a rough matrix with ratings of 
the “magnitudes” of mutual adjustments, and can report that analyses with that produced much 
weaker results than those with frequencies.  
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worried about this. First, all data collected explicitly differentiated the needs for 

mutual adjustments from actual adjustments. In particular, we took pains to ask 

the experts about “the frequency of needs for mutual adjustments”. Secondly, our 

theory predicts that adjustment between co-produced parts is cheaper. In the 

interest of simplicity, we derived P under the assumption that all needed 

adjustments are made. But in a more realistic formulation, without this 

assumption, we would find that more of the needed adjustments are implemented 

within than between firms. It is certainly possible to question our point estimates 

based on this line of reasoning, but the argument relies on the premise is that the 

theory is correct. So to the extent that reverse causality is driven by differences in 

adjustment-costs, we are not too unhappy about it. 

Finally, it would be preferable to estimate the simulated GMM model 

without forcing the β’s to be the same and/or without constraining the simulated 

solutions to the same size distribution as the data. In the current setting, this is 

complicated by the size of P, but there are three possible ways to reduce the 

computational burden. The first and most direct solution is to work with fewer 

parts, say ten. Since some sets of parts are partially co-produced at that level of 

aggregation, it is this is not a viable option in the auto industry, but would be in 

many other settings. A second possibility is to use near-optimal solutions to P. 

Because our moment condition (4) involves the expected average of the optimum 

and we average over 100 simulations, we could conceivably use solutions that are 
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within, say 1% of optimal, and still get close to the true parameter values.19 

However, our experiments with this have not resulted in significant reductions in 

computation time. The third avenue is to define approximation by processor time 

and work with an inflated version of the best solution found after a fixed amount 

of time. Suppose that 100 complete runs, each taking more than twenty-four 

hours, give an average Σxijaij score of eleven when completed, but only ten after 

twenty-four hours. In such a case one could possibly stop all runs after forty-eight 

hours and inflate their scores by ten percent. We evaluated this for about 350 runs 

on industries B and C, and found that it worked fairly well.20 However, it is hard 

to put bounds on the degree of approximation involved.   

Another interesting issue, directly related to the problems of 

computational complexity discussed above, concerns the use of full optimality as 

a benchmark when interpreting measures of importance. Given the extremely 

large number of possible solutions, it seems unreasonable to expect the fully 

optimal outcome even in a world perfectly described by the model. One way to 

gauge the validity of this line of argument might be to repeat the analysis on 

simpler products to see if the point estimates of importance are higher in 

industries with fewer parts.  

                                                 
19 If we had found our estimates from some other criterion, such as maximizing the number of 
correctly predicted instances of co-production, it would be much harder to gauge the effect of 
using approximate solutions. 
20 In these experiments, we limited processor time to the point where about 75% of the runs were 
stopped short of full optimality. Evaluated at β*, the best solutions for the stopped runs gave a 
value of Σxij(βaij + eij) that on the average was within one percent of that achieved by the optimal 
solutions for the same runs. The corresponding values of Σxijaij were on the average within two 
percent of those associated with the optimal solutions. However, taking into account that Σxij(β)aij 
is fairly steep around β*, the approximations seem tolerable in comparison to the standard errors 
on β*. 
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In closing, the robust patterns in the data presented here should give pause 

to those who a priori reject the importance of ex post adjustment in the theory of 

the firm. We recognize that much work remains to be done, and hope that the 

approach taken here will prove fruitful. 
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Appendix: Results Based on Interview Data  

Table A-1 

Adjustment Frequencies from Interviews and Co-production Data for Supply Chain A 

 

 6 3 2 3 2 1 1 3 2 0 3 3 6 0 3 4 3 5 6 6 0 0 2 0 0 5 0 0 4 3 2 2 3 3 0
0  5 2 0 0 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
0 0  0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3
0 0 1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0  6 0 0 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1  0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0  0 2 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0  4 4 2 1 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0  6 3 2 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 3 0 0 0
0 0 0 0 1 1 1 0 0 1  3 0 0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0 0  4 6 6 5 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0  5 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0  5 5 0 0 0 0 0 0 0 0 2 0 4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0  4 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0  0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1  5 2 6 6 4 2 0 2 2 0 2 3 3 2 3 2 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1  6 5 5 3 3 2 4 4 0 6 6 6 0 5 2 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1  3 3 0 1 4 0 1 0 3 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1  6 5 3 1 2 2 0 4 5 2 0 4 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1  5 3 1 2 2 0 4 5 2 0 4 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1  0 0 3 3 0 3 3 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  2 1 1 0 0 0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0  0 0 0 0 0 2 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1  5 1 3 5 1 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 5 6 4 0 4 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0  0 1 0 0 3 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1  6 2 2 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  3 4 4 4 2 2 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0  1 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  5 1 6 6 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0  0 3 3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 1 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0  6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0  
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Table A-2 

