Discussion of
 Retail Competition and the Dynamics of Consumer Demand for Tied Goods

A. Yesim Orhun

The University of Chicago, Graduate School of Business

Research Question

Observations:

- Product: One-way complementarity
- Channel coordination: Incentives not aligned (manufacturer vs. downstream)
- Asymmetry of competition: Internalization depends on the extent of market power
- Manufacturer versus retailers
- Yet another form of asymmetry across downstream firms within the same market

Aim: Calibrating the differences in incentives in razor/blade pricing of retailers/manufacturers by looking at differential quantity responses to a price change.

- Change in quantities in each channel and total in the long run; externality measurement
- Break down of changes: to competitor, to the outside good, switching between stores

Demand Model

The Structure

Estimated parameters of interest: $\quad \alpha, \gamma, \lambda, \phi, c$

- Partial lock-in; choice set is dependent on state
- Choice of which store to accumulate inventory
- Heterogeneity
- ϕ incorporates market power of a store, drives price expectations, stock-out expectations and the decision of when/how much to purchase
- ϕ independent of prices at stores or blade inventory
- Estimated, corr. with other demand parameters
- Choice over package size: Some consumers stock up more than others, due to heterogeneity in α and c
- No heterogenous storage costs
- Disposable > Mach3?

Demand Model - some thoughts

Switching

- Table of switches, how many for each type of switch. What is it mostly out of?
- If switch, $u_{r j}\left(\rho, b, p_{k}\right)=\gamma_{r}-\alpha p_{r j k}+\lambda_{\rho} b+\varepsilon_{r j}$
- A way to deal with blades left over from old technology.
- Higher stock of previous blades: more likely to switch.
- Are any of the reasons that induce switching likely to be correlated with (potentially unobservable/misspecified) factors that result in high stock of blades?
- Does the identity of blades matter in the magnitude of salvage value beyond price differences?

Switching Costs Beyond Expenditure?
$u_{r j}\left(\rho, b, p_{k}\right)=\gamma_{r}-\alpha p_{r j k}-\Delta_{r}+\sum\left(\right.$ left-over consumption value of $\left.b_{\rho}\right)+\varepsilon_{r j}$

Give metering another chance

Metering

Preliminary results:
$\operatorname{Corr}\left(c_{i}, \gamma_{i r}\right)<0 \quad$ High usage, less blade utils
$\operatorname{Corr}\left(\alpha_{i}, c_{i}\right)<0 \quad$ High usage, more sensitivity to price

- Investigate correlation of WTP for technology and usage
- Look at marginal versus the average consumer that has chosen the technology
- Investigate metering and lock-in

Looking into the Second Type of Asymmetry

Calibration

- Second Asymmetry:
- How does the incentive difference change with distribution of ϕ of a given store type? (separating "selection" of consumers)
- If Costco has higher blade prices, how much less is the misalignment of Safeway's incentives with the manufacturer?

Price Discrimination Beyond Metering

- Store visit probabilities determine market power for retailer
- Store visits correlate with consumer preference parameters
- Manufacturer can price discriminate: bulk in Costco
- Preference over bulk buying is incorporated already
- Measure quantity response to changing the price in different stores; identify the difference that is due to heterogeneity in WTP of consumers who shop at given stores more often.
- How much of bulk-selling at Costco is a "problem" inducing Safeway to distort prices more, versus a "tool"? Would be great to tradeoff benefits of price discrimination across stores with increased incentive misalignment.