Descriptive Statistics by Supply Chain1 

Car Fraction co-

produced 

Number of parts co-

produced  

r(co-production, 

adjustment frequency)  

A .29 19, 5, 2, 2, 2 .52  

B .26 16, 9, 4, 2 .49 

C .14 13, 5, 2, 2, 2 .57 

D .18 15, 3, 3, 2, 2, 2, 2 .53 

E .79 32 .48 

F .17 14, 5, 3, 3, 2, 2 .53 

G .12 12, 4, 3, 2, 2, 2 .61 

H .11 11, 4, 3, 3, 2 .60 
                                 1N=630.  

 

Table A-3 

Probability of Pairwise Co-production by Adjustment Frequency1 

Car 0 1 2 3 4 5 6 

A .235 (.002) .385 (.218) .386 (.134) .410 (.114) .478 (.045) .476 (.061) .619 (.005) 

B .226 (.016) .231 (.697) .182 (.917) .385 (.073) .217 (.754) .571 (.004) .667 (.001) 

C .116 (.017) .192 (.321) .159 (.455) .256 (.067) .174 (.424) .238 (.182) .333 (.033) 

D .154 (.028) .115 (.866) .182 (.567) .205 (.199) .217 (.402) .429 (.010) .476 (.003) 

E .768 (.150) .808 (.506) .795 (.525) .821 (.448) .870 (.249) .905 (.173) .905 (.186) 

F .156 (.099) .192 (.468) .045 (.998) .231 (.247) .130 (.801) .429 (.007) .476 (.003) 

G .094 (.009) .000 (1.00) .045 (.978) .282 (.008) .130 (.555) .429 (.001) .476 (.001) 

H .083 (.015) .115 (.542) .091 (.708) .205 (.068) .174 (.224) .238 (.070) .286 (.025) 
1 p-values in parentheses refer to tests relative to 100,000 randomly designed supply chains.  
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Table A-4 

Sum of Internalized Adjustments by Supply Chains1 

1 p-values in parentheses refer to tests relative to 100,000 randomly designed supply chains. 

Car EΣijzijaij Σijyijaij MaxzΣijzijaij 

A 162 264  (.001) 407 

B 143 231  (.001) 420 

C 80 132  (.012) 312 

D 101 174  (.004) 340 

E 436 476  (.097) 526 

F 96 153  (.011) 356 

G 69 154  (.0000) 295 

H 60 112  (.005) 274 

 
 

Table A-5 

Structural Models of Max Σijxij(β)[βaij + eij].1 

Car β* s.e. β* 

POOLED .276 .069 

A .33 .13 

B .31 .08 

C .23 .09 

D .26 .11 

E .28 .36 

F .23 .09 

G .32 .10 

H .25 .10 
 1Standard errors are bootstrapped.  
N=5040 for the pooled model, 630 for supply chains A-H. 
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Table A-6 

Sum of Squared Supply Chain Residuals (SSR) by Alternative Models.1 

Car Supply Chain GMM  Firm GMM  Firm Logit  

A 115.2 131.8 132.8 

B 116.3 149.8 149.3 

C 73.7 92.1 93.0 

D 87.9 98.2 98.5 

E 114.6 107.0 107.1 

F 88.2 96.1 96.6 

G 62.4 68.2 68.6 

H 59.2 66.7 66.1 
                     1 All entries are based on 630 pairs of parts. 

 

Table A-7 

Sum of Squared Firm Residuals (SSR) by Alternative Models.1 

Car Supply Chain GMM  Firm GMM  Firm Logit  

A 7.29 8.26 8.14 

B 6.77 4.48 4.54 

C 7.16 5.72 5.66 

D 7.78 7.42 7.31 

E 3.88 3.57 3.50 

F 8.69 7.71 7.73 

G 6.51 6.83 6.74 

H 6.98 6.92 6.80 
                   1 All entries are based on 35 pairs of parts. 
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